文档库 最新最全的文档下载
当前位置:文档库 › 反应堆功率控制系统的建模及闭环验证

反应堆功率控制系统的建模及闭环验证

反应堆功率控制系统的建模及闭环验证
反应堆功率控制系统的建模及闭环验证

核 动 力 工 程

Nuclear Power Engineering

第30卷 第4 期 2 0 0 9 年8月

V ol. 30. No.4 Aug. 2 0 0 9

文章编号:0258-0926(2009)04-0096-05

反应堆功率控制系统的建模及闭环验证

林 桦,林 萌,侯 东,杨燕华

(上海交通大学核科学与工程学院,200240)

摘要:基于MATLAB/SIMULINK 仿真软件,对岭澳一期核电站功率控制系统进行建模。通过与RELAP5完成的核电厂主回路热工水力模型相连接,对该控制系统模型进行了闭环瞬态工况测试。将计算机仿真结果与电厂试验曲线进行了比较,两者非常吻合,定性和定量地验证了本控制模型和热工模型的正确性。

关键词:反应堆;功率控制;闭环验证;RELAP5;MATLAB/SIMULINK 中图分类号:TL362 文献标识码:A

1 引 言

核电厂高精度、实时、动态仿真要求有准确的反应堆热工水力以及控制系统等模型,它除用于电厂安全分析、操纵员培训等,还可用于控制系统参数优化、实际仪表控制系统验证等方面。鉴于此,本研究以由RELAP5构建的热工水力模型为基础,利用MATLAB/SIMULINK 软件,以岭澳一期核电站为例,对反应堆功率控制系统进行了建模,并在稳态和瞬态工况下进行了闭环动态仿真验证。

2 控制系统建模及控制对象

2.1 功率控制系统的MATLAB/SIMULINK 建模 反应堆功率控制系统的基本原理是根据二回路功率需求控制功率补偿棒的棒位。其最终目标是使功率补偿棒的位置与功率需求相对应。压水堆中的控制棒组除了功率补偿棒组外,还设有温度调节棒组。平均温度控制系统通过测量一回路冷却剂平均温度,与平均温度整定值比较后,经调节器产生调节信号,驱动温度调节棒组,改变反应堆的反应性,从而维持一、二回路功率的匹配,并使实测平均温度与参考平均温度一致。

相对于手工编写代码进行仿真的复杂性和代码质量的不确定性,MATLAB/SIMULINK 提供了模型描述和系统仿真的一种高效途径[1]。本研究参考岭澳核电站一期的功率调节和平均温度调节系统设计手册[2],使用

MATLAB/SIMULINK

图1 G 棒组SIMULINK 控制模型

Fig. 1 Model of G-Rod Based on SIMULINK

收稿日期:2008-06-02;修回日期:2008-09-11

林桦等:反应堆功率控制系统的建模及闭环验证 97

模拟了反应堆中的温度调节棒组(R棒组)和功率补偿棒组(G棒组)及相应的控制逻辑,通过调节R棒组和G棒组来协调控制反应性,使反应堆具有快速跟踪负荷变化的能力。

G棒组的作用是用于补偿和功率变化相联系的反应性变化。图1为建立的G棒组SIMULINK 控制模型流程图。在一定燃耗下,对应于每个功率水平有一个棒位,功率水平与G棒组棒位之间的有效标定曲线如图2所示[3]。模型根据二回路的功率需求,确定功率调节棒棒位的整定值。由棒位整定值与当前实际棒位比较后计算出棒束提升或下插信号及棒束移动速度,从而确定新的棒位。在计算出棒位后,根据棒位与其所引入反应性的关系计算出当前所需引入的反应性作为输出信号,送至RELAP5的点堆中子动力学模型中。

图3为建立的R棒组SIMULINK控制模型流程图,R棒组调节部分的输入信号包括核功率信号、汽轮机负荷信号和反应堆冷却剂平均温度信号。在反应堆功率运行工况下,当负荷需求与反应堆功率出现不平衡时,将出现温度偏差信号。

图2 G棒组棒位整定值

Fig. 2 Setpoint of G-Rod Step Position

该偏差信号经棒速程序控制单元后产生R棒组移动速度和方向(提升或插入)信号,而后计算出新时刻棒位。最后根据棒位与反应性的关系计算出当前所需引入的反应性作为输出信号。

2.2 仿真状态的保存及复位功能

对核电厂控制系统中惯性环节及超前滞后环节的模拟,调用SIMULINK系统模块库中的模块可实现动态仿真的要求,但无法保存其仿真状态点,所以无法实现该控制系统仿真状态的复位功能。系统模块库中惯性环节传递函数为:

图3 R棒组SIMULINK控制模型Fig. 3 Model of R-Rod Based on SIMULINK

核 动 力 工 程 V ol. 30. No. 4. 2009

981

)(+?=

s K

s G τ (1)

超前滞后环节传递函数为:

1

1

)(+?+?=s s K s G τ (2)

式中,K 为比例系数;τ为时间常数;s 为复变量因子。本文的控制系统建模过程中,调用SIMULINK 系统模块库中的基本的积分和加法模块,组合成具有状态保存功能的滤波器置于用户自定义模块库中,用于替代SIMULINK 系统模块库中的自带模块。自定义的滤波器模块封装 后,其参数K 和τ可以根据需要更改,而且支持仿真运行时在线更改。内部计算逻辑如图4所示,状态参数的引入即仿真开始时对积分器赋初值;状态参数的保存即仿真停止时积分器的计算输出值的保存,再次启动仿真时将保存值作为状态参数输入。

图4 自定义滤波器内部逻辑

Fig. 4 Internal Logic of User Defined Filter

控制系统运行处于稳态时,一阶惯性环节的输出与输入值相同。仿真系统在稳态点停止后再次启动时,若使用SIMULINK 系统模块库中的Transfer Fcn 模块,由于其不具备状态保存和复位功能,其输出不再是稳态运行时的结果,会使稳态运行过程发生扰动。例如,在反应堆冷却剂平均温度调节过程中,温度调节棒组根据二回路的负荷信号,由函数发生器产生一个参考温度值;送入函数发生器的二回路负荷信号经过一阶惯性环节滤波,其传递函数为)1/(1)(+=s s G ;当二回路负荷为100%稳定运行时,停止仿真后再次启动,惯性环节的输出从0开始经过10 s 后才能再次达到稳态值;调用自定义的滤波器模块,其输出值会维持上一次仿真运行停止时的输出值(图5),不会对整个仿真系统引起扰动。 2.3 控制对象

