文档库 最新最全的文档下载
当前位置:文档库 › AD转换参数 ----INL,DNL

AD转换参数 ----INL,DNL

AD转换参数 ----INL,DNL
AD转换参数 ----INL,DNL

说起来都是教科书害人。几乎所有的教科书、参考书、文献选编都只关心模数器件的分辨率和速度,而忽略了器件的精度。而关系到器件精度的两个非常重要的参数就是INL值和DNL值。小弟觉得非常有必要专门写一篇贴子来普及一下模数器件

精度这个重要的概念。

说精度之前,首先要说分辨率。最近已经有贴子热门讨论了这个问题,结论是分辨率决不等同于精度。比如一块精度0.2%(或常说的准确度0.2级)的四位半万用表,测得A点电压1.0000V,B电压1.0005V,可以分出B比A高0.0005V,但A点电压的真实值可能在0.9980~1.0020之间不确定。

那么,既然数字万用表存在着精度和分辨率两个指标,那么,对于ADC和DAC,除了分辨率以外,也存在精度的指标。

模数器件的精度指标是用积分非线性度(Interger NonLiner)即INL值来表示。也有的器件手册用 Line arity error 来表示。他表示了ADC器件在所有的数值点上对应的模拟值,和真实值之间误差最大的那一点的误差值。也就是,输出数值偏离线性最大的距离。单位是LSB(即最低位所表示的量)。

比如12位ADC:TLC2543,INL值为1LSB。那么,如果基准4.095V,测某电压得的转换结果是1000,那么,真实电压值可能分布在0.999~1.001V之间。对于DAC也是类似的。比如DAC7512,INL值为8LSB,那么,如果基准4.095V,给定数字量1000,那么输出电压可能是0.992~1.008V之间。

下面再说DNL值。理论上说,模数器件相邻量个数据之间,模拟量的差值都是一样的。就相一把疏密均匀的尺子。但实际并不如此。一把分辨率1毫米的尺子,相邻两刻度之间也不可能都是1毫米整。那么,AD C相邻两刻度之间最大的差异就叫差分非线性值(Differencial NonLiner)。DNL值如果大于1,那么这个ADC甚至不能保证是单调的,输入电压增大,在某个点数值反而会减小。这种现象在SAR(逐位比较)型ADC中很常见。

举个例子,某12位ADC,INL=8LSB,DNL=3LSB(性能比较差),基准4.095V,测A电压读数1000,测B

电压度数1200。那么,可判断B点电压比A点高197~203mV。而不是准确的200mV。对于DAC也是一样的,某DAC的DNL值3LSB。那么,如果数字量增加200,实际电压增加量可能在197~203mV之间。

很多分辨率相同的ADC,价格却相差很多。除了速度、温度等级等原因之外,就是INL、DNL这两个值的差异了。比如AD574,贵得很,但它的INL值就能做到0.5LSB,这在SAR型ADC中已经很不容易了。换个便宜的2543吧,速度和分辨率都一样,但INL值只有1~1.5LSB,精度下降了3倍。

另外,工艺和原理也决定了精度。比如SAR型ADC,由于采用了R-2R或C-2C型结构,使得高权值电阻的一点点误差,将造成末位好几位的误差。在SAR型ADC的2^n点附近,比如128、1024、2048、切换权值点阻,误差是最大的。1024值对应的电压甚至可能会比1023值对应电压要小。这就是很多SAR型器件DN L值会超过1的原因。但SAR型ADC的INL值都很小,因为权值电阻的误差不会累加。

和SAR型器件完全相反的是阶梯电阻型模数/数模器件。比如TLC5510、DAC7512等低价模数器件。比如75 12,它由4095个电阻串联而成。每个点阻都会有误差,一般电阻误差5%左右,当然不会离谱到100%,更不可能出现负数。因此这类器件的DNL值都很小,保证单调。但是,每个电阻的误差,串联后会累加,因此INL值很大,线性度差。

这里要提一下双积分ADC,它的原理就能保证线性。比如ICL7135,它在40000字的量程内,能做0.5LSB 的INL值(线性度达到1/80000 !!)和0.01LSB的DNL值.这两个指标在7135的10倍价钱内,是不容易被其他模数器件超越的。所以7135这一类双积分ADC特别适合用在数字电压表等需要线性误差非常小的场

合。

还要特别提一下基准源。基准源是测量精度的重要保证。基准的关键指标是温飘,一般用ppm/K来表示。假设某基准30ppm/K,系统在20~70度之间工作,温度跨度50度,那么,会引起基准电压30*50=1500ppm 的漂移,从而带来0.15%的误差。温漂越小的基准源越贵,比如30ppm/K的431,七毛钱;20ppm/K的385,1块5;10ppm/K的MC1403,4块5;1ppm/K的LM399,14元;0.5ppm/K的LM199,130元。

该死的教科书害了一代学生。说起来好笑的一个现象:我这边新来的学生大多第一次设计ADC电路的时候,基准直接连VCC,还理直气壮的找来N本教科书,书上的基准写了个网标:+5V。天下的书互相抄,也就所有的学校的教科书都是基准接5V。教科书把5V改成5.000V多好?学生就会知道,这个5V不是VCC。或者提一下基准需要高稳定度,也好啊!

