文档库 最新最全的文档下载
当前位置:文档库 › Quasi-3D Light Confinement in Double Photonic Crystal Reflectors VCSELs for CMOS-Compatible

Quasi-3D Light Confinement in Double Photonic Crystal Reflectors VCSELs for CMOS-Compatible

Quasi-3D Light Confinement in Double Photonic Crystal Reflectors VCSELs for CMOS-Compatible
Quasi-3D Light Confinement in Double Photonic Crystal Reflectors VCSELs for CMOS-Compatible

Quasi-3D Light Con?nement in Double

Photonic Crystal Re?ectors VCSELs for

CMOS-Compatible Integration

Corrado Sciancalepore,Badhise Ben Bakir,Xavier Letartre,Jean-Marc Fedeli,Nicolas Olivier,Damien Bordel, Christian Seassal,Pedro Rojo-Romeo,Member,IEEE,Philippe Regreny,and Pierre Viktorovitch

Abstract—A novel architecture of one-dimensional photonic crystal membrane(PCM)re?ectors embodying a heterostructure is proposed as a robust design aimed at a3-D ef?cient con?ne-ment of light in single-mode polarization-controlled 1.55-m vertical-cavity surface-emitting laser(VCSEL)microsources for heterogeneous integration on complementary metal-oxide-semi-conductor(CMOS).On the basis of a theoretical approach,the paper focuses on the deep interweaving between the kinetics of light transport in the mirrors and the physical nature of the ex-ploited Fano resonances.An example of VCSEL design for optical pumping employing heterostructure-con?ned photonic crystal mirrors is presented.The predicted photons kinetics along with the considerable improvement in cavity modal features owing to the enhanced mirror architecture have been con?rmed by per-forming rigorous three-dimensional?nite-difference time-domain (3-D FDTD)calculations.Finally,experimental observations of photoluminescence(PL)emission performed on?rst-ever fabri-cated devices for optical pumping show striking agreement with theoretical considerations and ab initio modelling.

Index Terms—Photonic crystals,photons,semiconductor lasers, slow Bloch mode,vertical-cavity surface-emitting lasers(VC-SELs).

I.I NTRODUCTION

A CHIEVING a full control of photons in the

real—reciprocal space as well as in the frequency—time domain is decisive for the design of innovative optical components aimed at further breakthroughs in the?eld of micro-nano-photonics.An ef?cient harnessing of light is made possible by con?ning photons within the tiniest spatial domain (in comparison to the wavelength)for the longest time possible (as compared to the oscillation period),while allowing to be ef?ciently collected(from)or addressed(to)the photonic structures where are meant to be con?ned.

Manuscript received December22,2010;revised April19,2011,May05, 2011;accepted May10,2011.Date of publication May23,2011;date of current version June15,2011.This work was supported by the European Commission in the framework of the project HELIOS.

C.Sciancalepore is with the Institut des Nanotechnologies,Ecole Centrale de Lyon,F-69134Ecully,France(e-mail:corrado.sciancalepore@ec-lyon.fr) and with the Commissariatàl’énergie Atomique et auxénergies Alternatives, Département Optronique,(CEA-LETI Minatec),F-38054Grenoble,France (e-mail:corrado.sciancalepore@cea.fr).

X.Letartre,C.Seassal,P.Rojo-Romeo,P.Regreny,and P.Viktorovitch are with the Institut des Nanotechnologies,Ecole Centrale de Lyon,F-69134Ecully, France.

B.Ben Bakir,J.-M.Fedeli,N.Olivier,and D.Bordel are with the Commis-sariatàl’énergie Atomique et auxénergies Alternatives,Département Optron-ique,(CEA-LETI Minatec),F-38054Grenoble,France.

Digital Object Identi?er10.1109/JLT.2011.2157303

An effective control of light is highly desirable in the case of laser microcavities and devices for non-linear applications where the need for a stronger light-matter coupling is even more binding.This concept is particularly true in vertical-cavity sur-face-emitting lasers(VCSELs),where the coupling of the op-tical mode with the active material is crucial for low-threshold emitters and modal control constitutes an additional require-ment to be addressed especially for telecommunication-oriented applications.As widely proposed in the literature,while ver-tical con?nement is achieved through diffractive phenomena provided by distributed Bragg re?ectors(DBRs),the lateral op-tical waveguiding(or antiguiding)and modal behaviour in VC-SELs generally relies on a complex interplay of index-[1]and gain-guiding mechanisms[2].

Speci?cally,in arsenide lasers,the enhancement of the pho-tons-matter coupling along with modal selection was accom-plished by introducing an optimized transverse optical and elec-trical con?nement via oxide windows[3]–[7].However,the main drawback of such solutions lies with the ineludible de-sign trade-offs between single-mode operation,low threshold and optical output power[6].Using shallow surface reliefs[5] has only partly addressed the issue given the still considerable drop in emitted power;on the other hand,VCSELs’designs based on external cavity con?gurations and index antiguiding [7]for the suppression of higher order modes are characterized by rather complicated and possibly unstable processing.Con-cerning InP-based VCSELs,while ef?cient carrier funnelling has been obtained by means of structured[8]–[10]or proton-im-planted[11]tunnel junctions,this device class is still waiting for an ef?cient optical con?nement owing to the lack of index guiding[11].Solutions based on the incorporation of2-D pho-tonic crystals(PhCs)in proton-implanted devices[11]are af-fected by signi?cant drawbacks due to light leaking through the photonic crystal holes disrupting laser operation,even calling into question the actual feasibility of the fabrication process. In electro-thermally tunable micro-electro-mechanical sys-tems(MEMS)-VCSELs,curved micro-machined DBR mem-branes have been successfully employed in order to improve the transverse con?nement of the fundamental mode while main-taining a good modal selection[8].Nonetheless,these mirrors are affected by several important disadvantages such as the lack of lateral(typical diameters100m)and longitudinal(cavity physical length15m)compactness,tight epitaxial and fab-rication constraints.

