文档库 最新最全的文档下载
当前位置:文档库 › 2020届高考数学(文)二轮总复习专题训练:1.2.3数列的综合应用 Word版含答案

2020届高考数学(文)二轮总复习专题训练:1.2.3数列的综合应用 Word版含答案

2020届高考数学(文)二轮总复习专题训练:1.2.3数列的综合应用 Word版含答案
2020届高考数学(文)二轮总复习专题训练:1.2.3数列的综合应用 Word版含答案

1.2.3 数列的综合应用

1.已知数列{a n }为等差数列,满足OA →=a 3OB →+a 2 013OC →

,其中A ,B ,C 在一条直线上,O 为直线AB 外一点,记数列{a n }的前n 项和为S n ,则S 2 015的值为( ) A.2 0152

B.2 015

C.2 016

D.2 013

解析:依题意有a 3+a 2 013=1, 故S 2 015=a 3+a 2 013

2·2 015=2 015

2

.故选A.

答案:A

2.(2019·葫芦岛一模)数列{a n }是等差数列,{b n }是各项均为正数的等比数列,公比q >1,且a 5=b 5,则( ) A .a 3+a 7>b 4+b 6 B.a 3+a 7≥b 4+b 6 C .a 3+a 7<b 4+b 6

D.a 3+a 7=b 4+b 6 解析:数列{a n }是等差数列,{b n }是各项均为正数的等比数列,公比q >1, 由a 3+a 7=2a 5=2b 5,b 4+b 6≥2b 4b 6=2b 5,

a 3+a 7≤

b 4+b 6,

由于q >1可得a 3+a 7<b 4+b 6,故选C. 答案:C

3.(2019春·龙凤区校级月考)在等差数列{a n }中,其前n 项和是S n ,若S 9>0,S 10<0,则在S 1a 1,S 2a 2,…,S 9a 9

中最大的是( ) A.S 1a 1 B.S 8a 8 C.S 5a 5

D.S 9a 9

解析:依题意,数列{a n }是等差数列,其前n 项和是S n ,

S 9>0,S 10<0,所以?

??

??

9a 5>0,

a 5+a 6<0,

所以a 5>0,a 6<0,所以公差d <0, 所以当6≤n ≤9时S n a n <0,当1≤n ≤5时S n a n

>0. 又因为当1≤n ≤5时,S n 单调递增,a n 单调递减,

所以当1≤n ≤5时,S n a n 单调递增,所以S 5a 5

最大.故选C. 答案:C

4.(2019·师大附中月考)已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是方程x 2

-b n x +2n

=0的两根,则b 10等于( ) A .24 B.32 C.48

D.64 解析:由已知得a n a n +1=2n

,∴a n +1a n +2=2

n +1

,则

a n +2

a n

=2,所以数列{}a n 的奇数项与偶数项都是公比为2的等比数列,可以求出a 2=2,所以数列{}a n 的项分别为:1,2,2,4,4,8,8,16,16,32,32…,而b n =a n +a n +1,所以b 10=a 10+a 11=32+32=64.故选D. 答案:D

5.已知数列{a n },{b n }满足b n =a n +a n +1,则“数列{a n }为等差数列”是“数列{b n }为等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件

解析:若数列{a n }为等差数列,设其公差为d 1,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =2d 1.所以数列{b n }是等差数列;若数列{b n }为等差数列,设其公差为d 2.则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=a n +2-a n =d 2,不能推出数列{a n }为等差数列,所以“数列{a n }为等差数列”是“数列{b n }为等差数列”的充分不必要条件,故选A. 答案:A

6.若等差数列{a n }的前n 项和S n =n 2

,则2S n +24a n +1的最小值为( )

A .4 3 B.8 C.6

D.7

解析:由S n =n 2

,则a n =S n -S n -1=2n -1,所以2S n +24a n +1=n +12n ≥4 3.由均值不等式知当n

=12n ,即n =23时,取等号.又n ∈N *

且3<23<4,所以当n =3或4时,式子2S n +24a n +1有最小值,最小值为3+12

3=7.故选D.