最后说一下Sigma-Delta型ADC,它比较特殊,对于精度,一般用直接用线性度表示,比如0.0015%.不说差分非线性值,而直接用有效分辨率来表示。此外,Sigma-Delta型ADC还存许多怪脾气,难伺候。

ADC应用中被 bangzhu 发表于 2006-3-20 23:15 模拟技术←返回版面

好文受教:)

好文受教,我来作作后勤工作

总结:

(1)INL(Interger NonLinear,Linearity error)精度。理解为单值数据误差,对应该点模拟数据由于元器件及结构造成的不能精确测量产生的误差。

(2)DNL(Differential NonLinear)差分非线性值。理解为刻度间的差值,即对每个模拟数据按点量化,由于量化产生的误差。

例子:

(1)INL,精度

比如12位ADC:假设基准Vref=4.095V,那么1LSB=Vref/2^12=0.001V。如果精度为1LSB,则它的单值测量误差0.001V*1=0.001V,比如测量结果1.000V,实际在1.000+/-0.001V范围。如果精度为8LSB,则他的单值测量误差0.001V*8=0.008V,比如测量结果1.000V,实际在1.000+/-0.008V范围

(2)DNL,差分非线性值

比如12位ADC:假设基准Vref=4.095V,那么1LSB=Vref/2^12=0.001V。不考虑精度,即精度为0LSB。没有单值误差。如果DNL=3LSB=0.001V*3=0.003V假设A实际电压为1.001V,B实际电压为1.003V。理论上A点读数1.001V/1LSB=1001,B点读数1.003V/1LSB=1003,B-A=2,B>A,但由DNL=3LSB=0.003V,模拟数据间的量化误差有0.003V,那么B-A会在-1(2-3=-1)到+5(2+3=5)之间的某一个数。

ArcGIS中的地理坐标系转换方法参数

ArcGIS中的地理坐标系转换方法参数 地理坐标系变换是数据处理过程中常遇到的问题,今天就说下这方面的问题。 如果遇到这种情景:两份数据有不同的坐标系,想叠加在一起显示,作图或显示精度要求不高。 这种情况使用ArcMap 的动态投影即可,ArcMap 的内部动投影机制会解决地理坐标系变换的问题。数据在显示的过程中,会实时的被转换,但不改变数据本身。 如果我们需要进行地理坐标系转换,我们知道ArcGIS Desktop 中提供了Project 工具。 此工具界面上有个至关重要的参数:Geographic Transformation。我们发现它的后面赫然写着Optional 。依照使用其他工具的经验,这种打了Optional 标志的参数,不就是可填可不填的意思吗?但是,它真的让你随便的可填可不填吗?Naive!图样图森破!这个参数的填写与否,完全是受前面两个参数决定的,主要三种情景吧。 情景1: 不涉及到地理坐标系变换的坐标变换,这个参数完全不需要,而不是optional 哦。 例如:从GCS_Xian_1980 进行投影变换,转换为Xian_1980_3_Degree_GK_CM_120E 投影坐标系。整过转换中,仅使用了高斯克吕格投影变换,没有涉及到地理坐标变换。

情景2: 涉及到地理坐标系变换的坐标变换,并且ArcGIS 已知二者之间的变换方法,这个参数是必须的,在已知列表中做选择或者自定义。(自定义见:情景3) 例如:从GCS_Beijing_1954,转换为GCS_WGS_1984坐标系。 转换过程中涉及到地理坐标系变换,也就是进行了椭球体变换。 ArcGIS 中提供了6种已知转换方法,可以根据适用范围选择之。其中如何选择,此文不做介绍,请查看我的另一篇博客:https://www.wendangku.net/doc/0217910348.html,/kikitamoon/article/details/12914477 Beijing_1954_To_WGS_1984 Table 1: Geographic (datum) transformations: well-known IDs, accuracies and areas of use