与本控制系统模型构成闭环的控制对象,是基于轻水反应堆瞬态最佳估算程序RELAP5建立

图5 SIMULINK 系统模块与自定义滤波器

模块输出比较

Fig.5 Comparison of Output between SIMULINK

System Model and User Defined Filter Model

的岭澳核电站主回路热工模型和点堆中子动力学模型。其中包括反应堆、稳压器、蒸汽发生器及相应管道等主要设备。对控制系统模型进行闭环动态实时验证计算时,以RELAP5作为后台计算主程序。处理控制信号的MATLAB/SIMULINK 程序通过数据库与RELAP5进行热工参数及控制信号的实时交互[4]。RELAP5输出的主要系统参数包括核功率、一回路平均温度、主蒸汽流量;MATLAB/SIMULINK 输出的主要控制参数有控制棒组动作所引入的反应性、汽轮机流量调节阀开度等。

3 模型验证

本文以岭澳一期核电站原始试验报告内容之一的负荷阶跃变化工况为例进行验证。试验内容为:从97% FP 功率水平阶跃变化至87%FP 功率水平,以测试瞬态工况下相关控制系统维持反应堆正常运行的能力,其阶跃瞬态工况通过改变汽轮机负荷实现[5]。

在对控制系统模型进行验证计算时,首先使反应堆功率维持在97%FP 功率水平的稳定工况,而后通过改变主蒸汽阀门开度,使汽轮机蒸汽负荷阶跃下降10%。蒸汽流量变化曲线见图6。由

于反应堆功率控制采用G 模式,

堆功率跟踪二回路汽轮机负荷变化,反应堆功率变化见图7,堆功率曲线变化趋势与电厂试验数据基本一致。

汽轮机负荷、核功率及一回路平均温度设定值的变化,使得一回路平均温度随之变化。在降负荷初期,由于堆芯功率无法完全带出,导致一回路平均温度略为上升,其后由于核功率下降及平均温度控制棒组的调节作用,一回路平均温度

林 桦等:反应堆功率控制系统的建模及闭环验证 99

最终稳定在新的设定值上。如图8所示,实测平均温度与参考平均温度曲线、计算曲线的变化趋势与电厂试验数据基本一致。

从上述趋势图可见,无论从定性上还是定量上,计算机仿真曲线与电厂的实际试验曲线均吻 合得很好,从而证明了反应堆热工水力模型及控制系统模型的正确性。

4 结 论

参考岭澳一期核电厂以M A T L A B / SIMULINK 建立的控制系统模型,与以RELAP5建立的被控对象模型,通过动态耦合构成了一个闭环控制回路,10%阶跃降功率瞬态工况闭环验证结果显示,模型计算数据与电厂原始试验数据吻合,从而证明此种方法可以精确模拟反应堆及其控制系统行为。这为下一步开展反应堆控制系统参数优化及通过硬接线方式验证实际仪表控制系统组态打下了很好的基础。

参考文献:

[1] 杨涤,李立涛,杨旭等.系统实时仿真开发环境与应

用[M]. 北京:清华大学出版社,2002.

[2] LING AO Nuclear Power Company LTD. System Design

Manual [R]. LANPC, 1998. [3]

张建民. 核反应堆控制[M]. 西安:西安交通大学出版

社,2002.

[4] 林萌,胡锐,杨燕华. 核电厂控制与保护系统动态仿

真[J]. 核动力工程,2004, 25(6): 562~566.

[5] LING AO Nuclear Power Company LTD. Test Report,

PL127RRCR60LSUM45GN (TR 1 RRC 60) [R]. LANPC, 2002.

Modeling of Reactor Power Control System and

Closed Loop Verification

LIN Hua, LIN Meng, HOU Dong, YANG Yan-hua

(School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China )

Abstract: The model of nuclear power control system of Ling’ao NPP based on MATLAB/SIMULINK was established. Closed loop test was realized by coupling with the thermal-hydraulic model of primary loop which is based on RELAP5. The comparison of simulated result with test result from NPP shows a good co-ordination, and the correctness of the model was proved qualitatively and quantitatively.

Key words: Reactor, Nuclear power control, Closed loop verification, RELAP5, MATLAB/SIMULINK

(下转第112页)

图6 蒸汽流量变化曲线

Fig. 6 Steam Flow Rate Versus Time

图7 反应堆功率变化曲线 Fig. 7 Nuclear Power Versus Time

图8 冷却剂平均温度变化曲线

Fig. 8 Average Temperature of Coolant Versus Time

核动力工程 V ol. 30. No. 4. 2009 112

Discussion of REA Boric Acid Tank Volume

SHENG Guo-long

(China Nuclear Power Technology Research Institute, Shenzhen, Guangdong, 518124, China) Abstract: This paper discussed the design rules of the boric acid tank volume of reactor boron and water makeup system(REA) in PWR nuclear plant and the limit requirements of the tank volume in the operation technical specification. Based on the comparison and analysis of the arguments of Daya Bay nuclear plant 18 months refueling modification and Ling’ao nuclear plant 1/4 refueling modification, the paper pre-assessed and calculated the lack of the REA boric acid tank volume as the fuel enrichment upgraded to 4.95% in the future, and proposed the suggestion of increasing the volume or boric acid concentration of the REA system in new nuclear plant design in order to meet the operation technical specification requirements.

Key words: Nuclear power plant, Boric acid tank, V olume, Shutdown

作者简介:

圣国龙 (1974—),男,反应堆高级操纵员,运行工程师。1996年毕业于武汉大学热能动力工程专业,获学士学位。现从事核电厂运行优化研究与设计。

(责任编辑:马蓉)

(上接第99页)

作者简介:

林桦(1983—),男,硕士研究生。2006年毕业于吉林大学热能与动力工程专业,获学士学位。现主要从事核电站仪控系统建模及仿真研究。

林萌(1978—),男,讲师。2006年毕业于上海交通大学核能科学与工程专业,获博士学位。现主要从事反应堆热工水力安全分析与仿真等研究与教学工作。

侯东(1983—),男,上海交通大学核能科学与工程专业博士研究生。现主要从事核电厂热力系统建模与仿真研究。

(责任编辑:刘 君)

(上接第107页)

作者简介:

蒋波涛(1982—),男,博士研究生。2005年毕业于西安工业学院计算数学专业,获学士学位。主要从事数据挖掘在电厂中的应用以及故障诊断方面的研究。

赵福宇(1953—),男,教授,博士生导师。1976年毕业于西安交通大学反应堆工程专业。现主要从事动力厂系统动力学与控制以及能源系统工程的研究。

(责任编辑:张明军)