答案:D

7.(2019·黑龙江大庆一中模拟)已知函数f (x )=x 2

+ax 的图象在点A (0,f (0))处的切线l

与直线2x -y +2=0平行,若数列????

??

1f (n )的前n 项和为S n ,则S 20的值为( ) A.325462 B.1920 C.119256

D.

2 010

2 011

解析:因为f (x )=x 2

+ax ,所以f ′(x )=2x +a .又函数f (x )=x 2

+ax 的图象在点A (0,f (0))处的切线l 与直线2x -y +2=0平行,所以f ′(0)=a =2,所以f (x )=x 2

+2x ,所以1f (n )

=1n 2

+2n =12? ??

??1

n -1n +2. 所以S 20=12???

? ????1-13+? ????12-14+? ??

??

13-15+…+

???? ????120-122=12×? ??

??1+12-121-122=325462.故选A. 答案:A

8.设a >0,b >0,若3是3a 与32b

的等比中项,则2a +1b

的最小值为( )

A .4 B.1 C.14

D.8

解析:∵3是3a

与32b

的等比中项, ∴3a

×32b

=3

a +2b

=(3)2

=3,

∴a +2b =1.

∴2a +1b

=(a +2b )? ??

??2a +1b =4+4b a +a b

≥4+2

4b a ·a b =8,当且仅当4b a =a

b

且a +2b =1,即a

=12,b =1

4时等号成立,选D. 答案:D

9.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *

)在函数y =3×2x

的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *

),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T n B.T n =2b n +1 C .T n >a n

D.T n

解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x

的图象上,所以S n =3·2n

-3,所以a n =3·2

n

-1

,所以b n +b n +1=3·2

n -1

,因为数列{b n }为等比数列,设公比为q .则b 1+b 1q =3,b 2+b 2q

=6,解得b 1=1,q =2.所以b n =2n -1

,T n =2n

-1,所以T n

答案:D

10.已知等差数列{a n }中,a 3=9,a 5=17,记数列????

??1a n 的前n 项和为S n ,若S 2n +1-S n ≤m

10()m ∈Z ,

对任意的n ∈N *

恒成立,则整数m 的最小值是( ) A .5 B.4 C.3

D.2

解析:因为等差数列{a n }中,a 3=9,a 5=17, 所以公差d =

a 5-a 35-3

17-9

2

=4.

由a n =a 3+(n -3)d 得,a n =4n -3,1a n =1

4n -3

S 2n +1-S n =

14(n +1)-3+14(n +2)-3+…+14(2n +1)-3<n +14n +1≤m

10

,所以整数m 的最小值为

4.故选B. 答案:B

11.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *

都有1a 1+1a 2+…+1a n

<t ,则实

数t 的取值范围为( )

A.? ????13,+∞

B.??????13,+∞

C.? ??

??23,+∞ D.????

??23,+∞ 解析:依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n 2

2(n -1)

2=2n 2-(n -1)2=2

2n -1.又a 1=21

=2

2×1-1

,因此a n =2

2n -1

,1a n =122n -1,数列{1a n }是以12为首项,1

4为公比的等比数列.等比数列????

??1a n 的前n 项和等于12? ????1-14n 1-14=23? ????1-14n <23,因此实数t 的取值范围是??????23,+∞.故选D. 答案:D

12.已知三个数a -1,a +1,a +5成等比数列,其倒数重新排列后为递增的等比数列{a n }的前三项,则能使不等式a 1+a 2+…+a n ≤1a 1+1a 2+…+1

a n

成立的自然数n 的最大值为( )

A .9 B.8 C.7

D.5

解析:因为a -1,a +1,a +5成等比数列,所以(a +1)2

=(a -1)(a +5),∴a =3,倒数重

新排列后恰好为递增的等比数列{a n }的前三项,为18,14,1

2,公比为2,数列????