ARCGIS中坐标转换

ArcGIS 坐标转换 1.坐标分析 问题:对于某地A中心点坐标为455299.845,3223622.525的CAD矩形,CAD施工图。将其转换为WGS-84坐标,如何转换? 分析:分析455299.845为6位,则为东向Y坐标,省去了带号,加上了5000000加常数,其最大为为4,说名在中央子午线的左侧(左侧为负值,加上500万后肯定小于500万,首位为4。若在中央子午线右侧,则最大位数为5);3223622.525为7位,为北向X坐标。 查看“某地A”的经度为92.5度,因为为CAD施工图,比例尺肯定大于1:5万,所以为3度带,所以此点的中央子午线为93E,带号为Beijing_54_Zone_31。 2.CAD转为shp格式并设定坐标系: ArcTool box-Convesion Tools->To Geodatabse->CAD to Geodatabase: 其中空间参考坐标系选择Beijing_1954_3_Degree_GK_CM_93E。 具体原因:选择投影坐标系-Gauss Kruger-Bei Jing54,此时3度带有两种:Beijing_1954_3_Degree_GK_CM_93E和Beijing_54_Zone_31,前者表示中央子午线为93E的3度带,后者表示北京54 31度带,二者意义一样,但选择哪种呢?因为点坐标东向为455299.845为6位,不带带号,因此选择Beijing_1954_3_Degree_GK_CM_93E(若东向坐标

为31455299.845,则选择Beijing_54_Zone_31), 3.北京54到WGS84坐标的转换 1.1加载图层: 打开ArcTool box-Data Management Tools->Project and transformation->feature->Project,加载shp图层,弹出下列窗口: 出现红色“X”号,说明原始图层坐标系没有识别出,则需要首先设定其坐标系后再转换。具体设坐标系参考“9 设置或改变Shp文件坐标系” 1.2选择输出图层地址和名称: 在Out Put Dataset or Feature处输入输出图层名:

ArcGis中三参数和七参数转换

在ArcGIS Desktop中进行三参数或七参数精确投影转换ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。下面介绍两种办法来在ArcGIS Desktop中进行这种转换。方法1:在ArcMap 中进行动态转换(On the fly) 假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations...

点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明了我们想从什么坐标系统转换到什么坐标系统。

在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输入各个转换参数。 输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对当前地图的动态投影转换。这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,再使用数据导出,导出时选择投影为当前地图的投影即可。

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS 坐标转换投影变换 1坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原点相同,通过三次旋转,就可以使两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS84基准参数 很显然,WGS84与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。当要把GPS接收到的点(WGS84坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。这就要求把这些GPS点从WGS84的坐标系统转换成BJ54的坐标系统了。 有关WGS84与BJ54的坐标转换问题,实质是WGS-84椭球体到BJ54椭球体的转换问题。如果我们是需要把WGS84的经纬度坐标转换成BJ54的高斯投影坐标,那就还会涉及到投影变换问题。因此,这个转换过程,一般的GPS数据处理软件都是采用下述步骤进行的:

MAPGIS中坐标转换中七参数法

MAPGIS 中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,丫平移,Z平移,X旋转(WX,丫旋转(WY,Z旋转(WY,尺度变化(DM。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命 令,将演示数据“演示数据_北京54.WT、“演示数据_北京 54.WL、“演示数据—北京54.WP打开。1、单击“投影转换” 菜单下“S坐标系转换”命令,系统弹出“转换坐标值” “话框⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位—米”;⑵、在“输出”一栏中,坐标系设置为“西 安80坐标系”,单位设置为“线类单位—米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中, 输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z), 如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一

栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、 单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。 3、单击“投影转换”菜单下“ MAPGI毀影转换/选转换线文件”命令,系统弹出“选择文件”对话框 选中待转换的文件“演示数据_北京54.WL',单击“确定”按 钮; 4、设置文件的Tic点,在“投影变换”模块下提供了两种方法:手工设置和文件间拷贝,这里不作详细的说明; 5、单击“投影转换”菜单下“编辑当前投影参数”命令,系统弹出 “输入投影参数”对话框,如图6所示,根据数据的实际情况来设置 其地图参数坐标系类型:大地坐标系 椭球参数:北京54投影类型:高斯-克吕格投影比例尺分母:1坐标单

MAPGIS中坐标转换中七参数法

MAPGIS中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开。1、单击“投影转换”菜单下“S坐标系转换”命令,系统弹出“转换坐标值”“话框 ⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位-米”;⑵、在“输出”一栏中,坐标系设置为“西安80坐标系”,单位设置为“线类单位-米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中,输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z),如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来; 2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示; 在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:

ARCGIS中坐标系的定义及投影转换方法

ArcGIS中坐标系的定义及投影转换方法 张卫东 (安徽省环境信息中心 合肥 230001 ) 摘 要:本文就我省GIS项目中地理数据所涉及的多种坐标系及地图投影转换等问题作了详细分析,并在ESRI公司的ArcGIS软件平台上介绍了不同坐标系的定义及投影转换方法。 关键词:坐标系; 地图投影 一、问题的提出 GIS技术在我省环保工作中已应用多年,现有多套基于不同坐标系的地理数据,如全省1:5万的北京54坐标系数据,主要城市1:1万的西安80坐标系数据,GPS采集的WGS84坐标系数据以及同是北京54坐标系但不同投影的遥感解译数据等,这些不同坐标系的数据给我们的使用带来了困难:如何将遥感解译数据和不同的地理数据转换到一起,GPS采集的经纬度数据如何正确加载到地图上,以前在北京54坐标系上使用的数据又如何转换到新的西安80坐标系上来?通过摸索,本人找到了解决问题的一些方法,现介绍如下,首先介绍一下相关的几个概念。 二、相关概念 由于GIS所描述是位于地球表面的空间信息,所以在表示时必须嵌入到一个空间参照系中,这个参照系统就是坐标系,它是根据椭球体等参数建立的。另外,为了能够将地图从球面转换到平面,还要进行投影。 1. 椭球体(Spheroid)、基准面(Datum)、坐标系(Coordinate System)及投影(Projection) 尽管地球是一个不规则的椭球,但为了将数据信息以科学的方法存放到椭球上,我们需要用一个可以量化计算的椭球体作为地球的模型。这样的椭球体用长半轴a(semimajor axis),短半轴b(semiminor axis),偏心率倒数1/f(Inverse flattening)来描述,这三个参数数学关系为:1/f=a/(a-b),实际中我们一般用长、短半轴二个参数来表示就可以了,根据需要人们定义了多种参考椭球体模型。然而有了这个椭球体还不够,还需要一个大地基准面将这个椭球定位,它的作用是来确定地球与椭球体之间的位置关系,由于每个国家或地区需要最大限度的贴合自己的那一部分不同,基准面也不同。 有了基于椭球体参数的基准面,再加上角度单位(Angular Unit)和本初子午线(Prime Meridian),就定义了地理坐标系(Geographic Coordinate System),图2清楚地表明了这一点。 但地理坐标系是用经纬度表示球面的位置,很多时候我们精确分析需要在平面上来进行,这就要将地图从三维地理坐标通过投影转换成二维平面坐标,这样的坐标系叫投影坐标系(Projection Coordinate System),它是在地理坐标系上加上投影转换参数(参见图4)。 由于从球面到平面的转换会引起距离、面积、形状、方向一个或多个空间属性的变形失真,没有一种投影转换能保持所有的空间属性不变。所以一些地图投影通过损失其它空间属性来使某一属性失真最小,而另一些地图投影则努力平衡全部空间属性的失真,现有数百种地图投影,它们各自适合于表示整个地球表面或某些区域的不同需求,如我国1:50万和更大比例尺地形图使用的是高斯-克吕格 (Gauss-Kruger) 投影,它没有角度变形,在长度和面积上变形也很小,通过分带投影后能保证很高的精度(参见图4),而遥感解译数据常采用阿尔勃斯(Albers Equal-Area Conic)投影,它是等面积割圆锥投影,可以保持面积不变(参见图5)。

GIS笔记——ArcGIS中WGS84转为西安80

GIS笔记——ArcGIS中WGS84转为西安80 在ArcGIS中,如果想要把一种坐标系统的矢量数据转换为另一个坐标系统,通常应当使用ArcToolbox中的Project工具。但是我使用这个工具的时候遇到了一个问题。 我拿到的数据是一个点图层,经纬度坐标。给我这个图层的人说这些点是从Google Earth上取出来的,应该是WGS84坐标。但是项目中使用的是西安80坐标系统,于是就需要把WGS坐标系统转为西安80。使用Project做投影转换的时候遇到了一个问题,如图 本来是可选参数的Geographic Transformation变成了必选参数。而且在下拉列表里找不到WGS84与西安80间的转换选项。 -----分割线-----

在ESRI中国社区里发现了一些关于这个问题的帖子。帖子没有直接给出这个问题的解决方法,但是参考那些帖子的内容,我尝试了下面这个方法,并取得了初步的成功。这个方法的基本思路是,既然必须填Geographic Transformation,但是下拉列表里没有,那么就自定义一个。 1、首先,使用Creat Custom Geographic Transformation工具,定义一个Geographic Transformation。如图 2、完成定义后,再使用Project工具,就会发现Geographic Transformation下拉列表里出现了刚才自定义的那个Geographic Transformation,如图