反应堆功率控制系统的建模及闭环验证

核 动 力 工 程 Nuclear Power Engineering 第30卷 第4 期 2 0 0 9 年8月 V ol. 30. No.4 Aug. 2 0 0 9 文章编号:0258-0926(2009)04-0096-05 反应堆功率控制系统的建模及闭环验证 林 桦,林 萌,侯 东,杨燕华 (上海交通大学核科学与工程学院,200240) 摘要:基于MATLAB/SIMULINK 仿真软件,对岭澳一期核电站功率控制系统进行建模。通过与RELAP5完成的核电厂主回路热工水力模型相连接,对该控制系统模型进行了闭环瞬态工况测试。将计算机仿真结果与电厂试验曲线进行了比较,两者非常吻合,定性和定量地验证了本控制模型和热工模型的正确性。 关键词:反应堆;功率控制;闭环验证;RELAP5;MATLAB/SIMULINK 中图分类号:TL362 文献标识码:A 1 引 言 核电厂高精度、实时、动态仿真要求有准确的反应堆热工水力以及控制系统等模型,它除用于电厂安全分析、操纵员培训等,还可用于控制系统参数优化、实际仪表控制系统验证等方面。鉴于此,本研究以由RELAP5构建的热工水力模型为基础,利用MATLAB/SIMULINK 软件,以岭澳一期核电站为例,对反应堆功率控制系统进行了建模,并在稳态和瞬态工况下进行了闭环动态仿真验证。 2 控制系统建模及控制对象 2.1 功率控制系统的MATLAB/SIMULINK 建模 反应堆功率控制系统的基本原理是根据二回路功率需求控制功率补偿棒的棒位。其最终目标是使功率补偿棒的位置与功率需求相对应。压水堆中的控制棒组除了功率补偿棒组外,还设有温度调节棒组。平均温度控制系统通过测量一回路冷却剂平均温度,与平均温度整定值比较后,经调节器产生调节信号,驱动温度调节棒组,改变反应堆的反应性,从而维持一、二回路功率的匹配,并使实测平均温度与参考平均温度一致。 相对于手工编写代码进行仿真的复杂性和代码质量的不确定性,MATLAB/SIMULINK 提供了模型描述和系统仿真的一种高效途径[1]。本研究参考岭澳核电站一期的功率调节和平均温度调节系统设计手册[2],使用 MATLAB/SIMULINK 图1 G 棒组SIMULINK 控制模型 Fig. 1 Model of G-Rod Based on SIMULINK 收稿日期:2008-06-02;修回日期:2008-09-11

反应堆控制复习提纲

第一章核反应堆的物理基础 自动控制: 传递函数: ρ的物理含义: 反应堆: 周期: 短周期事故: 稳态运行方案: 剩余反应性: 后备反应性: “卡棒”准则: 基本原理:为什么说对反应堆中子通量密度的控制就可实现对反应堆功率的控制基本原理:说明缓发中子在反应堆控制中的作用 基本原理:试述两种运行控制模式的异同 基本原理:简述反应性控制手段

第二章线性离散控制系统的分析方法线性控制系统: 数学模型类型: 采样: 采样定理: Z传递函数: 基本运算:Z变换求解差分方程 基本运算:时域函数的Z变换

第三章线性控制系统的状态空间分析方法 状态空间模型: 状态变量: 状态转移矩阵: 基本运算:系统的状态空间模型与传递函数中间的相互转换基本运算:系统时域函数的Z变换 基本运算:判断线性系统的能控和能观测性

第四章核反应堆动力学模型 零功率核反应堆: 常源近似: 瞬跳近似: 反应性方程: 瞬发临界: 缓发临界: 数值解法: 基本原理:阐述点堆动态方程应用条件 基本运算:由反应堆基本参数写出状态空间表达式和传递函数

第五章核反应堆控制系统的稳定性分析 奈奎斯特判据: 控制系统的基本性能: 李雅普诺夫第二法: 基本运算:通过系统的根轨迹图和奈奎斯特判断系统的稳定性和开环增益的取值范围基本运算:劳斯判据和朱利判据判定系统稳定性中的应用

第六章压水堆核电厂控制 核反应堆自稳自调特性: 常轴向偏移控制: 控制棒的微分价值和积分价值: 虚假水位: 基本原理: 说明限制功率分布的准则 阐述功率分布控制的必要性 试述功率补偿棒组和R棒组的控制功能和特点说明反应堆功率和汽轮机负荷的关系 说明功率失配通道的作用 阐述蒸汽发生器的液位控制的原理和特点

有功无功功率控制系统(运动后置)技术规范书

昌盛日电新能源控股有限公司有功无功功率控制系统 (远动后置) 技术规范书 买方:昌盛日电新能源控股有限公司

昌盛日电新能源控股有限公司有功无功功率控制系统 (远动后置) 技术规范书 201X年 X月

目录 一、技术总的部分 (5) 1 总则 (5) 1.1 一般规定 (5) 2 工程概述 (6) 2.1 工程概况及环境条件 (7) 2.2 环境条件 (7) 3 标准和规定 (8) 3.1 技术要求 (8) 3.2 系统构成 (9) 3.3 系统功能 (10) 4 技术指标 (12) 4.1 有功功率自动调节 (12) 4.2 电压无功自动调节 (12) 4.3 系统性能 (13) 5 通讯接口 (13) 5.1 系统通信接口 (13) 5.2 通信接口类型 (13) 二、技术资料及交付进度 (15) 三、技术服务、设计联络、工厂检验和监造 (17) 1.1 技术文件 (17) 1.2 设计联络会议 (18) 1.3 工厂验收和现场验收 (18) 1.4 质量保证 (18) 1.5 项目管理 (19) 1.6 现场服务 (19) 1.7 售后服务 (20) 1.8 备品备件、专用工具、试验仪器 (20) 1.9 包装、运输与储存 (20)

四、投标人技术偏差表 (21) 五、销售及运行业绩表 (21) 六、项目需求部分 (22) 1 供货清单 (22) 2 屏柜技术参数 (22) 3 随机备品备件(不限于此,投标方可细化并填写): (23) 4 专用工具(不限于此,投标方可细化并填写): (23) 5 进口件清单(投标方细化并填写): (23)