Regarding polarization control,different strategies have been so far adopted in VCSELs:elasto-[12]and electro-optic[13], [14]induced birefringence,asymmetric cavity geometries[15]

0733-8724/$26.00?2011IEEE

Fig.1.Left:Exemplifying sketch of2.5-D PCM-VCSEL structures for op-tical pumping.Materials,refractive indices,and physical lengths are reported in Table I.Right:Top view of Si/SiO one-dimensional photonic crystal mir-rors.

and current injection[16],elliptical surface reliefs[17]as well as sub-wavelength gratings[18],[19].Nevertheless,although the latter solution provides a good polarization mode suppres-sion ratio(PMSR),a precise control over the grating etch depth and duty cycle is necessary to ensure a stable polarization. Since Yablonovitch’s paper in the late‘80s[20],photonic crystals were increasingly employed to control the spatial-tem-poral trajectory of photons through the diffractive con?nement arising from the high-index-contrast periodical structuring of the optical medium.In photonic crystal membranes(PCMs) [21]–[24],the control of light by diffractive phenomena is com-bined with the refractive con?nement arising from the index guiding provided by the strong contrast between the high-index slab core and the low-index cladding.In the past years,dif-ferent groups[24]–[30]suggested to shift from thicker,ef?-ciency-limited,narrow-bandwidth DBRs to PCMs as wideband polarization-sensitive re?ectors in VCSELs.Recently,high-nu-merical-aperture PCM mirrors enabling a double focusing for both re?ected and transmitted waves have been proposed as building block for a new class of VCSELs and solid-state lasers [31].

Although PhCs operating in the photonic bandgap regime have been already successfully employed in VCSELs[32],[33], however,PCMs working in the slow-light regime through the excitation of surface-addressable slow Bloch modes via low-Q Fano resonances(FRs)represent a very attractive solution as ef?cient compact mirrors.Fano resonances arise from the res-onant coupling between slow Bloch modes wave-guided in the PCM re?ector with the background radiation continuum.Spec-tral properties of the resonances and coupling strength depend on the parameters de?ning the membrane design such as dielec-tric constant corrugation,slab thickness and?lling factor. Another interpretation of the physics governing light in PCMs lies in the destructive(or constructive)interference between the modes propagating through the membrane[along -axis,see Fig.1(right)],which is set by the design,deter-mining the strong re?ective(transmissive)behavior of the membrane[34].

This innovative photonic architecture can accommodate in-plane wave-guided modes which are deliberately opened to the third spatial dimension by accurately tailoring the cou-pling with the radiation continuum.Hence,the optical modes supported by a VCSEL cavity employing double photonic crystal re?ectors are combination of a wave-guided(within the mirrors)and a radiated component(coupled to the active material in between the mirrors)giving origin to so-called hybrid modes.

TABLE I

M ATERIALS,R EFRACTIVE I NDICES,AND P HYSICAL L ENGTHS IN PCM-VCSEL

S Essentially,from2-D micro-nano-photonics,where only in-plane truly wave-guided modes are concerned,we are moving into the realm of2.5-D-photonics where a quasi-3D accurate light harnessing at the wavelength scale is made possible.As already demonstrated[26],one-dimensional broadband PCMs in VCSELs led to signi?cant improvements in terms of optical mode lateral con?nement,modal selection and polarization control.By exploiting two spectrally over-lapped low-Q Fano resonances,resulting in large stopbands up to150nm,such re?ectors opened new perspectives also for the design of electro-statically tunable single-mode polariza-tion-controlled laser microsources,thus gradually substituting DBRs as alternative competing mirrors.

Starting from a deeper theoretical understanding of photons kinetics in1-D PCMs,with the present paper we propose a novel PCM design embodying a photonic crystal heterostruc-ture aimed at a dramatic increase in the lateral con?nement in long-wavelength VCSELs meant for the III-V/Si integration on complementary metal-oxide-semiconductor(CMOS).This is achieved by reducing the lateral escape rate of photons out of the mirrors by means of energy barriers.

A photonic crystal heterostructure[35]–[40]consists in one photonic crystal(i.e.,the PCM re?ectors of our VCSEL)en-closed laterally between two adjacent different crystals.The two crystals are chosen in such a way that photons can propagate in the central layer—the pass-band well—while encountering a forbidden bandgap region in the side layers which forms the so-called barriers.These can be obtained either by changing the refractive index pro?le or the?lling factor of the two con-stituting crystals or even also by approaching two PhC layers of different lattice period.Although the concept of photonic crystal heterostructures has already been employed in several applications,however,the inclusion of heterostructures in both photonic crystal re?ectors of PCM-VCSELs represents to our knowledge an original and innovative solution for a quasi-3D light con?nement in such devices.

Here follows the manuscript organization.In Section2,a brief description of the structure design and the photon kinetics describing the vertical con?nement in PCM-VCSELs is pro-vided,while in the?rst part of Section3the crucial concept of light transport kinetics within1-D PCMs is addressed by pre-senting the two-dimensional dispersion surfaces of slow Bloch modes excited in the mirror.In the second subsection the the-oretical description is validated by3-D FDTD simulations and the integration of photonic crystal heterostructures in PCMs is introduced and discussed.In the third and last part of Section3 the experimental evidence of previous theoretical arguments is

SCIANCALEPORE et al.:QUASI-3D LIGHT CONFINEMENT

2017

Fig.2.(a)RCWA-computed TE-and TM-re?ectivity spectra(inset)of1-D PCMs.(b)Dispersion characteristics in the neighbourhood of the-point of slow Bloch modes excited via the low-Q Fano resonances(labelled as“FR”) shown in the TE-re?ectivity spectrum.

presented;?nally,Section4is dedicated to conclusions and per-spectives.

II.PCM-VCSEL S TRUCTURE AND V ERTICAL C ONFINEMENT A schematic cross section of the optically pumped structures under study along with its top view is given in Fig.1.Brie?y, an embedded InAsP-InGaAsP multiple-quantum-well active re-gion grown by molecular beam epitaxy(MBE),such to pro-vide gain around1.55m,is placed between a top and bottom Si/SiO1-D PCMs broadband re?ectors(50%Si?lling factor, lattice period m)spaced by means of two sym-metric SiO gaps.It is worth to point out that the use of ad-vanced III-V—semiconductors/SiO wafer bonding technology [41],[42]as well as deep-UV(DUV)lithography is required for mirrors fabrication.

The light kinetics that governs the vertical con?nement in PCM-VCSELs can be described in rather good approximation by simply evaluating the quality factor of the exploited Fano resonance.According to the relation(strictly rig-orous only in the case of laterally in?nite photonic crystal mem-branes),where and are,respectively,the frequency and the lifetime of photons in the membrane,a broad resonance cor-responds to a strong coupling rate of photons to the ra-diation continuum,which represents a condition to obtain wideband mirrors.

A rigorous coupled-wave analysis(RCWA)computation of PCM re?ectivity spectra for transverse electric(TE,electric ?eld parallel to silicon slits)and transverse magnetic polar-ization(TM,electric?eld perpendicular to slits)is shown in Fig.2(a),while the dispersion characteristics of slow Bloch modes corresponding to both Fano resonances are reported in Fig.2(b).The calculation of dispersion curves was carried out by tracking the resonant wavelength of the corresponding Fano resonance.This method,which may appear a qualitative approximation due to the small quality factors involved,proves instead to be enough reliable in determining the frequencies of slow Bloch modes located at band-edges,resulting in a very good agreement with3-D FDTD simulations of the PCM-VCSEL cavity shown later on in this work.