绿点消失了,可以运行了。这里有件事需要说明,第三幅图里的Geographic Transformation与第二幅图里的Geographic Transformation本来应该是相同的。但是我刚开始做这个操作的时候没有截图,图都是后来截取的,所以图里它们两个不同名。这只是个示意而已。 -----分割线----- 这个方法有两个隐患 1、图2,Method参数我是根据网上一个例子填的,不知道是什么意思; 2、图2,Parameters似乎是投影转换的“七参数”,七个参数都是0,看起来似乎不妥。我做过检查,把转换前的数据和转换后的数据都加载到ArcMap里,发现它们是重合的。但是由于转换前后的数据属于不同的坐标系统,加载数据的时候ArcMap肯定对其中一个做过转换。所以即使它们是重合的,也不能完全确定这个方法是正确的。

浅谈ArcGIS中坐标系统的转换

浅谈ArcGIS中坐标系统的转换 介绍ArcGIS软件中的坐标系和投影转换方法。利用MapGIS软件计算出布尔莎模型七参数的转换系数,在ArcGIS软件中实现了北京54高斯克吕格投影坐标系到WGS 84坐标系的转换。数据转换中需经历由北京54高斯克吕格投影坐标系转换到北京54坐标系,再由北京54坐标系转换到WGS 84坐标系。文中具体阐述了同一椭球体及不同椭球体的数据转换。 Key words: coordinate system; data conversion; AcrGIS; WGS 84 coordinate system 收稿日期:2012 - 03 - 27. 北京市高速公路绿化管理系统是在北京市高速公路基础数据库上实现的。北京市高速公路基础数据库是采用GPS手段采集的数据,其坐标系是WGS 84坐标系。而北京市高速公路绿化管理系统中的绿地数据是通过全站仪野外数据采集和转换现有CAD数据得到的,采用的坐标系是北京54高斯克吕格投影坐标系。如何将北京54高斯投影坐标系的数据转换到WGS 84坐标系,这就成为了系统建设首要解决的问题。 2我国主要使用的坐标系概述 20世纪50年代,我国采用了克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,这就是1954年北京坐标系。1954北京坐标系其实质上是前苏联1942年坐标系的延伸,它的坐标原点位于前苏联的普尔科沃。 20世纪70年代,中国大地测量工作者经过20多年的艰巨努力,终于完成了全国一、二等天文大地网的布测。1978年4月在西安召开全国天文大地网平差会议,经过整体平差,采用1975年IUGG第十六届大会推荐参考的椭球参数,建立了1980年国家大地坐标系。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60 km处。 WGS 84(World Geodetic System,1984年)坐标系是美国国防部研制确定的大地坐标系,是为GPS全球定位系统使用而建立的坐标系统。WGS 84坐标系的原点位于地球质心。采用以地球质心为大地坐标系的原点,可以更好地阐明地球上各种地理和物理现象,特别是空间物体的运动。 3ArcGIS中的坐标系统和投影变换方法 3.1ArcGIS中的坐标系统 在ArcGIS软件中预存了2套坐标系统:Geographic Coordinate Systems(地

ArcGIS中的坐标系统定义与投影转换

ArcGIS中的坐标系统定义与投影转换 ArcGIS中的坐标系统定义与投影转换 坐标系统是GIS数据重要的数学基础,用于表示地理要素、图像和观测结果的参照系统,坐标系统的定义能够保证地理数据在软件中正确的显示其位置、方向和距离,缺少坐标系统的GIS数据是不完善的,因此在ArcGIS软件中正确的定义坐标系统以及进行投影转换的操作非常重要。 1.ArcGIS中的坐标系统 ArcGIS中预定义了两套坐标系统,地理坐标系(Geographic coordinate system)和投影坐标系(Projectedcoordinate system)。 1.1 地理坐标系 地理坐标系 (GCS) 使用三维球面来定义地球上的位置。GCS中的重要参数包括角度测量单位、本初子午线和基准面(基于旋转椭球体)。地理坐标系统中用经纬度来确定球面上的点位,经度和纬度是从地心到地球表面上某点的测量角。球面系统中的水平线是等纬度线或纬线,垂直线是等经度线或经线。这些线包络着地球,构成了一个称为经纬网的格网化网络。 GCS中经度和纬度值以十进制度为单位或以度、分和秒 (DMS) 为单位进行测量。纬度值相对于赤道进行测量,其范围是 -90°(南极点)到 +90°(北极点)。

经度值相对于本初子午线进行测量。其范围是 -180°(向西行进时)到 180°(向东行进时)。 ArcGIS中,中国常用的坐标系统为GCS_Beijing_1954 (Krasovsky_1940),GCS_Xian_1980(IAG_75),GCS_WGS_1984 (WGS_1984),GCS_CN_2000(CN_2000)。 1.2 投影坐标系 将球面坐标转化为平面坐标的过程称为投影。投影坐标系的实质是平面坐标系统,地图单位通常为米。投影坐标系在二维平面中进行定义。与地理坐标系不同,在二维空间范围内,投影坐标系的长度、角度和面积恒定。投影坐标系始终基于地理坐标系,即: “投影坐标系=地理坐标系+投影算法函数“。 我们国家的投影坐标系主要采用高斯-克吕格投影,分为6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。具体分带法是:6度分带从本初子午线(prime meridian)开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,中国跨13-23带;3度投影带是从东经1度30分经线(1.5°)开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带,中国跨25-45带。 在CoordinateSystems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式:

ArcGIS坐标转换例子

2 ArcGIS坐标转换例子 2.1 应注意问题 使用ArcGIS如何实现WGS84经纬度坐标到BJ54高斯投影坐标的转换呢?在ArcGIS中,这个坐标转换步骤简化了,用户只需要两个步骤就能够直接从最初的WGS84经纬度坐标转换到BJ54高斯投影坐标。这就是ArcGIS的强大之处。 接下来,我们做一个例子。假设我们已经知道了7参数,应该如何操作呢?在具体的操作前,请大家一定注意以下三点: WGS84的经纬度坐标值是用度来表示,而不能是度分秒表示 七参数的平移因子单位是米,旋转因子单位是秒,比例因子单位是百万。在ArcGIS中,7参数法的名字是Coordinate_Frame 方法。 有人在用ArcGIS进行不同椭球体间的坐标转换时,转换出来的结果不对,然后就写文章说变形如何如何,很可能是由于他们没有注意上面这三个关键的问题造成的。 2.2 转换步骤 a、定义7参数的地理转换(Create Custom Geographic Transformation) 在Arctool中打开Create Custom Geographic Transformation工具,如图1所示: 图1 在弹出的窗口中,输入一个转换的名字,如wgs84ToBJ54。在定义地理转换方法下面,在Method中选择合适的转换方法如 COORDINATE_FRAME,然后输入平移参数、旋转角度和比例因子,如图2所示:

图2 b、投影变换 打开工具箱下的Projections and Transformations>Feature>Project,在弹出的窗口中输入要转换的数据以及Output Coordinate System,然后输入第一步自定义的地理坐标系如wgs84ToBJ54,开始投影变换,如图3所示: 图3 点击“确定”,完成坐标转换。 ArcGIS中的投影转换(转) 默认分类 2009-11-11 11:45:25 阅读535 评论0 字号:大中小 在ArcGIS中打开图层,其layers当前的坐标系统默认为打开的第一个图层数据的坐标系统。很多时候打开不同坐标系统的数据时,坐标显示不对,不是数

ARCGIS环境下遥感及矢量数据坐标转换

ARCGIS环境下数据坐标转换与精度验证一、数据准备: (1)80坐标系和2000坐标系同名点坐标 二、坐标转换参数解算 80-3度带2000度带ID XX YY ZZ ID b l Z A026356471.72923089008.8346280.749A02627.90712111118.5433506286.4007 A027250939.17173025801.3604218.41A02727.32178553117.4851558220.8233 A028314665.83023027285.1531188.371A02827.34527277118.1283785193.0656 A029409181.35533015927.3376997.428A02927.25232149119.08415661007.4017 A031216675.87502981807.3770316.577A03126.91858705117.1494287318.4723 A032329676.97552994120.4833120.286A03227.04805564118.2845957126.2222 A033465334.28562985475.373066.577A03326.98006395119.651995177.6867 A035247907.31562958514.6829187.114A03526.71456948117.4681954190.4788 A036387368.76832946457.0058407.627A03626.62385568118.870203417.2121 A037171821.75242895574.3038338.867A03726.131********.7206926340.3924

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS8经纬度 坐标到北京54高斯投影坐标的 转换 使用ArcGIS实现WGS8经纬度坐标到北京54高斯投影坐标的转换 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS8经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS坐标转换投影变换 1坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原点相同,通过三次旋转,就可以使两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS8经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84^标是指经纬度这种坐标表示方法,北京54坐标通常是