??1a n 是以8为首

项,12为公比的等比数列.则不等式a 1+a 2+…+a n ≤1a 1+1a 2+…+1

a n 等价于

18(1-2n

)1-2

≤8? ????1-12n 1-12

,整理得2n ≤27,∴1≤n ≤7,n ∈N *,故选C.

答案:C 二、填空题

13.已知数列{a n }是等差数列,且a 7a 6

<-1,它的前n 项和S n 有最小值,则S n 取到最小正数时的n =________.

解析:由题意可知d >0,又a 7a 6

<-1,所以a 6<0,a 7>0,a 6+a 7>0,从而S 11<0,S 12>0,所以S n 取到最小正数时的n 的值为12. 答案:12

14.(2019·呼伦贝尔一模)数列a n =1

n (n +1)

的前n 项和为S n ,若S 1,S m ,S n 成等比数列(m >1),则正整数n 值为________. 解析:a n =

1n (n +1)=1n -1

n +1

.

∴前n 项和S n =1-12+12-13+…+1n -1n +1=1-1n +1=n

n +1.

∵S 1,S m ,S n 成等比数列(m >1), ∴?

???

?m m +12=12×n n +1

解得n =2m

2

2m +1-m

2,

令2m +1-m 2

>0,m >1,解得1<m <1+2, ∴m =2,n =8.故答案为8. 答案:8

15.(2019·武汉调研)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.

解析:设等差数列{a n }的公差为d ,因为a 3+a 7=36,所以a 4+a 6=36,与a 4a 6=275联立,

解得???

?? a 4=11,a 6=25或?

??

??

a 4=25,a 6=11.

当?

??

?? a 4=11,a 6=25时,可得?

??

??

a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,

a n <0,当n ≥3时,a n >0,所以a 2a 3=-12为a n a n +1的最小值;

当???

??

a 4=25,a 6=11

时,可得???

?

?

a 1=46,d =-7,

此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,

a n >0,当n ≥8时,a n <0,所以a 7a 8=-12为a n a n +1的最小值.

综上,a n a n +1的最小值为-12. 答案:-12

16.(2019·昆明调研)将数列{a n }中的所有项按每一行比上一行多1项的规则排成如下数阵:

a 1 a 2,a 3 a 4,a 5,a 6 a 7,a 8,a 9,a 10

记数阵中的第1列数a 1,a 2,a 4,…构成的数列为{b n },S n 为数列{b n }的前n 项和.若S n =2b n -1,则a 56=________.

解析:当n ≥2时,因为S n =2b n -1,所以S n -1=2b n -1-1,所以b n =2b n -2b n -1,所以b n =2b n

-1

(n ≥2且n ∈N *

),因为b 1=2b 1-1,所以b 1=1,所以数列{b n }是首项为1,公比为2的等

比数列,所以b n =2n -1

.

设a 1,a 2,a 4,a 7,a 11,…的下标1,2,4,7,11,…构成数列{c n },则c 2-c 1=1,c 3-c 2=2,

c 4-c 3=3,c 5-c 4=4,…,c n -c n -1=n -1,累加得,c n -c 1=1+2+3+4+…+(n -1),所

以c n =

n (n -1)

2

+1,由c n =

n (n -1)

2

+1=56,得n =11,所以a 56=b 11=210

=1 024.

答案:1 024

三、解答题

1.已知数列{a n }满足a 1=3,a n +1=2a n -n +1,数列{b n }满足b 1=2,b n +1=b n +a n -n ,n ∈N *

. (1)证明:{a n -n }为等比数列;

(2)数列{c n }满足c n =a n -n (b n +1)(b n +1+1),求证数列{c n }的前n 项和T n <1

3

.

解析:(1)证明:因为a n +1=2a n -n +1, 所以a n +1-(n +1)=2(a n -n ). 又a 1=3,所以a 1-1=2,

所以数列{a n -n }是以2为首项,2为公比的等比数列. (2)证明:由(1)知,a n -n =2·2n -1

=2n

.