Designed in order to operate at a band-edge obviously situ-ated above the light cone,the PCM shows a wide TE stopband (140nm)provided by two spectrally overlapped broad reso-nances situated at1.37m and1.55m respectively.It should be remarked that both slow Bloch modes can couple at the -point,given their symmetric distributions over the photonic crystal unit cell[43].Although a high power re?ectivity is ensured over the whole PhC stopband,however we decided to operate near the redder Fano in order to maximize the cavity vertical con?nement in the wavelength region of interest.The guidelines for a proper choice of the Fano resonance lie in its dispersion characteristic and we will comment further on it below.

As said before,the optical mode supported by the cavity can be seen as a hybrid mode made up of two components:a wave-guided component in the mirrors as well as a radiated(com-monly called Fabry-Perot)component in between the mirrors. In detail,one can express the average relative time spent by pho-tons in the cavity during the overall lifetime of the hybrid reso-nance as follows[24]:

(1)

where,being the cavity optical thickness and c the speed of light.In contrast with low-index contrast DBRs, the fast coupling rate to radiation continuum provided by broad Fano resonances promotes a higher electromagnetic density within the laser active region,thus favouring the design of low-threshold devices.

III.A DDRESSING THE L ATERAL C ONFINEMENT IN

PCM-VCSEL S

A.Light Transport Kinetics in1-D Photonic Crystal Mirrors Given the?nite width of the photonic crystal membrane re-?ector,the re?ectivity yield is limited by the lateral escape rate which is in turn related to the average group velocity ex-by photons when propagating in PCMs.Therefore, concerning the issue of lateral con?nement,a second necessary condition to realize ef?cient mirrors is set by minimization of ,where and indicate,respectively,the lat-eral of the mirror and the Fano resonance dispersion char-acteristic curvature around the-point[23].

In other words,the resonant coupling ef?ciency can be ex-pressed as:the reduction in lateral losses is thus accomplished by putting photons through a slow-light regime via the excitation of surface-addressable slow Bloch modes located at very?at band-edges(low)of dispersion curves.

The dispersion characteristic of the hybrid mode is entirely de?ned by its wave-guided and radiated components in the re-ciprocal space.The isotropic dispersion characteristic of the FP component of the hybrid mode in the vicinity of the-point can be described by the following simple analytical expression

(2) where indicates the transverse wavevector component,being the frequency at the-point and the quadratic approx-imation of the dispersion characteristic curvature evaluated at the band-edge.In a simpli?ed but still reliable one-dimensional approach(strictly rigorous in case of laterally in?nite struc-tures),the hybrid mode band curvature is a linear combi-nation of the wave-guided and FP components

2018JOURNAL OF LIGHTWA VE TECHNOLOGY,VOL.29,NO.13,JULY1,2011

corresponding band curvatures weighted by the relative average lifetimes and[28]

(3) Owing to the isotropic dispersion characteristic of the Fabry–Perot component of the hybrid mode,it follows that the optical cavity modal features are mainly determined by the wave-guided component.Consequently,a deep study of photons behavior when exciting slow Bloch modes in PCMs is essential to the understanding of the physics describing the device.Given the one-dimensional nature of the membrane refractive index structuring,photons propagating in PCMs experience different dispersion curves depending on the wave vector,thus originating strongly anisotropic two-dimensional dispersion surfaces.

Relying on purely one-dimensional dispersion characteristics as commonly done would end up with the unrealistic modelling of light transport in the mirrors.We need to shift to dispersion surfaces where the energies of corresponding photonic states are now depending on a generic in-plane wave vector of compo-nents.

In this way,grasping the?ow of light within photonic crystal membrane re?ectors provides us with a powerful tool to design highly compact and innovative single-mode PCM-VCSELs. Such complex picture has been studied by RCWA calcula-tions in the neighbourhood of the-point,which,in our case, corresponds to the domain of the reciprocal space experienced by the wave-guided component of the fundamental mode.As il-lustrated in Fig.3the-space dispersion surfaces show,beyond the well-expected anisotropy,very different behaviors.The slow Bloch mode at1.55m is described by a saddle surface, while the mode at higher energy is characterized by a strongly anisotropic paraboloid.Although both resonances provide high vertical con?nement[see Fig.2(a)],the latter is affected by stronger lateral losses due to a higher average group velocity notably along the direction perpendicular to the mirror slits and should therefore be considered less appropriate for an ef?cient con?nement of optical modes.On the other hand,it can be noted that both dispersion surfaces are sharing a?at but slightly negative curvature mainly parallelly to the slits.The existence of directions within PCMs along which photons propagate with a negative group velocity allows con?ning the light towards the mirror center,resulting crucial for the improvement of light control in the device as further shown later on.

According to(3),we may suppose to exploit slow Bloch modes characterized by a negative curvature of the dispersion characteristic at the band-edge in order to com-pensate for the positive band curvature of the Fabry–Perot mode(2),resulting in a minimization of the global hybrid mode curvature over a wide reciprocal space domain around the-point.The enhanced light slow-down would turn out in high-Q cavity modes.Nevertheless,the strong anisotropy of 2-D dispersion surfaces prevents to accomplish an overall com-pensation between and for every in-plane direction. In other words,(3)should be re-written as a function of the in-plane wave vector and not just of.As a re-sult,innovative con?nement strategies are

necessary.

To this purpose,2-D dispersion surfaces represent a highly predictive and reliable tool for the design of2.5-D laser cavities.Fig.3.Two-dimensional reciprocal-space dispersion surfaces of slow Bloch modes at1.37m(a)and1.55m(b)respectively.

In fact,although the hybrid mode spans in a three-dimensional world,however,its wave-guided(and most meaningful)com-ponent can be considered as purely two-dimensional.Hence,the picture describing the light behavior in the mirrors is thus given by dispersion surfaces which depend exclusively on in-plane wave vectors.

On the basis of the morphology of dispersion surfaces[see Fig.3(b)]as well as referring to the considerations contained in the previous paragraph,we can infer that photons travel-ling within PCMs will experience a lateral con?nement or,vice versa,a higher lateral escape rate,depending on the wave vector. Speci?cally,photons propagating in the mirrors along directions characterized by a negative group velocity are to a certain ex-tent con?ned within the mirror.