指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS8基准参数 很显然,WGS8与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。当要把GPS接收到的点(WGS8坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。这就要求把这些GPS点从WGS84勺坐标系统转换成BJ54 的坐标系统了。 有关WGS8与BJ54的坐标转换问题,实质是WGS-84椭球体到BJ54椭球体的转换问题。如果我们是需要把WGS84勺经纬度坐标转换成BJ54的高斯投影坐标,那就还会涉及到投影变换问题。因此,这个转换过程,一般的GPS数据处 理软件都是采用下述步骤进行的: 1)(B, L)84―― (X, Y, Z)84,空间大地坐标到空间直角坐标的转换。 2)(X,Y, Z)84——(X,Y, Z)54,坐标基准的转换,即Datum转换。通常有三种转换方法:七参数、简化三参数、Molode nsky。 3)(X, Y, Z)54――(B, L)54,空间直角坐标到空间大地坐标的转 换。 4)(B, L)54――(x, y)54,高斯投影正算。 从以上步骤不难看出,转换的关键是第二步,转换的参数。鉴于我国曾使用不同的坐标基准(BJ54、State80、Correct54 ),各地的重力值又有很大差异,所以很难确定一套适合全国且精度较好的转换参数。在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样。 必须了解,在不同的椭球之间的转换是不严密的。那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即3个平移因子(X平移,丫平移,Z平移),3个旋转因子(X旋转,丫旋转,Z旋转),一个比例因子(也叫尺度变化K)。国内参数来源的途径不多,一般当地测绘部门会有。通行的做法是:在工作区内找三个以上的已知点,利用已知点的BJ54坐标和所测WGS8坐标,通过一定的数学模型,求解七参数。若多选几个已知点,通过平差的方法可以获得较好的精度。如果区域范围不大,最远点间的距离不大于30Km (经验值),这可以用三参数,即只考虑3个平移因子(X平移,Y平移, Z平移),而将旋转因子及比例因子(X旋转,丫旋转,Z旋转,尺度变化K)都视为0,所以三参数只是七参数的一种特例。北京54和西安80也是两种不同的大地基准面,不同的参考椭球体,他们之间的转换也是同理。在ArcGIS中提供了三参数、七参数转换法。而在同一个椭球里的转换都是严密的,在同一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54

ArcGIS中坐标转换及地理坐标 投影坐标的定义

ARCGIS中坐标转换及地理坐标、投影坐标的定义 1.ARCGIS中坐标转换及地理坐标、投影坐标的定义 1.1动态投影(ArcMap) 所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示!但此时数据文件所存储的数据并没有改变,只是显示形态上的变化!因此叫动态投影!表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data (当前数据框架的坐标系统)导出数据! 1.2坐标系统描述(ArcCatalog) 大家都知道在ArcCatalog中可以一个数据的坐标系统说明!即在数据上鼠标右键->Properties->XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统!但有许多人认为在这里改完了,数据本身就发生改变了!但不是这样的!这里缩写的信息都对应到该数据的.aux文件!如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown!这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身!因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下!但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的!因此你就无法在做对数据的进一不处理!比如:投影变换操作!因为你不知道要从哪个投影开始变换!因此大家要更正一下对 ArcCatalog中数据属性中关于坐标系统描述的认识!

ArcGIS 坐标转换方法及其精度评估

【技术】ArcGIS 坐标转换方法及其精度评估 2017-06-20 测绘之家 来源:《地理空间信息》2016 年3 月第14 卷第3 期 作者:赵慧慧,葛莹,肖胜昌,王冲,杨林波 摘要 ArcGIS 提供了静态转换、动态转换和即时转换3 种坐标转换方法。基于我国1954 北京坐标系、1980 西安坐标系和2000 国家大地坐标系,选定等级较高、分布均匀的坐标成果点,利用静态转换、动态转换和即时转换进行坐标转换方法精度分析。 关键词:坐标转换;精度评估;ArcGIS 软件;地理数据库 在地理信息系统建设与应用中,经常需要进行空间坐标转换[1-3]。在我国现行的测绘成果中,仍有大量数据采用1980 西安坐标系,甚至是1954 北京坐标系[4-6],按照国务院要求,我国将在2016 年前完成现行国家大地坐标系向2000 国家大地坐标系的过渡[7]。ArcGIS 作为主流的地理信息系统平台,广泛应用于我国的地理信息数据生产、建库和应用系统的开发中,形成了大批基于ArcGIS 软件的矢量数据[8,9]。当前关于ArcGIS软件的坐标转换研究,主要集中在坐标系讨论和坐标转换程序开发方面,坐标转换方式对空间数据精度的影响评估却不多见。本文将针对该问题进行深入探讨,在综述ArcGIS 坐标转换方式的基础上,针对我国常用的坐标系,进行点位坐标转换的精度评估与检核。 1 ArcGIS 的坐标转换 ArcGIS 地理参照处理策略是将空间数据和坐标系分离存储[10],所以坐标转换时,不仅要定义地理参照系,还要考虑空间数据坐标处理方式。一般来说,ArcGIS软件包含2 套坐标系统:地理坐标系和投影坐标系[11,12]。前者是用经度和纬度定义球或椭球面上点位的参照系[13],后者是为二维或三维点、线、面要素的位置定位的(x,y,z)参照系[14]。ArcGIS 软件预置了全世界上百种地理参照系,其中我国常用的地理坐标系有1954北京坐标系、1980 西安坐标系和2000 国家大地坐标系。 在此基础上,ArcGIS 软件提供了静态转换、动态转换和即时转换3 种空间坐标转换方法,见表1。 由此可知,对于ArcGIS 坐标转换,无论是地理参照系定义还是空间坐标转换方式,都存在较明显的差异。如果不能深入理解ArcGIS 空间坐标转换的实现机理,空间坐标转换方式的误用则不可避免。 2 实验的设计与组织 2.1 数据准备 本文选定某区域12 个均匀分布的坐标成果点,覆盖范围约为1 209 km2。按照研究目