所以b n +1=b n +a n -n =b n +2n

, 即b n +1-b n =2n

.

b 2-b 1=21, b 3-b 2=22, b 4-b 3=23,

b n -b n -1=2n -1.

累加求和得b n =2+

2·(1-2

n -1

)1-2

=2n

(n ≥2).

当n =1时,b 1=2,满足b n =2n

, 所以b n =2n

.

所以c n =a n -n (b n +1)(b n +1+1)=2

n

(2n +1)(2n +1

+1)

12n

+1-1

2n +1+1

. 所以T n =?

????12+1-122+1+? ????122+1-123+1+…+? ???

?12n +1-12n +1+1=13-12n +1+1<13

.

2.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是一个等比数列的第2项、第3项、第4项. (1)求数列{a n }的通项公式; (2)设b n =

1n (a n +3)(n ∈N *

),S n =b 1+b 2+…+b n ,是否存在实数t ,使得对任意的n 均有S n >

t 36

总成立?若存在,求出最大的整数t ;若不存在,请说明理由. 解析:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2

, 整理得2a 1d =d 2

. ∵a 1=1,d >0,∴d =2.

∴a n =2n -1(n ∈N *

). (2)∵b n =

1n (a n +3)=12n (n +1)=12? ??

??1

n -1n +1,

∴S n =b 1+b 2+…+b n

=12??????? ????1-12+? ????12-13+…+? ????1

n -1n +1 =12?

????1-1n +1=n 2(n +1). 假设存在整数t 满足S n >t

36

总成立.

∵S n +1-S n =n +12(n +2)-n 2(n +1)=1

2(n +2)(n +1)

>0,

∴数列{S n }是递增的. ∴S 1=1

4

为S n 的最小值,

故t 36<1

4

,即t <9. 又∵t ∈Z ,

∴适合条件的t 的最大值为8.

3.已知数列{a n }中,a 1=2,a n -a n -1-2n =0(n ≥2,n ∈N *

). (1)写出a 2,a 3的值(只写出结果),并求出数列{a n }的通项公式; (2)设b n =

1

a n +1+

1

a n +2+

1

a n +3

+…+

1

a 2n ,若对任意的正整数n ,不等式t 2

-2t +16

>b n 恒成立,求实数t 的取值范围. 解析:(1)a 2=6,a 3=12. 当n ≥2时,

a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)

=2+2×2+2×3+…+2n =2(1+2+3+…+n )=n (n +1). 因为当n =1时,a 1=2也满足上式, 所以a n =n (n +1). (2)b n =1

a n +1+

1

a n +2+

1

a n +3

+…+

1

a 2n

1(n +1)(n +2)+1(n +2)(n +3)+…+1

2n (2n +1)

=?

????1n +1-1n +2+? ????1n +2-1n +3+…+? ??

?

?12n -12n +1

1n +1-12n +1

. 因为b n +1-b n =1n +2-12n +3-? ??

??1n +1-12n +1 =1n +2+12n +1-? ????1n +1+12n +3

3n +32n 2

+5n +2-3n +4

2n 2+5n +3

=-2n 2

-2n +1

(2n 2+5n +2)(2n 2

+5n +3)

<0, 所以b n +1

6,

因为t 2

-2t +16>b n 恒成立,

所以t 2

-2t +16>16,

解得t <0或t >2,

所以实数t 的取值范围为(-∞,0)∪(2,+∞).