功率控制

LTE功率控制 LTE功率控制的对象包括PUCCH,PUSCH,SRS,RA preamble, RA Msg3等。由于这些上行信号的数据速率和重要性各自不同,其具体功控方法和参数也不尽相同。PUSCH和SRS的功控基本相同。 1 标称功率(Nominal Power) eNB首先为该小区内的所有UE半静态设定一标称功率P0(对PUSCH和PUCCH有不同的标称功率,分别记为P0_PUSCH和P0_PUCCH ),该值通过系统消息SIB2(UplinkPowerControlCommon: p0-NominalPUSCH, p0-NominalPUCCH)广播给所有UE;P0_PUSCH的取值范围是(-126,24)dBm。 需要注意的是对于动态调度的上行传输和半持久调度的上行传输,P0_PUSCH的值也有所不同(SPS-ConfigUL: p0-NominalPUSCH-Persistent)。 另外RA Msg3的标称功率不受以上值限制,而是根据RA preamble初始发射功率(preambleInitialReceivedTargetPower)加上?Preamble_Msg3 (UplinkPowerControlCommon: deltaPreambleMsg3)。 每个UE还有UE specific的标称功率偏移(对PUSCH和PUCCH有不同的UE标称功率,分别记为P0_UE_PUSCH和P0_UE_PUCCH ),该值通过dedicated RRC信令(UplinkPowerControlDedicated: p0-UE-PUSCH, p0-UE-PUCCH)下发给UE。P0_UE_PUSCH和P0_UE_PUCCH的单位是dB,因此这个值可以看成是不同UE对于eNB范围标称功率P0_PUSCH和P0_PUCCH的一个偏移量。对于动态调度的上行传输和半持久调度的上行传输,P0_UE_PUSCH的值也有所不同。 最终UE所使用的标称功率是(eNB范围标称功率 + UE Specific偏移量)。 2 路损补偿 在标称功率基础上,UE还需要根据测量得到的路损数据自动进行功率补偿。UE 通过测量下行参考信号(RSRP)计算得到下行路损,乘以一个补偿系数α后作为上行路损补偿。系数α由eNB在系统消息中半静态设定(UplinkPowerControlCommon: alpha)。对于PUCCH和Msg 3,α总是为1。标称功率设定和路损补偿都属于半静态功率控制,UE的动态功率控制有基于MCS 的隐式功率调整和基于PDCCH的显示功率调整。 3 基于MCS的功率调整 根据Shannon公式,发射功率需要正比于传输数据速率。在LTE系统中,MCS决定了每个RB上行数据量的大小,因此调度信息中的MCS隐式地决定了功率调整需求。 根据公式可以得到功率调整量。 公式中的MPR即是由MCS决定的per RE的数据块大小; 公式中的KS一般情况下=1.25。 公式中的β是上行数据全为控制数据(如CQI)而无其他上行数据情况下的调整系数;如果有其他上行数据则为1。 基于MCS的功率调整仅针对PUSCH数据,对PUCCH和SRS不适用。 eNB可以对某UE关闭或开启基于MCS的功率调整,通过dedicated RRC信令(UplinkPowerControlDedicated: deltaMCS-Enabled)实现。

LTE功率控制要点

L T E功率控制要点Last revision on 21 December 2020

功率控制 功率控制是无线系统中重要的一个功能。UE在不同的区域向基站发送信号,这样发送的功率就会有不一致。远的UE发送的功率应该大一些,近的稍微小一些,这样以便基站能够更好的将不同的UE能够解调出来。 功率控制也通常分为开环功率控制和闭环功率控制。开环功率控制通常不需要UE 反馈,基站通过自身的一些测量或者其他信息,来控制UE的功率发送或者自身的功率发送。闭环功率控制通常需要UE的一些相应的信息,包括信噪比(SIR/ SINR) 或者是BLER/FER等信息,来调整UE的发送功率。闭环功率控制又一般分为两种,一种是内环功率控制,一种是外环功率控制。内环功率控制是通过SIR来进行相应的功率控制,基站通过接收到UE的SIR,发现与预期的SIR有差距,然后产生功率控制命令,指示UE进行调整发送功能,以达到预期的SIR。外环功率通常是一种慢功率调整,主要是通过链路的质量来调整SIR,通过测量链路的BLER,来指示SIR的调整情况。 LTE的功率控制,有别于其他系统的功率控制。LTE在一个小区是一个信号正交的系统,所以小区内相互干扰比较小,LTE主要是在小区之间的干扰。所以LTE对于小区内的功率控制的频率相对比较慢。LTE有个概念下行功率分配时要使用到,the energy per resource element (EPRE),可以立即为每个RE的平均功率。 1上行功率控制 PUSCH的功率控制 UE需要根据eNB的指示设置每个子帧的PUSCH的发射功率 P: PUSCH

)}()()()())((log 10,min{)(TF O_PUSCH PUSCH 10CMAX PUSCH i f i PL j j P i M P i P +?+?++=α [dBm] 以下对于各个参数进行相应的解析。 CMAX P 是UE 的发射的最大的功率,在协议36101中定义的, )(PUSCH i M 是UE 在子帧i 所分配的PUSCH 的RB 的数目或者PUSCH 的RB 带宽,用 RB 数目来表示; )(O_PUSCH j P 是预期的 PUSCH 的功率,包括两部分,一部分是小区属性的参数 )( PUSCH O_NOMINAL_j P ,一个是 UE 属性的参数)(O_UE_PUSCH j P 。对于小区属性,是各个UE 都 相同的这样一个预期的小区的功率,而UE 的参数,则是根据不同的UE 所设置的参数; )(O_PUSCH j P = )( PUSCH O_NOMINAL_j P +)(O_UE_PUSCH j P 当 j=0时,是半静态调度; j=1时是动态调度; j=2时是RA 接入是功率控制的情况,0)2(O_UE_PUSCH =P ; 这几个参数都是在高层指派下来的,在36331中的UplinkPowerControl 中,其中 )( PUSCH O_NOMINAL_j P 范围为(-126..24),精度为 1dBm ,需要使用8比特来表示; )(O_UE_PUSCH j P 范围为(-8..7), 精度为 1db 。 α是路损的补偿权值,范围为{}1,9.0,8.0,7.0,6.0,5.0,4.0,0∈α,只有动态调度和半静态调度才需要高层指派,RA 过程时α=1。这个α值通常为之间能够达到相对比较好的性能,既能提升UE 的发送功能,又不产生很大的小区间干扰; PL 是UE 计算的下行路损,UE 通过参考信号功率和RSRP(参考信号接收功率)来计算,PL=参考信号功率-RSRP,RSRP 需要通过滤波器来处理,滤波器的权值在高层中定

CDMA前向功率控制,反向功率控制

为用于变速率传输的一个功率控制时隙内的时间。在时隙内,功率波动应小于3db,功率电屏应比背景噪声高20db,功率上升和下降的时间应小于6μs。如图1所示。 移动台发射机的平均输出功率应小于-50dbm/1.23MHz,即-110dbm/Hz;移动台发射机背景噪声应小于-60dbm/1.23MHz,即-54dbm/Hz。 1.2IS-95及cdma20001x系统前向及反向功率控制 cdma系统功率控制类型包括: 反向开环功率控制 移动台根据接收功率变化,调整发射功率。 反向闭环功率控制 移动台根据接收到的功率控制比特调整平均输出功率。