ArcGIS中的坐标系统定义与投影转换

ArcGIS中的坐标系定义与投影转换 坐标系统是GIS数据重要的数学基础,用于表示地理要素、图像和观测结果(如通用地理框架内的GPS 位置)的参照系统,坐标系统的定义能够保证地理数据在软件中正确的显示其位置、方向和距离,缺少坐标系统的GIS数据是不完善的,因此在ArcGIS软件中正确的定义坐标系统以及进行投影转换的操作非常重要。 1.ArcGIS中的坐标系统 ArcGIS中预定义了两套坐标系统,地理坐标系(Geographic coordinate system)和投影坐标系(Projected coordinate system)。 1.1 地理坐标系 地理坐标系(GCS) 使用三维球面来定义地球上的位置。GCS中的重要参数包括角度测量单位、本初子午线和基准面(基于旋转椭球体)。地理坐标系统中用经纬度来确定球面上的点位,经度和纬度是从地心到地球表面上某点的测量角。球面系统中的水平线(或东西线)是等纬度线或纬线,垂直线(或南北线)是等经度线或经线。这些线包络着地球,构成了一个称为经纬网的格网化网络。 GCS中经度和纬度值以十进制度为单位或以度、分和秒(DMS) 为单位进行测量。纬度值相对于赤道进行测量,其范围是-90°(南极点)到+90°(北极点)。经度值相对于本初子午线进行测量。其范围是-180°(向西行进时)到180°(向东行进时)。 ArcGIS中,中国常用的坐标系统为GCS_Beijing_1954(Krasovsky_1940),GCS_Xian_1980(IAG_75),GCS_WGS_1984(WGS_1984),GCS_CN_2000(CN_2000)。 1.2 投影坐标系 将球面坐标转化为平面坐标的过程称为投影。投影坐标系的实质是平面坐标系统,

在ArcGIS Desktop中进行三参数或七参数精确投影转换

ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。下面介绍两种办法来在ArcGIS Desktop中进行这种转换。 方法1:在ArcMap中进行动态转换(On the fly) 假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。 在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations... 点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明了我们想从什么坐标系统转换到什么坐标系统。

在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输入各个转换参数。 输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对当前地图的动态投影转换。这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,再使用数据导出,导出时选择投影为当前地图的投影即可。

ARCGIS中北京54转WGS84的参数精度

ARCGIS中北京54转WGS84的参数精度 在ARCGIS中提供了Beijing_1954_to_wgs_1984_1到Beijing_1954_to_wgs_1984_6等模型,里面涉及到的参数的来源是否有依据,如果做全国整体的转换的话,该选哪个? 不同的地方转换参数应该不一样,所以没有个统一的参数。arcgis中提供的Beijing_1954_to_wgs_1984_1到Beijing_1954_to_wgs_1984_6几种转换方法应该是针对中国不同地区的,转换全国的恐怕精度难以保证。你可以用这几种方法都试试,然后比较一下它们之间的区别。 Beijing_1954_To_WGS_1984_1 15918 China - Orduz basin 鄂尔多斯盆地 Beijing_1954_To_WGS_1984_2 15919 China - offshore Yellow Sea 黄海海域 Beijing_1954_To_WGS_1984_3 15920 China - offshore South China Sea - Pearl River basin 南海海域-珠江口 Beijing_1954_To_WGS_1984_4 15921 China - south and west Tarim basin 塔里木盆地 Beijing_1954_To_WGS_1984_5 15935 China - Bei Bu Basin 北部湾 Beijing_1954_To_WGS_1984_6 15936 China - Orduz basin鄂尔多斯盆地 其中1、4、6是3参数转换,2、3、5是7参数转换 这些应该是概略参数,不是很准,准确的参数是保密的,请咨询当地测绘部门 arcgis中投影的方法(method)共有十种: 1 geocentric translation 2 molodensky 3 molodensky abridged 4 position verctor 5 coordinate frame 6 molodensky badekas 7 nodcom 8 Horn 9 Ntv2 10 longitude rotatin 投影变换大致分为两种3参数和七参数。方法1为地心变换,也就是三参数计算出dx、dy、dz平移一次就完成投影变换。

相关文档
相关文档 最新文档