Simply,starting from the de?nition of group velocity for the th dispersion band

(4) we can determine con?nement and decon?nement domains in the reciprocal space by computing the gradient of the Fano res-onance dispersion surface at1.55m(mode“B”)as illustrated in Fig.4.By deriving the group velocity as a two-dimensional vectorial?eld we obtain a clearer overview about the magnitude and preferential directions along which lateral losses rise sig-ni?cantly.We expect the out-coupling of light to be maximized along those directions(i.e.,wave vectors)indicated by the gra-dient.Thus,mirrors reveal to be particularly leaky across the slits,while showing a natural con?nement along the slits.Con-cerning single-mode operation,gradient paths in Fig.4clearly explain the achievement of transverse modal selection in the de-vice:those modes characterized by larger transverse wavevector components are leaking out of the PCM faster,resulting in an in-trinsic modal discrimination determined by the curvature of dis-persion surfaces.The increased lateral losses suffered by higher

SCIANCALEPORE et al.:QUASI-3D LIGHT CONFINEMENT

2019

Fig.4.(a)–(d)Group velocity corresponding to the slow Bloch mode at1.55 m[see.Fig.3(b)]calculated on different-space domains.

order modes boost the threshold discrimination for the bene?t of the fundamental mode.

B.Heterostructure-Con?ned1-D PCMs for Ultimate Transverse Light Control

Given the high vertical con?nement obtained when operating nearby the Fano resonance wavelength,the minimization of photons lateral escape rate within the PCMs is necessary for low-loss PCM-VCSELs.

The introduction of a photonic crystal heterostructure suits quite well with the control of anisotropic losses arising from the peculiar light transport dynamics taking place in1-D PCMs.In our devices,barriers are obtained by introducing a local vari-ation of the?lling factor(silicon content)and oriented per-pendicularly to those directions affected by a higher average group velocity,aiming at preventing photons to leak out and al-lowing a more ef?cient optical transverse con?nement[35][see Fig.5(a)].

Similarly to the formalism used in[38]

we can express the local modi?cation of the?lling factor in the heterostructures Fig.5.(a)Sketch-up of a heterostructure-con?ned1-D photonic crystal mirror. Barriers are introduced in a typical1-D PCM to enhance lateral con?nement (and represent,respectively,the silicon?lling factor in the well and barriers).(b)Schematic illustration of the heterostructure band-gap;the tun-nelling and diffraction losses coupling rates are indicated.(c) dispersion characteristics in the well and barriers .indicates the con?nement frequency along direction of transport.

as a spatially slowly varying perturbation modulating the average refractive index of the crystal

(5) where2L and are,respectively,the width of the well and the index contrast between the core and the cladding of the het-erostructure.

In a na?ve but realistic approach,the heterostructure can be seen as a resonator where barriers serve as mirrors,while the well constitutes the centre cavity.The resulting con?nement wavelength range arises from the bandgap introduced with the heterostructure and can be treated as an energy barrier[

in Fig.5(c)].The lateral re?ectivity provided by the heterostruc-ture bandgap increases the lifetime of the wave-guided mode in the PCM,promoting the con?nement of the global hybrid mode.In particular,in narrow barriers with a tiny heterostruc-ture bandgap the electric?eld decays exponentially but still al-lowing photons to pass through as in quantum-mechanical tun-nelling.On the contrary,in the case of wider and energetic bar-riers,the decay will be complete so that all the energy will be re?ected within the well.This mechanism is responsible for the enhancement of the photonic crystal mirror re?ectivity yield. In dielectric waveguides optical con?nement is obtained when the dielectric contrast between core and cladding is posi-tive.In photonic crystal heterostructures,the diffractive-based con?nement of waveguided modes depends on the sign of the th band curvature in the well at the band-edge[38](i.e., the photon effective mass

2020JOURNAL OF LIGHTWA VE TECHNOLOGY,VOL.29,NO.13,JULY1,2011

evaluated along the direction of perpendicular transport.The positive band curvature along implies that optical con?ne-ment can be obtained if the average refractive index in the well is greater than in barriers,which implies the use of a higher silicon?lling in the On the contrary,using

in presence of a positively-(negatively-) curved dispersion band in the well would introduce antiguiding at the expense of modal con?nement in the VCSEL. Regarding modal selection between two competing trans-verse modes,the single-mode behavior of a laser microcavity is usually assessed through the modal stability parameter

(6) where the subscripts and label,respectively,vertical and hor-izontal mode orders and represents the threshold gain the corresponding mode needs for lasing.Alternatively,modal se-lection can be appreciated to a larger extent by estimating the proportion between the quality factor of competing modes,since it provides the ratio between the energy stored in the cavity and the dissipated power for each cavity mode.In order to lay out an accurate comparison between heterostructure-con?ned devices and ordinary PCM-VCSELs in terms of their modal properties, rigorous3-D FDTD simulations(without considering the gain medium)were performed.

In Table II resonant wavelengths and corresponding quality factors of the fundamental and?rst order transverse modes are reported for a standard15-m-wide PCM-VCSEL with and without the use of lateral barriers. Results con?rm the expected increase in lateral con?nement of cavity modes provided by heterostructure-con?ned photonic crystal mirrors respect to standard1-D PCMs.This can be fully appreciated by comparing the cavity modes near?elds reported in Fig.6(a)–(d).First of all,lateral losses are strongly anisotropic and this perfectly matches with the description provided by dispersion surfaces:photons loss rate across the mirror slits is sensibly higher respect to the parallel direction [see Fig.6(a),(b)].Moreover,the same behavior is reproduced in the MQW active region,implying that the modal properties of the hybrid mode are shaped by its wave-guided component in the mirror.In second place,the heterostructure-con?ned mirrors[see Fig.6(c),(d)]suppress lateral loss almost com-pletely,resulting in a considerable quality factor enhancement originated by the maximization of the PCMs re?ectivity yield. The observed red-shift of cavity modes in structures including photonic heterostructures is simply due to the variation of the transverse boundary.

Referring to Table II,we observe that the rise in the funda-mental mode quality factor does not come at the expense of the modal selection,but,on the contrary,strengthens the modal dis-crimination of the cavity.The reason for that can be found out by introducing in our descriptive model two additional parame-ters[see Fig.5(b)]:

1)the photons tunnelling rate through the barriers,

which expresses the ef?cacy of the heterostructure in con-?ning the light laterally;

2)a second

term related to diffraction loss affecting cavity modes,which is induced by the perturbation modu-lating the refractive index pro?le.Fig.6.near?elds within the top PCM(a)and the MQW active region

(b)in standard PCM-VCSELs compared to a heterostructure-con?ned device

(c),(d).Mirror dimensions are de?ned by the superimposed white square(co-ordinates are reported in

m),while slits orientation is illustrated schematically in the left part of the

TABLE II

M ODAL B EHAVIOR C OMPARISON Consequently,we can de?ne the quality factors of transverse

modes as follows:

(7) where refers to out-coupling vertical losses which mainly depend on modal wavelengths.