前向功率控制 根据移动台测量报告,基站调整对移动台的发射功率。 1.2.1反向开环功率控制 移动台的开环功率控制是指移动台根据接收的基站信号强度来调节移动台发射功率的过程。其目的是使所有移动台到达基站的信号功率相等,以免因“远近效应”影响扩频cdma系统对码分信号的接收,降低系统容量。 1、IS-95A中的开环功率控制 IS-95A系统内,只要手机开机,开环就起作用。移动台根据前向链路信号强度来判断路径损耗。功率变化过程中,只有移动台参与。移动台不知道基站实际的有效发射功率(ERP),只能通过接收到的信号来估计前向链路损耗。移动台通过对接收信号强度的测量,调整发射功率。接收的信号越强,移动台的发射功率越小。 应当指出的是,移动台的开环功率控制的响应时间大约为30ms,只能克服由于阴影效应引起的慢衰落。移动台对接收信号测量和调整是基于认为前向信道和反向信道的衰落特性是一致的,这种依前向信道信号电平来调节移动台发射功率的开环调节是不完善的。需要采用闭环控制加以补充。 移动台在接入过程中的功率控制过程是通过接入探针实现的。接入过程中移动台的发初始发射功率不能太大,会干扰小区内其他用户;同时发射功率也不能

反应堆原理

核反应堆是核电站的心脏,它的工作原理是这样的: 原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。 还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。 热堆的概念:中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。 轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。压水堆核电站压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。这就是二回路循环系统。压水堆由压力容器和堆芯两部分组成。压力容器是一个密 封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推

功率控制

开环功控的目的是提供初始发射功率的粗略估计。它是根据测量结果对路径损耗和干扰水平进行估计,从而计算初始发射功率的过程。比如: 上行链路的开环功控的目的是调整物理随机接入信道的发射功率。UE在发射随机接入之前,总要长时间的测量CPICH的接收功率,以去掉多径衰落的影响。 根据系统消息中的导频功率、RTWP和下行导频实际接受功率来计算Preamble的功率 Preamble逐步抬升功率,直到被网络受到并回复 然后手机对最后一次Preamble功率进行一定修正以后在PRACH上发送RRC Connect Reque st网络收到RRC Conne ct Request消息后根据FA CH功率发送RRC Connect Setup 在该消息中SRNC为通知UE上行链路初始使用PCP(Power Control Preamble) 闭环功率控制的目标是使接收信号的SIR达到预先设定的门限值。在WCDMA中,上行链路和下行链路的闭环功率控制都是 由接收方NODEB 或UE 通过RAKE接收机产生的信号估计DPCH的功率,同时估计当前频段的干扰,产生 SIR估计值,与预先设置的门限相比较。如果估计值大于门限就发出TPC命令“1”(升高功率);如果小于门限就发出TPC命令“0”(降低功率)。接收到TPC命令的一方根据一定的算法决定发射功率的升高或降低。 外环功率控制目的是动态地调整内环功率控制的门限。因为WCDMA系统的内环功率控制是使发射信号的功率到达接收端时保持一定的信干比。然而,在不同的多径环境下,即使平均信干比保持在一定的门限之上,也不一定能满足通信质量的要求(BER或FER或BLER)。因此需要一个外环功率控制机制来动态地调整内环功率控制的门限,使通信质量始终满足要求。RNC或UE的高层通过对信号误码率(BER)或误块率(BLER)的估算,调整快速功率控制中的目标信噪比(SIR tar get),以达到功控的目的。由于这种功控是通过高层参与完成的,所以叫做外环功控。当收到的信号质量变差,即误码率或者误块率上升时,高层就会提高目标信噪比(SIR target)来提高接收信号的质量。常规外环功率控制算法采用与内环功率控制相近似的方式 上行内环功率控制频率为1500次/秒。物理专用控制信道DPCCH采用的无线帧长度为10ms,每帧有15个时隙,每个时隙都有功率控制比特,这样每10ms会对发射功率调整一次,每秒的调整次数为:15次/(10ms/1s)=1500次/秒 外环功控由RNC对基站发送Sir target作为内环功控的参照目标,SIR tar get的改变取决于CRC校验以及Bler tar get(外环功控的参照目标)所以外环工控的最高频率是1/TTI,TTI为10ms时是100。

利用ADL5330和AD8318实现闭环自动功率控制设计

利用ADL5330和AD8318实现闭环自动功率控制设计 电路功能与优势 本文所述电路利用一个VGA(ADL5330)和一个对数检波器(AD8318)提供闭环自动功率控制。由于AD8318具有较高的温度稳定性,而且AD8318 RF检波器可确保ADL5330 VGA 的输出端具有同样水平的温度稳定性,因此该电路在整个温度范围都能保持稳定。该电路还增加了对数放大器检波器,用来将ADL5330从开环可变增益放大器转换为闭环输出功率控制电路。AD8318与ADL5330一样,具有线性dB传递函数,因此Pout对设定点传递函数也遵循线性dB特性。 图1:ADL5330与AD8318配合在自动增益控制环路中工作 电路描述 虽然可变增益放大器ADL5330可提供精确的增益控制,但利用一个自动增益控制(AGC)环路也可以实现对输出功率的精密调节。图1显示在AGC环路中工作的ADL5330。增加对数放大器AD8318后,该AGC在较宽的输出功率控制范围具有更高的温度稳定性。ADL5330 VGA要在AGC环路中工作,必须将输出RF的样本反馈至检波器(通常利用一个定向耦合器并增加衰减处理)。DAC将设定点电压施加于检波器的VSET输入,同时将VOUT与ADL5330的GAIN引脚相连。根据检波器的VOUT与RF输入信号之间明确的线性dB关系,检波器调节GAIN引脚的电压(检波器的VOUT引脚为误差放大器输出),直到RF输入的电平与所施加的设定点电压相对应。GAIN建立至某一值,使得检波器的输入信号电平与设定点电压之间达到适当平衡。 AGC环路中工作的ADL5330与AD8318的基本连接如图1所示。AD8318是一款1 MHz 至8 GHz精密解调对数放大器,提供较大的检波范围(60 dB),温度稳定性为±0.5 dB。ADL5330的增益控制引脚受AD8318的输出引脚控制。电压VOUT的范围为0 V至接近VPOS。为避免过驱恢复问题,可以用阻性分压器按比例缩小AD8318的输出电压,以便与ADL5330的0 V至1.4 V增益控制范围接口。