上海市2019届高三数学理一轮复习专题突破训练:数列

上海市2017届高三数学理一轮复习专题突破训练 数列 一、填空、选择题 1、(2016年上海高考)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 2、(2015年上海高考)记方程①:x 2+a 1x+1=0,方程②:x 2+a 2x+2=0,方程③:x 2+a 3x+4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B . 方程①有实根,且②无实根 C .方程①无实根,且②有实根 D . 方程①无实根,且②无实根 3、(2014年上海高考)设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞ =++ +,则q = . 4、(虹口区2016届高三三模)若等比数列{}n a 的公比1q q <满足,且24 344,3,a a a a =+=则12lim()n n a a a →∞ ++ +=___________. 5、(浦东新区2016届高三三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,若 533S S =,则53 a a = 6、(杨浦区2016届高三三模)若两整数a 、 b 除以同一个整数m ,所得余数相同,即 a b k m -=()k Z ∈,则称a 、b 对模m 同余,用符号(mod )a b m ≡表示,若10(mod 6)a ≡(10)a >,满足条件的a 由小到大依 次记为12,,,,n a a a ??????,则数列{}n a 的前16项和为 7、(黄浦区2016届高三二模) 已知数列{}n a 中,若10a =,2i a k =*1 (,22,1,2,3, )k k i N i k +∈≤<=,则满足2100i i a a +≥的i 的最小值 为 8、(静安区2016届高三二模)已知数列{}n a 满足181a =,1 311log ,2, (*)3, 21n n n a a n k a k N n k ---+=?=∈?=+?,则数列{}n a 的前n 项和n S 的最大值为 . 9、(闵行区2016届高三二模)设数列{}n a 的前n 项和为n S , 2 2|2016|n S n a n (0a >),则使得1 n n a a +≤(n ∈* N )恒成立的a 的最大值为 . 10、(浦东新区2016届高三二模)已知数列{}n a 的通项公式为(1)2n n n a n =-?+,* n N ∈,则这个数列的前 n 项和n S =___________. 11、(徐汇、金山、松江区2016届高三二模)在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

【高考数学专题突破】《专题三第讲数列求和及综合应用学案》(解析版)

第2讲 数列求和及综合应用 数列求和问题(综合型) [典型例题] 命题角度一 公式法求和 等差、等比数列的前n 项和 (1)等差数列:S n =na 1+ n (n -1)2 d (d 为公差)或S n =n (a 1+a n ) 2 . (2)等比数列:S n =???? ?na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1其中(q 为公比). 4类特殊数列的前n 项和 (1)1+2+3+…+n =1 2n (n +1). (2)1+3+5+…+(2n -1)=n 2 . (3)12+22+32+…+n 2 =16n (n +1)(2n +1). (4)13+23+33+…+n 3=14 n 2(n +1)2 . 已知数列{a n }满足a 1=1,a n +1=3a n 2a n +3 ,n ∈N * .

(1)求证:数列???? ?? 1a n 为等差数列; (2)设T 2n = 1 a 1a 2- 1 a 2a 3+ 1 a 3a 4- 1 a 4a 5 +…+ 1 a 2n -1a 2n - 1 a 2n a 2n +1 ,求T 2n . 【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +2 3 , 所以 1 a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列???? ??1a n 是首项为1,公差为2 3的等差数列. (2)设b n = 1 a 2n -1a 2n - 1 a 2n a 2n +1 =? ??? ?1a 2n -1-1a 2n +11a 2n , 由(1)得,数列???? ??1a n 是公差为2 3的等差数列, 所以 1 a 2n -1 - 1 a 2n +1=-43,即 b n =? ????1a 2n -1-1a 2n +11a 2n =-43×1a 2n , 所以b n +1-b n =-43? ????1a 2n +2-1a 2n =-43×43=-16 9. 又b 1=-43×1a 2=-43×? ????1a 1+23=-20 9 , 所以数列{b n }是首项为-209,公差为-16 9的等差数列, 所以T 2n =b 1+b 2+…+b n =- 209n +n (n -1)2×? ?? ??-169=-49(2n 2 +3n ). 求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n = n (a 1+a n ) 2 或S n =na 1+ n (n -1) 2d ;等比数列{a n }的前n 项和公式:S n =?????na 1,q =1,a 1(1-q n )1-q ,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解. 命题角度二 分组转化法求和 将一个数列分成若干个简单数列(如等差数列、等比数列、常数列等),然后分别求和.也可先根据通项公式的特征,将其分解为可以直接求和的一些数列的和,再分组求和,即把一个通项拆成几个通项求和的形式,方便求和. 已知等差数列{a n }的首项为a ,公差为d ,n ∈N * ,且不等式ax 2 -3x +2<0的解集为(1,