The increase in lateral re?ectivity yield provided by het-erostructure is strictly linked to the width of the bandgap originated by the perturbation.In particular,the exponential decay of the electric?eld characterized by penetration depth within barriers is related to the size of the heterostructure band-gap.Residual lateral losses are thus mainly con-trolled by the barriers physical extension as well as the width of the con?nement frequency range.

Modal selection is related to diffraction losses stem-ming from the different spatial overlap of transverse modes with barriers.In detail,the coupling to radiation continuum via diffractive scattering due to barriers is proportional to the overlap between the optical mode and the perturbation to the dielectric constant introduced in the photonic crystal mem-brane.The mode overlap with barriers affects also the photons tunnelling rate.In fact,a major extension of the cavity mode pro?le within barriers gives rise to a drop in re?ectivity yield due to a diminished ef?cacy in the con?nement.It follows that barriers position governs the selective lateral con?nement

SCIANCALEPORE et al.:QUASI-3D LIGHT CONFINEMENT2021

introducing threshold discrimination owing to the increased diffraction and lateral loss experienced by higher order modes respect to the lowest order lasing mode.

The heterostructure bang-gap is assessed as a function of [see Fig.7(a)]by means of RCWA calculations.Given the pe-culiarity of the behavior,a focused digression is required.We can in fact distinguish four different operation regimes:

1)a strong antiguiding region for;

2)a guiding region for weak perturbations where the gap

width increases almost linearly with;

3)for a growing perturbation,a weakly-guiding region takes

place originated by the onset of the bandgap shrinkage.

For a certain critical value of the perturbation the bandgap reaches its vanishing-point where the diffractive optical con?nement turns off owing to the free propagation of photons in the barriers;

4)for barriers and well swap roles and the het-

erostructure becomes again antiguiding for the optical mode.

Hence,the diffractive con?nement of wave-guided modes in the well vanishes for a critical perturbation,and,for ,the heterostructure displays even an antiguiding effect on the optical mode.This should not surprise given that in[38] authors assumed a modest perturbation causing weak coupling between bands.Depending on the magnitude of the perturbation introduced in the dielectric constant pro?le of the heterostruc-ture,the corresponding modi?cation of the band structures in the barriers along the direction of perpendicular transport deter-mine guiding or even antiguiding of the optical mode.

To account for the impact of heterostructures on PCM-VCSEL modal properties as well as to validate the reliability of the approximation done when computing the heterostructure bandgap by RCWA,transverse modes quality factors are shown as a function of in Fig.7(b).The evolution of heterostruc-ture bandgap[see Fig.7(a)]is in very good agreement with the transverse modes quality factors and near?eld pro?les calcu-lated by3-D FDTD.The existence of guiding,weakly-guiding and antiguiding regimes is fully con?rmed.In particular,while a small modulation of the dielectric constant is needed for an effective light trapping within the well,for growing perturba-tions the combined effects of bandgap shrinkage and onset of diffraction both contribute to the drop in quality factor. Beyond the bandgap vanishing-point,transverse modes suffer a sudden drop in lateral con?nement due to the het-erostructure-induced antiguiding.This is explained by the role reversal between barriers and well which takes places when or.Photons can propagate to the sides of the heterostructure owing to the bandgap inversion between lateral wells(former barriers)and the central barrier(former well).This induces antiguiding on the optical mode,impinging on the lateral con?nement of the wave-guided component and, in turn,causing the quality factor to fall consistently.Besides, the slight discrepancy between the different values of deter-mined by RCWA(black dashed line)and FDTD(grey dotted line)respectively is ascribable to the onset of diffraction losses smearing out the

abrupt con?nement switch-off(for) caused by the vanishing heterostructure band-gap.Fig.7.(a)RCWA-computed heterostructure bandgap as a function of the per-turbation:beyond the bandgap vanishing-point the heterostructure becomes antiguiding for the optical mode.(b)the heterostructure perturbation on the cavity modal features:transverse modes quality factors to-gether with corresponding FDTD-computed near?elds for the mode at the MQW section(insets)are illustrated.

C.Micro-Photoluminescence Measurements

With the purpose of con?rming the reliability of the theoret-ically-predicted photons transport in one-dimensional PCMs as well as the possibility to selectively introduce guiding or antiguiding in the devices by means of heterostructure-con-?ned mirrors,infrared(IR)micro-photoluminescence(-PL) observations have been performed on the?rst-ever fabricated devices for optical pumping.Scanning electron microscope (SEM)cross section images of devices are reported in Fig.8. The PCM-VCSEL was optically pumped at room temperature using a pulsed laser diode emitting at808nm.The pulsewidth is70ns,with a repetition rate of2.3MHz,while a10-m-wide pump spot[see Fig.9(a)]is obtained on the sample by means of a Mitutoyo50X near-infrared(NIR)objective lens with numerical aperture(NA)equal to0.42.The signal emitted from the sample was collected back through the same objective lens and re?ected into a Xenics IR camera via a beam splitter.The distribution of-PL emission reported in Fig.9(a)–(c)com-pares very well with the theoretical considerations concerning anisotropic light transport in these mirrors.While-PL spot is subjected to a slight but appreciable compression along the direction parallel to the mirror slits[see Fig.9(b)],on the other hand,light experiences considerable losses when propagating along the perpendicular direction[see Fig.9(c)],con?rming the nature of slow Bloch modes dispersion surfaces in1-D PCMs shown in the?rst part of this section.With the sole purpose of providing the reader with a clearer visualization of

2022JOURNAL OF LIGHTWA VE TECHNOLOGY,VOL.29,NO.13,JULY1,

2011

Fig.8.(a)–(d)SEM images of fabricated PCM-VCSELs for optical pumping. In detail,the topology transfer of the Si top mirror after SiO-regrowth(a)and the bottom mirror(b)are reported.Close-up shots on the bonding interface(c) and the III-V part of the laser microsource(d)are shown as well.

the anisotropic losses,the PL spot has been moved to the left bottom corner of the PCM;however,the photoluminescence emission undergoes the same deformation,whatever the posi-tion assumed in the mirror.