《核反应堆物理分析》名词解释及重要概念整理

第一章—核反应堆的核物理基础 直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。 中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。 非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。 弹性散射:分为共振弹性散射和势散射。 111001 100[]A A A Z Z Z A A Z Z X n X X n X n X n +*+→→++→+ 微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。 宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。 平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。 核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。 中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。 多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。 瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。 第二章—中子慢化和慢化能谱 慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。 扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。 平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。 慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。 分界能或缝合能:通常把某个分界能量E c 以下的中子称为热中子,E c 称为分界能或缝合能。 第三章—中子扩散理论 中子角密度:在r 处单位体积内和能量为E 的单位能量间隔内,运动方向为Ω的单位立体角内的中子数目。 慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。 徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为r M 。 第四章—均匀反应堆的临界理论 反射层的作用: 1. 减少芯部中子泄漏,从而使得芯部的临界尺寸要比无反射层时的小,节省一部分燃料;

三相电压型PWM整流器直接功率控制方法综述

三相电压型PWM整流器直接功率控制方法综述 https://www.wendangku.net/doc/0517917579.html,/tech/intro.aspx?id=565 点击数:260 刘永奎,伍文俊 (西安理工大学自动化学院电气工程系,陕西西安710048)摘要首先介绍了三相电压型PWM整流器的拓扑结构,在此基础上,对当前应用于PWM 整流器的直接功率控制策略进行了对比分析,介绍了其实现机理和优缺点,最后,对直接功率控制在三相电压型PWM整流器中的控制技术进行了展望。 关键字 PWM整流器;直接功率控制;综述 Summary about Direct Power Control Scheme of Three-Phase Voltage Source PWM Rectifiers LIU Yongkui,WU Wenjun (Xi'an University of Technology,Xi'an Shannxi 710048 China)Abstract The topological structure of three-phase PWM rectifiers is introduced. On this basis, several DPC methods of three-phase voltage source PWM rectifiers were introduced and compared. At last, the pros原per of the control scheme development trends in three-phase PWM rectifiers is presented. Keywords three-phase PWM rectifiers;direct power control;summary 1 概述 三相电压型PWM整流器具有能量双向流动、网侧电流正弦化、低谐波输入电流、恒定直流电压控制、较小容量滤波器及高功率因数(近似为单位功率因数)等特征,有效地消除了传统整流器输入电流谐波含量大、功率因数低等问题,被广泛应用于四象限交流传动、有源电力滤波、超导储能、新能源发电等工业领域。 PWM 整流器控制策略有多种,现行控制策略中以直接电流、间接电流控制为主,这两种闭环控制策略

闭环温度控制和算法

附录Ⅲ温度控制与PID算法 下面的叙述以波峰焊及回流焊加热温区的温度控制为实例,简单地结合控制理论,以浅显的方式,将温度控制及PID算法作一个简单的描述。 1.温度控制的框图 这是一个典型的闭环控制系统,用于控制加热温区的温度(PV)保持在恒定的温度设定值(SV)。系统通过温度采集单元反馈回来的实时温度信号(PV)获取偏差值(EV),偏差值经过PID调节器运算输出,控制发热管的发热功率,以克服偏差,促使偏差趋近于零。例如,当某一时刻炉内过PCB 板较多,带走的热量较多时,即导致温区温度下降,这时,通过反馈的调节作用,将使温度迅速回升。其调节过程如下: 温度控制的功率输出采用脉宽调制的方法。固态继电器SSR的输出端为脉宽可调的电压UOUT 。当SSR的触发角触发时,电源电压UAN通过SSR的输出端加到发热管的两端;当SSR的触发角没有触发信号时,SSR关断。因此,发热管两端的平均电压为 Ud=(t/T)* UAN=K* UAN 其中K= t/T,为一个周期T中,SSR触发导通的比率,称为负载电压系数或是占空比,K的变化率在0-1之间。一般是周期T固定不便,调节t, 当t在0-T的范围内变化时,发热管的电压即在0-UAN之间变化,这种调节方法称为定频调宽法。下面将要描述的PID调节器的算式在这里的实质即是运算求出一个实时变化的,能够保证加热温区在外界干扰的情况下仍能保持温度在一个较小的范围内变化的合理的负载电压系数K。 第 57 页

2.温度控制的两个阶段 温度控制系统是一个惯性较大的系统,也就是说,当给温区开始加热之后,并不能立即观察得到温区温度的明显上升;同样的,当关闭加热之后,温区的温度仍然有一定程度的上升。另外,热电偶对温度的检测,与实际的温区温度相比较,也存在一定的滞后效应。 这给温度的控制带来了困难。因此,如果在温度检测值(PV)到达设定值时才关断输出,可能因温度的滞后效应而长时间超出设定值,需要较长时间才能回到设定值;如果在温度检测值(PV)未到设定值时即关断输出,则可能因关断较早而导致温度难以达到设定值。为了合理地处理系统响应速度(即加热速度)与系统稳定性之间地矛盾,我们把温度控制分为两个阶段。 第 58 页