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

最新高考数学数列题型专题汇总

1. 高考数学数列题型专题汇总 1 一、选择题 2 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 3 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

2. 4、如图,点列{A n },{B n }分别在某锐角的两边上,且 19 1122,,n n n n n n A A A A A A n ++++=≠∈*N , 20 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 21 若1n n n n n n n d A B S A B B +=,为△的面积,则 22 23 A .{}n S 是等差数列 B .2{}n S 是等差数列 24 C .{}n d 是等差数列 D .2{}n d 是等差数列 25 【答案】A 26 27 28 29 30 二、填空题 31 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 32 6=S _______.. 33 【答案】6 34 35 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 36

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2019年高考数学真题分类汇编专题18:数列(综合题)

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , .

因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0. 因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m. 当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e (e,+∞) + 0 – f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

浙江专版2018年高考数学第1部分重点强化专题专题2数列突破点5数列求和及其综合应用教学案

突破点5 数列求和及其综合应用 (对应学生用书第19页) [核心知识提炼] 提炼1 a n 和S n 的关系 若a n 为数列{a n }的通项,S n 为其前n 项和,则有a n =??? ? ? S 1,n =1,S n -S n -1,n ≥2. 在使用这个关系 式时,一定要注意区分n =1,n ≥2两种情况,求出结果后,判断这两种情况能否整合在一起. 提炼2求数列通项常用的方法 (1)定义法:①形如a n +1=a n +c (c 为常数),直接利用定义判断其为等差数列.②形如 a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列. (2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如 a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a n a n -1 ,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q 1-p ,再转化为等比数列求解. (5)构造法:形如a n +1=pa n +q n (其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1 ,得 a n +1q n +1=p q ·a n q n +1q ,构造新数列{ b n }? ? ???其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. (6)取对数法:形如a n +1=pa m n (p >0,a n >0),先在原递推公式两边同时取对数,再利用待定系数法求解. 提炼3数列求和 数列求和的关键是分析其通项,数列的基本求和方法有公式法、裂(拆)项相消法、错位相减法、分组法、倒序相加法和并项法等,而裂项相消法,错位相减法是常用的两种方法. 提炼4数列的综合问题 数列综合问题的考查方式主要有三种: (1)判断数列问题中的一些不等关系,可以利用数列的单调性比较大小,或者是借助数列对应函数的单调性比较大小. (2)以数列为载体,考查不等式的恒成立问题,此类问题可转化为函数的最值问题.

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

高中数学数列练习题及答案解析

高中数学数列练习题及答案解析 第二章数列 1.{an}是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n等于. A.667B.668C.669D.670 2.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=. A.33B.7C.84D.189 3.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则. A.a1a8>a4a5B.a1a8<a4a5C.a1+a8<a4+a5D.a1a8=a4a5 4.已知方程=0的四个根组成一个首项为 |m-n|等于. A.1B.313C.D.8421的等差数列,则 5.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为. A.81 B.120 C.1D.192 6.若数列{an}是等差数列,首项a1>0,a003+a004>0,a003·a004<0,则使前n项和Sn>0成立的最大自然数n是. A.005B.006C.007D.008

7.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=. A.-4B.-6C.-8D.-10 8.设Sn是等差数列{an}的前n项和,若 A.1B.-1 C.2D.1 a2?a1的值是. b2a5S5=,则9=. a3S599.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则 A.11111B.-C.-或D.2222 210.在等差数列{an}中,an≠0,an-1-an+an+1=0,若S2n-1=38,则n=. 第 1 页共页 A.38B.20 C.10D.9 二、填空题 11.设f=1 2?x,利用课本中推导等差数列前n项和公式的方法,可求得f+f+…+f+…+ f+f的值为12.已知等比数列{an}中, 若a3·a4·a5=8,则a2·a3·a4·a5·a6=. 若a1+a2=324,a3+a4=36,则a5+a6=. 若S4=2,S8=6,则a17+a18+a19+a20=. 82713.在和之间插入三个数,使这五个数成等比数列,