Afterwards,the experiment was carried out on PCM-VC-SELs employing a photonic crystal heterostructure in both mir-rors.In order to prove the actual capability of?nely tailoring purposely introduced guiding and antiguiding in these struc-tures,two devices characterized by a different heterostructure bandgap(owing to an opposite sign in the perturbation to the refractive index pro?le)have been tested.Also in this case, experimental results illustrated in Fig.9(d)–(f)show very good agreement with theoretical arguments and ab initio simulations presented in the previous section.In particular,when pumping guided devices[see Fig.9(e)],the spot of-PL emission ex-hibits no losses in the direction of perpendicular transport thanks to the ef?cient minimization of lateral escape rate provided by barriers,while still presenting a slight con?nement in the direc-tion of parallel transport.

On the contrary,the bandgap inversion characteristic of an-tiguiding heterostructures implies free propagation of photons to side wells as clearly shown in Fig.9(f).Furthermore,the split-ting of the-PL emission spatial pro?le in three distinct areas highlights the presence of a bandgap in the darker region taking place between the central spot and the remaining photolumines-cence in lateral wells.

IV.C ONCLUSION

The use of heterostructures in PCMs paves the way for a new generation of single-mode VCSELs where lateral con?nement and higher order modes suppression are accomplished jointly without either

turning to index-or gain-guiding mechanisms and/or resorting to selective mode lensing[8].Differently Fig.9.Infrared camera shots of-PL emission out of VCSEL’s top PCM at RT.In each panel a schematic illustration in the bottom left corner provides the actual orientation of the PCM during the experiment.A strong anisotropic light transport characterizes1-D photonic crystal mirrors(a)–(c):photoluminescence emission is evidently compressed along slits(b)while experiences losses in the perpendicular direction(c).(d)–(f)A photonic crystal heterostructure is intro-duced to enhance and tailor the light control in PCMs.(e)Guiding

and(f)antiguiding barriers are shown in real devices.

from classic VCSEL structures,the engineering of heterostruc-ture-con?ned one-dimensional photonic crystal mirrors allows a broad tailoring of the cavity modal features(single-mode operation and polarization control)along with the implemen-tation of ef?cient guiding as well as antiguiding which are purely based on diffractive phenomena.Furthermore,the use of high-Q optical modes will allow lasing operation at a lower threshold in optically and electrically pumped VCSELs:this would also reduce dramatically the drawbacks related to the device heating.It is authors’intention to deepen the aspects linked to the lasing behavior of such devices in a future dedi-cated communication.

Summarizing,on the basis of both theoretical and experi-mental approaches,we studied the nature of optical con?nement in PCM-VCSELs by assessing the two-dimensional-space properties of slow Bloch modes in1-D photonic crystal membrane re?ectors.An exhaustive comprehension of light transport phenomena in PCMs was essential for achieving an ultimate light con?nement as well as promoting improved cavity modal behavior.To this purpose we showed that the introduction of photonic heterostructures in such mirrors represents a viable and robust design innovation for the real-ization of compact high-Q single-mode polarization-controlled 2.5-D laser cavities.Finally,the diffractive-based con?nement scheme ruling light transport kinetics and modal properties in

SCIANCALEPORE et al.:QUASI-3D LIGHT CONFINEMENT2023

PCM-VCSELs reveals to be indisputably more ef?cient and ?exible respect to prior refractive approaches.

R EFERENCES

[1]G.R.Hadley,“Effective index model for vertical-cavity surface-emit-

ting lasers,”Opt.Lett.,vol.20,pp.1483–1485,1995.

[2]C.Degen,I.Fischer,and W.Els??er,“Transverse modes in oxide con-

?ned VCSELs:In?uence of pump pro?le,spatial hole burning,and

thermal effects,”Opt.Exp.,vol.5,no.36,pp.38–47,1999.

[3]M.Grabherr,R.Jager,R.Michalzik,B.Weigl,G.Reiner,and K.

Ebeling,“Ef?cient single-mode oxide-con?ned GaAs VCSEL’s emit-

ting in the850-nm wavelength regime,”IEEE Photon.Technol.Lett.,

vol.9,no.10,pp.1304–1306,Oct.1997.

[4]B.Thibeault,E.Hegblom,P.Floyd,R.Naone,Y.Akulova,and L.

Coldren,“Reduced optical scattering loss in vertical-cavity lasers using

a thin(300)oxide aperture,”IEEE Photon.Technol.Lett.,vol.8,no.

5,pp.593–595,May1997.

[5]H.Martinsson,J.Vukusic,M.Grabherr,R.Michalzik,R.Jager,K.

Ebeling,and https://www.wendangku.net/doc/0518043460.html,rsson,“Transverse mode selection in large-area

oxide-con?ned vertical-cavity surface-emitting lasers using a shallow

surface relief,”IEEE Photon.Technol.Lett.,vol.11,no.12,pp.

1536–1538,Dec.1999.

[6]P.Bienstman,R.Baets,J.Vukusic,https://www.wendangku.net/doc/0518043460.html,rsson,M.J.Noble,M.

Brunner,K.Gulden,P.Debernardi,L.Fratta,G.P.Bava,H.Wenzel,

B.Klein,O.Conradi,R.Pregla,S.A.Riyopoulos,J.-F.P.Seurin,

and S.L.Chuang,“Comparison of optical VCSEL models on the

simulation of oxide-con?ned devices,”IEEE J.Quantum Electron.,

vol.37,no.12,pp.1618–1631,Dec.2001.

[7]T.H.Oh,M.R.McDaniel,D.L.Huffaker,and D.G.Deppe,“Cavity-

induced antiguiding in a selectively oxidized vertical-cavity surface-

emitting laser,”IEEE Photon.Technol.Lett.,vol.10,no.1,pp.12–14,

Jan.1998.

[8]P.Debernardi,B.Kogel,K.Zogal,P.Meissner,M.Maute,M.Ort-

siefer,G.Bohm,and M.-C.Amann,“Modal properties of long-wave-

length tunable MEMS-VCSELs with curved mirrors:Comparison of

experiment and modeling,”IEEE J.Quantum Electron.,vol.44,pp.

391–399,2008.

[9]https://www.wendangku.net/doc/0518043460.html,uer,M.Ortsiefer,R.Shau,J.Rosskopf,G.B?hm,R.Meyer,

and M.-C.Amann,“InP-based long-wavelength vertical-cavity sur-

face-emitting lasers with buried tunnel junction,”Phys.Stat.Sol.,vol.

1,pp.2183–2209,2004.

[10]B.K?gel,M.Maute,H.Halbritter,F.Riemenschneider,G.B?hm,

M.-C.Amann,and P.Meissner,“Long-wavelength MEMS tunable

vertical-cavity surface-emitting lasers with high sidemode suppres-

sion,”J.Opt.A:Pure Appl.Opt.,vol.8,pp.S370–S376,2006.