核反应堆控制复习要点

【一回路流程】反应堆冷却剂在主泵的驱动下流入反应堆,冷却并吸收反应堆芯的热量后从反应堆容器流出,进入蒸汽发生器一次侧,将热量传递给二次侧后流出,再由主泵循环驱动流入反应堆。 【二回路流程】一回路冷却剂携带的热量,在蒸汽发生器中传递给二回路的水,使二回路水在一定压力下加热,生成饱和蒸汽,去驱动汽轮机,带动与汽轮机同轴的发电机发电。作功后的乏汽在冷凝器中被海水或河水冷凝为水,经低压加热、除氧,再由给水泵驱动经高压加热后,循环补充到蒸汽发生器中。 【三回路流程】以海水或河水为介质的三回路把乏蒸汽冷凝为水,同时带走电站的弃热。 【核电厂构成】:①核岛(压水堆本体,一回路系统):蒸汽发生器、稳压器、主泵、反应堆芯②常规岛:汽轮发电机组,二回路系统 【蒸汽发生器的作用】①把一回路冷却剂从反应堆堆芯带出的热量经蒸汽发生器管壁传给二回路水,使之产生蒸汽带动汽轮机做功。②一回路水流经堆芯具有放射性,蒸汽发生器承担了防止二回路水被污染的第二道生物防护屏障。 【运行控制模式】基本负荷运行模式A:汽轮机负荷跟随核反应堆功率的运行模式(机跟堆)。由于没有直接从电力系统到核反应堆功率控制的反馈回路,所以功率控制系统简单,作用是完成核反应堆的启动停闭,维持核反应堆功率在某一给定水平以及抑制功率的波动。适合带基本负荷运行的机组,功率调节性能较差,但受到的热应力变化较小,利于电厂安全和机组寿命。负荷跟踪运行模式G:核电厂的功率跟随电网需求而变化(堆跟机)。具有从电力系统向核反应堆的自动反馈回路,控制系统复杂,作用是可以对负荷变化作出响应,以适应电网变化的需求,使机组具有灵活的功率调节性能使核电厂参与负荷跟踪和电网调峰运行。【主要控制系统】核反应堆冷却剂平均温度控制系统(R棒组)、反应堆功率控制系统(G1、G2、N1和 N2)、硼浓度、稳压器压力和液位、蒸汽发生器液位、给水流量、凝汽器蒸汽排放、大气蒸汽排放、汽轮机调节、发电机电压控制。 【控制系统设计要求】(1)满足要求前提下尽量简单可靠(2)尽量减少运行参数瞬态变化量,并使其接近给定值,增加输出功率(3)在各种条件下,系统仍有一定的稳定裕度,不大的超调量和合理的调整时间(4)负荷低于15%FP时,可手动控制,高于15%FP时投入自动控制(5)允许负荷有±10%FP的阶跃变化,但阶跃变化±10%FP时,负荷不得超过100%(6)允许负荷以5%FP/min的速率连续变化(7)甩负荷50%-80%不引起大气蒸汽排放阀开启、停堆或主蒸汽安全阀开启(8)紧急停堆,汽轮机脱扣不引起主蒸汽安全阀开启(9)接到停堆信号后,能在约1.5s时间内快速落下控制棒【自稳特性】指反应堆出现内、外反应性扰动时,核反应堆能够维持稳定状态的特性。 【自调特性】指核电厂负荷变化时,反应堆靠自身内部温度反馈功能使其功率达到与负荷一致的水平,产生新的热平衡。 【功率分布】(1)径向功率分布:可以通过燃料的不同浓度分区布置、可燃毒物棒和控制棒的径向对称布置、最佳控制棒分组和提插棒程序设计措施来展平,在运行中变化不大,并可以准确的预测(2)轴向功率分布:在运行中是变化的,慢化剂温度效应、可燃毒物反应、多普勒效应和功率水平效应、裂变产物效应控制棒组件移动和燃耗都会对轴向功率分布产生影响,是主要研究对象。 【控制棒】R、N黑体棒(反应性价值高)功率调节控制;G灰棒组(反应性价值低),功率分布控制。在模式G中,由负荷确定的功率设定值变化引起的堆芯反应性变化首先是通过功率补偿棒组G1,G2,N1和N2来调节反应性的,它所引起的轴向和径向功率分布扰动比黑体棒组小。功率补偿棒组在堆芯的位置是功率的函数,功率升高控制棒位置也提高。用核反应堆冷却剂温度的R棒组来实现反应性精确调整。在功率快速变化中,R棒组可以辅助功率补偿棒组控制,因为其反应性效果受到最大棒速限制。 【功率控制系统】(功率粗调)(1)主要功能:根据负荷需求控制功率补偿棒组的棒位,也称为功率补偿帮组控制系统。(2)最终目标:使功率补偿棒组的位置与功率水平相对应,对应关系就是有效标定曲线关系。(3)功率补偿棒控制系统是机组负荷的前馈(开环)控制 【平均温度控制系统】(功率细调)(1)主要功能:通过调节冷却剂平均温度实现反应堆功率与负荷精确匹配,也称R棒组控制系统。(2)冷却剂平均温度是机组负荷的反馈(闭环)控制。 【棒速程序控制单元】是一个非线性曲线,可以分为5个区域。(1)死区:为了避免Tav微笑的变化而引起控制棒频繁动作而造成严重的机械疲劳。(2)滞磁回环:为了清除控制棒驱动机构接通脱开时产生的振动。(3)最小棒速区:限制棒速(4)线性帮速区:棒速随温度偏差信号线性变化(5)最大棒速区:限制棒速 【硼浓度系统】作用:(1)减少了控制棒数量(2)改善了轴向功率分布(3)可增大核反应堆后备反应性,使堆寿期延长,燃耗增加(4)简化堆芯结构 【化学与容积控制系统功能】(1)容积控制:向反应堆堆芯补充水,在冷态时提供将反应堆冷却剂系统加压的高压水源,在热态时,保持稳压器中的液位。(2)化学控制:通过过滤除盐加入氢氧化钾以减少核反应堆冷却剂中腐蚀产物及裂变产物的浓度。(3)反应性控制:通过调整核反应堆冷却剂中的硼浓度以补偿燃

LTE功率控制

功率控制 功率控制是无线系统中重要的一个功能。UE 在不同的区域向基站发送信号,这样发送的功率就会有不一致。远的UE 发送的功率应该大一些,近的稍微小一些,这样以便基站能够更好的将不同的UE 能够解调出来。 功率控制也通常分为开环功率控制和闭环功率控制。开环功率控制通常不需要UE 反馈,基站通过自身的一些测量或者其他信息,来控制UE 的功率发送或者自身的功率发送。闭环功率控制通常需要UE 的一些相应的信息,包括信噪比(SIR/ SINR) 或者是BLER/FER 等信息,来调整UE 的发送功率。闭环功率控制又一般分为两种,一种是内环功率控制,一种是外环功率控制。内环功率控制是通过SIR 来进行相应的功率控制,基站通过接收到UE 的SIR ,发现与预期的SIR 有差距,然后产生功率控制命令,指示UE 进行调整发送功能,以达到预期的SIR 。外环功率通常是一种慢功率调整,主要是通过链路的质量来调整SIR ,通过测量链路的BLER ,来指示SIR 的调整情况。 LTE 的功率控制,有别于其他系统的功率控制。LTE 在一个小区是一个信号正交的系统,所以小区内相互干扰比较小,LTE 主要是在小区之间的干扰。所以LTE 对于小区内的功率控制的频率相对比较慢。LTE 有个概念下行功率分配时要使用到,the energy per resource element (EPRE),可以立即为每个RE 的平均功率。 1上行功率控制 1.1 PUSCH PUSCH 的功率控制 UE 需要根据eNB 的指示设置每个子帧的PUSCH 的发射功率PUSCH P : )}()()()())((log 10,m in{)(TF O_PUSCH PUSCH 10CMAX PUSCH i f i PL j j P i M P i P +?+?++=α [dBm] 以下对于各个参数进行相应的解析。 CMAX P 是UE 的发射的最大的功率,在协议36101中定义的, )(PUSCH i M 是UE 在子帧i 所分配的PUSCH 的RB 的数目或者PUSCH 的RB 带宽,用RB 数目 来表示; ) (O_PUSCH j P 是预期的PUSCH 的功率,包括两部分,一部分是小区属性的参数 )( PUSCH O_NOMINAL_j P ,一个是 UE 属性的参数)(O_UE_PUSCH j P 。对于小区属性,是各个UE 都相同 的这样一个预期的小区的功率,而UE 的参数,则是根据不同的UE 所设置的参数; )(O_PUSCH j P = )( PUSCH O_NOMINAL_j P +)(O_UE_PUSCH j P 当 j=0时,是半静态调度;