高考数学二轮考点专题突破检测 数列专题

专题达标检测 一、选择题 1.在等差数列{a n }中,若a 2+2a 6+a 10=120,则a 3+a 9等于 ( ) A .30 B .40 C .60 D .80 解析:由等差数列性质:若m +n =p +q ,则a m +a n =a p +a q ,故a 2+2a 6+a 10=4a 6 =120,故a 6=30,a 3+a 9=2a 6=2×30=60. 答案:C 2.(2009·宁夏、海南理)等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若 a 1=1,则S 4等于 ( ) A .7 B .8 C .15 D .16 解析:设等比数列的公比为q ,则由4a 1,2a 2,a 3成等差数列.得4a 2=4a 1+a 3.∴4a 1q =4a 1+a 1q 2.∴q 2-4q +4=0 ∴q =2,∴S 4=a 1(1-q 4)1-q =15. 答案:C 3.等比数列{a n }中,a 1=512,公比q =-1 2,用Πn 表示它的前n 项之积:Πn =a 1·a 2·…·a n , 则Πn 中最大的是 ( ) A .Π11 B .Π10 C .Π9 D .Π8 解析:Πn =a 1a 2…a n =a n 1· q 1+2+… +n -1=29n ????-12(n -1)n 2=(-1)n (n -1)22-n 2 +19n 2 ,∴ 当 n =9时,Πn 最大.故选C 答案:C 4.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列?? ?? ?? 1f (n )(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1 D.n +1n 解析:∵f ′(x )=m x m -1+a =2x +1, ∴m =2,a =1, ∴f (x )=x 2+x =x (x +1),

高考数学真题分类汇编专题18:数列(综合题)

高考数学真题分类汇编专题 18:数列(综合题)
姓名:________
班级:________
成绩:________
一、 解答题 (共 10 题;共 85 分)
1. (10 分) (2017·东台模拟) 已知数列{an},{bn}满足:bn=an+1﹣an(n∈N*).
(1) 若 a1=1,bn=n,求数列{an}的通项公式;
(2) 若 bn+1bn﹣1=bn(n≥2),且 b1=1,b2=2.
(i)记 cn=a6n﹣1(n≥1),求证:数列{cn}为等差数列;
(ii)若数列{ }中任意一项的值均未在该数列中重复出现无数次,求首项 a1 应满足的条件.
2. (15 分) (2019·上海) 已知等差数列 .
的公差
,数列
满足
,集合
(1) 若
,求集合 ;
(2) 若 (3) 若
,求集合 ; ,求 使得集合 恰好有两个元素;
(4) 若
,求 使得集合 恰好有两个元素;
(5) 若集合 恰好有三个元素:
, 是不超过 7 的正整数,求 的所有可能的值.
(6) 若集合 恰好有三个元素:
, 是不超过 7 的正整数,求 的所有可能的值.
3. (10 分) (2018·山东模拟) 已知数列 ,

()

(1) 求数列 的通项公式;
(2) 设
,求数列
的前 项和 .
第1页共7页

4. (5 分) (2016 高二上·桂林开学考) 已知公差 d>0 的等差数列{an}中,a1=10,且 a1 , 2a2+2,5a3 成 等比数列.
(1) 求公差 d 及通项 an;
(2) 设 Sn=
+
+…+
,求证:Sn< .
5. (5 分) (2020 高二上·徐州期末) 已知各项都是正数的数列 的前 n 项和为 ,


(1) 求数列 的通项公式;
(2) 若
对任意
恒成立,求 的取值范围.
(3) 设数列 满足:

,数列
的前 n 项和 求证:
(4) 若
对任意
恒成立,求 的取值范围.
6. (10 分) (2018·吉林模拟) 已知各项均为正数的等比数列 ,前 项和为 ,
(1) 求 的通项公式;
. .
(2) 设
, 的前项和为 ,证明:
.
7. (5 分) (2018·吉林模拟) 已知数列 是递增的等比数列,满足
中项,数列 满足
,其前 项和为 ,且
.
,且
是 、 的等差
(1) 求数列 , 的通项公式;
(2) 数列 取值范围.
的前 项和为 ,若不等式
8. (10 分) (2018·绵阳模拟) 已知等差数列 中,公差
第2页共7页
对一切
恒成立,求实数 的

,且
成等比数列.

高三数学二轮复习:数列专题及其答案

2018届高三第二轮复习——数列 第1讲等差、等比考点 【高 考 感 悟】 从近三年高考看,高考命题热点考向可能为: 1.必记公式 (1)等差数列通项公式:a n =a 1+(n -1)d . (2)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d 2. (3)等比数列通项公式:a n a 1q n - 1. (4)等比数列前n 项和公式: S n =?????na 1 (q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). (5)等差中项公式:2a n =a n -1+a n +1(n ≥2). (6)等比中项公式:a 2n =a n -1·a n +1(n ≥2). (7)数列{a n }的前n 项和与通项a n 之间的关系:a n =?????S 1(n =1) S n -S n -1 (n ≥2). 2.重要性质 (1)通项公式的推广:等差数列中,a n =a m +(n -m )d ;等比数列中,a n =a m q n - m . (2)增减性:①等差数列中,若公差大于零,则数列为递增数列;若公差小于零,则数列为递减数列. ②等比数列中,若a 1>0且q >1或a 1<0且0<q <1,则数列为递增数列;若a 1>0且0<q <1或a 1 <0且q >1,则数列为递减数列. 3.易错提醒 (1)忽视等比数列的条件:判断一个数列是等比数列时,忽视各项都不为零的条件. (2)漏掉等比中项:正数a ,b 的等比中项是±ab ,容易漏掉-ab .

【 真 题 体 验 】 1.(2015·新课标Ⅰ高考)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( ) A.172 B.19 2 C .10 D .12 2.(2015·新课标Ⅱ高考)已知等比数列{a n }满足a 1=1 4 ,a 3a 5=4(a 4-1),则a 2=( ) A .2 B .1 C.12 D.1 8 3.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________,d =________. 4.(2016·全国卷1)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111 ==3 n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式;(II )求{}n b 的前n 项和. 【考 点 突 破 】 考点一、等差(比)的基本运算 1.(2015·湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 2.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=9 2 . (1)求{a n }的通项公式; (2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .

数列大题部分-高考数学解题方法归纳总结专题训练

专题08 数列大题部分 【训练目标】 1、 理解并会运用数列的函数特性; 2、 掌握等差数列,等比数列的通项公式,求和公式及性质; 3、 掌握根据递推公式求通项公式的方法; 4、 掌握常用的求和方法; 5、 掌握数列中简单的放缩法证明不等式。 【温馨小提示】 高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。总之,此类题目难度中等,属于必拿分题。 【名校试题荟萃】 1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和, 且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1 { }n a 的前n 项和n T ,求使得成立的n 的最小值. 【答案】(1)2n n a = (2)10 (2)由(1)可得 112n n a ?? = ??? ,所以,

由 ,即21000n >,因为 ,所以10n ≥,于是使得 成立的n 的最小值为10. 2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈) 。 (1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为1 2ln 2-,求数列{}n n a b 的前n 项和n T . 【答案】(1) (2) (2)由 函数()f x 的图象在点22(,)a b 处的切线方程为 所以切线在x 轴上的截距为21 ln 2 a -,从而,故22a = 从而n a n =,2n n b =, 2n n n a n b =

相关文档 最新文档