[11]T.Czyszanowski,M.Dems,and K.Panajotov,“Impact of the hole

depth on the modal behaviour of long wavelength photonic crystal VC-

SELs,”J.Phys.D:Appl.Phys.,vol.40,pp.2732–2735,2007.

[12]A.K.J.van Doorn,M.P.van Exter,and J.P.Woerdman,“Elasto-optic

anisotropy and polarization orientation of vertical-cavity surface-emit-

ting semiconductor lasers,”Appl.Phys.Lett.,vol.69,pp.1041–1043,

1996.

[13]M.P.van Exter,A.K.J.van Doorn,and J.P.Woerdman,“Electro-optic

effect and birefringence in semiconductor vertical-cavity lasers,”Phys.

Rev.A,vol.56,pp.845–853,1997.

[14]M.S.Park,B.T.Ahn,B.S.Yoo,H.Y.Chu,H.H.Park,and C.J.

Chang-Hasnain,“Polarization control of vertical-cavity surface-emit-

ting lasers by electro-optic birefringence,”Appl.Phys.Lett.,vol.73,

pp.813–815,2000.

[15]K.D.Choquette and R.E.Leibenguth,“Control of vertical-cavity

laser polarization with anisotropic transverse cavity geometries,”

IEEE Photon.Technol.Lett.,vol.6,no.1,pp.40–42,Jan.1994.

[16]G.Verschaffelt,W.van der Vleuten,M.Creusen,E.Smalbrugge,T.G.

van de Roer,F.Karouta,R.C.Strijbos,J.Danckaert,I.Veretennicoff,

B.Ryvkin,H.Thienpont,and G.A.Acket,“Polarization stabilization

in vertical-cavity surface-emitting lasers through asymmetric current

injection,”IEEE Photon.Technol.Lett.,vol.12,no.8,pp.945–948,

Aug.2000.

[17]M.Camarena,G.Verschaffelt,M.-C.Moreno,L.Desmet,H.J.Unold,

R.Michalzik,H.Thienpont,J.Danckaert,I.Veretennicoff,and K.

Panajotov,“Polarization behavior and mode structure of elliptical sur-

face relief VCSELs,”in Proc.IEEE/LEOS Symp.,2002,pp.103–105.[18]J.Gustavsson,?.Haglund,J.Vuku?i?,J.Bengtsson,P.Jedrasik,and A.

Larsson,“Ef?cient and individually controllable mechanisms for mode and polarization selection in VCSELs,based on a common,localized, sub-wavelength surface grating,”Opt.Exp.,vol.13,pp.6626–6634, 2005.

[19]P.Debernardi,J.M.Ostermann,M.Feneberg,C.Jalics,and R.

Michalzik,“Reliable polarization control of VCSELs through mono-lithically integrated surface gratings:A comparative theoretical and experimental study,”IEEE J.Sel.Topics Quantum Electron.,vol.11, no.1,pp.107–116,Jan.2005.

[20]E.Yablonovitch,“Inhibited spontaneous emission in solid-state

physics and electronics,”Phys.Rev.Lett.,vol.58,pp.2059–2062, 1987.

[21]Y.Ding and R.Magnusson,“Use of nondegenerate resonant leaky

modes to fashion diverse optical spectra,”Opt.Exp.,vol.12,pp.

1885–1891,2004.

[22]H.Hattori,X.Letartre,C.Seassal,P.Rojo-Romeo,J.Leclercq,and

P.Viktorovitch,“Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,”Opt.Exp.,vol.11,pp.1799–1808,2003. [23]X.Letartre,J.Mouette,J.-L.Leclerq,P.Rojo-Romeo,C.Seassal,and

P.Viktorovitch,“Switching devices with spatial and spectral resolu-tion combining photonic crystal and MOEMS structures,”J.Lightw.

Technol.,vol.21,no.7,pp.1691–1699,Jul.2003.

[24]P.Viktorovitch,B.Ben Bakir,S.Boutami,J.-L.Leclercq,X.Letartre,

P.Rojo-Romeo,C.Seassal,M.Zussy,L.Di Cioccio,and J.-M.Fedeli,“3D harnessing of light with2.5D photonic crystals,”Laser&Photon.

Rev.,vol.4,pp.401–413,2010.

[25]S.Boutami,B.Ben Bakir,X.Letartre,J.L.Leclercq,P.Regreny,and

P.Viktorovitch,“Ultimate vertical Fabry–Perot cavity based on single-layer photonic crystal mirrors,”Opt.Exp.,vol.15,pp.12443–12449, 2007.

[26]S.Boutami,B.Ben Bakir,J.-L.Leclercq,and P.Viktorovitch,“Com-

pact1.55m room-temperature optically pumped VCSEL using pho-tonic crystal mirror,”Electron.Lett.,vol.43,pp.282–283,2007. [27]S.Boutami,B.Ben Bakir,H.Hattori,X.Letartre,J.-L.Leclercq,P.

Rojo-Romeo,M.Garrigues,C.Seassal,and P.Viktorovitch,“Broad-band and compact2-D photonic crystal re?ectors with controllable po-larization dependence,”IEEE Photon.Technol.Lett.,vol.18,no.7,pp.

835–837,Apr.2006.

[28]S.Boutami,B.Ben Bakir,X.Letartre,J.-L.Leclercq,and P.Vik-

torovitch,“Photonic crystal slab mirrors for an ultimate vertical and lateral con?nement of light in vertical Fabry Perot cavities,”in Proc.

SPIE,2008,vol.6989,p.69890V.

[29]S.J.Schablitsky,L.Zhuang,R.C.Shi,and S.Y.Chou,“Controlling

polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,”Appl.Phys.Lett.,vol.

69,pp.7–9,1996.

[30]M.C.Y.Huang,Y.Zhou,and C.J.Chang-Hasnain,“A surface-emit-

ting laser incorporating a high-index-contrast subwavelength grating,”

Nat.Photonics,vol.1,pp.119–122,2007.

[31]F.Lu,F.G.Sedgwick,V.Karagodsky,C.Chase,and C.J.Chang-

Hasnain,“Planar high-numerical-aperture low-loss focusing re?ectors and lenses using subwavelength high contrast gratings,”Opt.Exp.,vol.

18,pp.12606–12614,2010.

[32]N.Yokouchi,A.J.Danner,and K.D.Choquette,“Two-dimensional

photonic crystal con?ned vertical-cavity surface-emitting lasers,”

IEEE J.Sel.Topics Quantum Electron.,vol.9,no.5,pp.1439–1445, Sep./Oct.2003.