LTE中的功率控制总结

LTE中的功率控制总结 1、LTE框图综述 2、LTE功率控制与CDMA系统功率控制技术的比较下表所示。 LTE CDMA 远近效应不明显明显 对抗快衰落 功控目的补偿路径损耗和阴影衰 落 功控周期慢速功控快速功控 功控围小区和小区间小区 具体功率目标上行:每个RE上的能量 整条链路的总发射功率 EPRE;

3、LTE当中上下行分别采用OFDMA和SC-FDMA的多址方式,所以各子载波之间是正交不相关的,这样就克服了WCDMA当中远近效应的影响。为了保证上行发送数据质量,减少归属不同eNodeB 的UE使用相同频率的子载波产生的干扰,同时也减少UE的能量消耗,并使得上行传输适应不同的无线传输环境,包括路损,阴影,快衰落等。(质量平衡与信干噪比平衡的原则相结合使用,是现在功率控制技术的主流。) 4、功率控制方面,只是对上行作功率调整(采用慢速功率控制),下行按照参数配置进行固定功率的发送,即只有eNodeB对UE的发送功率作调整。LTE中,上行功率控制使得对于相同的MCS(Modulation And Coding Scheme), 不同UE到达eNodeB 的功率谱密度(Power Spectral Density,PSD单位带宽上的功率)大致相等。eNodeB 为不同的UE分配不同的发送带宽和调制编码机制MCS,使得不同条件下的UE获得相应不同的上行发射功率。 5、对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。严格来说,LTE的下行方向

是一种功率分配机制,而不是功率控制。不同的物理信道和参考信号之间有不同的功率配比。下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。下行RS一般以恒定功率发射。下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。它的功率是根据UE反馈的CQI 与目标CQI的对比来调整的,是一个闭环功率控制过程。在基站侧,保存着UE反馈的上行CQI值和发射功率的对应关系表。这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。 下行功率分配以每个RE为单位,控制基站在各个时刻各个子载波上的发射功率。下行功率分配中包括提高导频信号的发射功率,以及与用户调度相结合实现小区间干扰抑制的相关机制。下行在频率上和时间上采用恒定的发射功率。基站通过高层指令指示该恒定发射功率的数值。在接收端,终端通过测量该信号的平均接收功率并与信令指示的该信号的发射功率进行比较,获得大尺度衰落的数值。 下行共享信道PDSCH的发射功率表示为PDSCH RE与CRS RE 的功率比值,即ρA和ρB。其中ρA表示时隙不带有CRS的OFDM 符号上PDSCH RE与CRS RE的功率比值(例如2天线Normal CP的情况下,时隙的第1、2、3、5、6个OFDM符号);ρB 表示时隙带有CRS的OFDM符号上PDSCH RE与CRS RE的功

功率分析仪在光伏电站有功功率和无功功率自动控制系统中的应用

北京国能日新系统控制技术有限公司?
?
光伏电站有功功率、无功功率自动控制系统?
光伏电站有功功率、无功功率自动控制系统?
Photovoltaic?power?plants?active?power、reactive?power?automatic?control?system
一、系统概述?
国能日新光伏电站有功功率、 无功功率自动控制系统 (简称光伏 AGC&AVC) , 按照调度主站定期下发的调节目标或当地预定的调节目标计算光伏电站功率需 求、选择控制设备并进行功率分配,并将最终控制指令自动下达给被控制设备, 最终实现光伏电站有功功率、无功功率、并网点电压的监测和控制,达到光伏电 站并网技术要求。
二、光伏 AGC&AVC 系统结构
?
?
?
?
?
?
光伏 AGC&AVC 系统拓扑结构图?
光伏 AGC&AVC 系统硬件部署在电场安全 1 区,采用双机热备设计,系统硬件 主要由智能控制终端、AGC&AVC 数据服务器、操作员工作站、交换机组成。智能
1

北京国能日新系统控制技术有限公司?
?
光伏电站有功功率、无功功率自动控制系统?
控制终端双机冗余设计, 主要负责数据通信, 完成生产数据采集、 调度指令接收、 控制指令下发、AGC、AVC 控制计算等功能。AGC&AVC 数据服务器负责历史数据存 储、数据报表服务等功能。维护工作站,提供用户操作界面,支持系统的日常监 控、管理。 光伏 AGC&AVC 系统与电站监控系统、 无功补偿装置等设备通信, 获取逆变器、 无功补偿装置、升压站并网点、主变分接头、开关、刀闸等运行信息;与光功率 预测系统通信获取超短期预测的有功功率、可调容量、预测辐照度等信息;与调 度主站通信,接收调度下发的有功、无功调控指令,根据采集的现场信息通过控 制策略处理计算后, 下发各调控项的控制命令, 对逆变器的有功功率、 无功功率、 主变分接头档位、无功补偿装置的无功功率等项进行远方调节和控制。智能控制 终端同时会向调度主站系统传送电场运行信息、 AGC、 相关闭锁信号等信息。 AVC
三、自动发电控制子系统(AGC)功能
光伏 AGC 系统是我公司独立开发的具有空气动力模式分析单台逆变器光能裕 度功能的智能自动控制系统。系统接收光功率预测系统的超短期预测的功率、气 象等信息,结合空气动力模式分析,对光伏电站每一台逆变器建立微观动力气象 模式,可准确得到太阳能阵列的超短期光能裕度,在准确计算的超短期光能裕度 和当前逆变器状态下,科学的给出该逆变器的 AGC 有功调节能力。该系统具有如 下功能: 能够自动接收调度主站系统下发的有功控制指令或调度计划曲线,根据计算 的可调裕度,优化分配调节逆变器单元的有功功率,使整个光伏电场的有功 出力,不超过调度指令值; 具备人工设定、调度控制、预定曲线等不同的运行模式、具备切换功能。正 常情况下采用调度控制模式,异常时可按照预先形成的预定曲线进行控制; 向调度实时上传当前 AGC 系统投入状态、增力闭锁、减力闭锁状态、运行模 式、电场生产数据等信息; 能够对电场出力变化率进行限制,具备 1 分钟、10 分钟调节速率设定能力, 具备逆变器调节上限、 调节下限、 调节速率、 调节时间间隔等约束条件限制,
2

相关文档