[33]H.P.D.Yang,https://www.wendangku.net/doc/0518043460.html,i,Y.H.Chang,H.C.Yu,C.P.Sung,H.C.

Kuo,S.C.Wang,S.Y.Lin,and J.Y.Ch,“Singlemode(

dB)proton-implanted photonic crystal vertical-cavity surface-emitting lasers,”Electron.Lett.,vol.41,pp.326–328,2005.

[34]V.Karagodsky,F.G.Sedgwick,and C.J.Chang-Hasnain,“Theoretical

analysis of subwavelength high contrast grating re?ectors,”Opt.Exp., vol.18,pp.16973–16988,2010.

[35]B.Ben Bakir,S.Boutami,C.Seassal,X.Letartre,J.-L.Leclercq,P.

Viktorovitch,M.Zussy,L.Di Cioccio,and J.-M.Fedeli,“Control of mode volume and radiation dynamics of a slow-light-mode in a quasi-3D photonic crystal con?guration,”in Proc.SPIE,2008,vol.

6989,p.69890M.

[36]B.S.Song,S.Noda,T.Asano,and Y.Akahane,“Ultra-high-Q pho-

tonic double-heterostructure nanocavity,”Nature Materials,vol.4,pp.

207–210,2005.

[37]L.Ferrier,P.Rojo-Romeo,E.Drouard,X.Letartre,and P.Vik-

torovitch,“Slow Bloch mode con?nement in2-D photonic crystals for surface operating devices,”Opt.Exp.,vol.16,pp.3136–3145,2008.

2024JOURNAL OF LIGHTWA VE TECHNOLOGY,VOL.29,NO.13,JULY1,2011

[38]M.Charbonneau-Lefort,E.Istrate,M.Allard,J.Poon,and E.H.Sar-

gent,“Photonic crystal heterostructures:Waveguiding phenomena and

methods of solution in an envelope function picture,”Phys.Rev.B,vol.

65,pp.125318–7,2002.

[39]E.Istrate and E.H.Sargent,“Photonic crystal heterostructures and in-

terfaces,”Rev.Mod.Phys.,vol.78,pp.455–481,2006.

[40]E.Istrate and E.H.Sargent,“Photonic crystal heterostructures—Res-

onant tunneling,waveguides and?lters,”J.Opt.A:Pure Appl.Opt.,

vol.4,pp.S242–S246,2002.

[41]M.Kostrzewa,L.Di Cioccio,M.Zussy,J.C.Roussin,J.-M.Fedeli,N.

Kernevez,P.Regreny,https://www.wendangku.net/doc/0518043460.html,gahe-Blanchard,and B.Aspar,“InP dies

transferred onto silicon substrate for optical interconnects application,”

Sens.Actuators A,vol.125,pp.411–414,2006.

[42]D.Bordel,M.Argoud,E.Augendre,J.Harduin,P.Philippe,N.Olivier,

S.Messaoudène,K.Gilbert,P.Grosse,B.Ben Bakir,and J.-M.Fedeli,

“Direct and polymer bonding of III-V to processed silicon-on-insulator

for hybrid silicon evanescent lasers fabrication,”ECS Trans.,vol.33,

pp.403–410,2010.

[43]K.Sakoda,“Symmetry,degeneracy,and uncoupled modes in two-di-

mensional photonic lattices,”Phys.Rev.B,vol.52,pp.7982–7986,

1995.

Corrado Sciancalepore was born in Molfetta,Italy.He received the M.S.de-gree in physical engineering in2009from Politecnico di Torino,Italy.Under the European project SUBTUNE,he received the M.Sc.degree on the design and optimization of GaAs-and InP-based widely tunable VCSELs.

In December2009he joined the Nanophotonics team at the Institut des Nanotechnologies de Lyon(INL)/Centre National de la Recherche Scienti?que (CNRS),Lyon,France,to write a doctoral dissertation regarding innovative proof of concepts for the integration of photonics on Silicon.His work is fruit of the close collaboration in the framework of the EC-funded project HELIOS between the French CNRS and the Optronics Department of Commissariat àl’Energie Atomique-Laboratoire d’Electronique et de Technologies de l’Information(CEA-LETI)of Grenoble,France.

Badhise Ben Bakir received the M.S.degree in physics from UniversitéClaude Bernard,Lyon,France,in2003,and the Ph.D.degree in optical and electrical engineering from Ecole Centrale de Lyon,Ecully,France,in2007.

Later that same year,he joined the Optronics Department of Commissariatàl’Energie Atomique—Laboratoire d’Electronique et de Technologies de l’Infor-mation(CEA-LETI),Grenoble,France.His research interests include physics of optoelectronic devices and nanostructures as well as micro-nano-fabrication related to Si and III-V based materials for optical integrated circuits.

Xavier Letartre received the Ing.Dipl.degree in1987from the Institut Su-perieur d’Electronique du Nord,France,and the Ph.D.degree in material sci-ences from the Universitédes Sciences de Lille,France,in1992.

He joined INL,Ecole Centrale de Lyon,Ecully,France,in1992.He is cur-rently Research Director at CNRS,Ecole Centrale de Lyon.His areas of interest include physics of optoelectronic devices,photonic crystals,and nanostructures for optical devices and circuits.

Jean-Marc Fedeli received the electronics engineer diploma from INPG Grenoble,France,in1978.

Then he conducted research at the CEA-LETI and acted for two years as advanced program Director in Memscap company for the development of RF-MEMS before he returned to CEA-LETI in2002as coordinator of silicon photonic projects.His main focus is on the integration of a photonic layer at the metallization level of an electronic circuit.He has been participating on different European FP6projects(PICMOS,PHOLOGIC,MNTE,ePIXnet). Under the European FP7,he is involved in the WADIMOS and PhotonFAB (ePIXfab)projects and managing the HELIOS project.Nicolas Olivier received the technologic diploma from Saint-Etienne Univer-sity,Saint-Etienne,France in2000.

In the same year,he joined the Commissariatàl’Energie Atomique(CEA) Valduc.He worked on fabrication of MegaJoule’s laser microtargets.In2005, he joined the Laboratoire d’Electronique et de Technologie de l’Information (CEA-LETI),Grenoble,France.He has been involved in the MOSEL Euro-pean project for the fabrication of single-mode1.3-m-emitting VCSELs.In 2008,he joined the Silicon Photonics Group where he is currently in charge of III-V materials processing.He works on various technological aspects of sil-icon-based photonics.He is presently involved in the HELIOS and WADIMOS European projects.

Damien Bordel received the engineering degree in materials science from the Institut National Polytechnique de Grenoble,Grenoble,France,in2004and the Ph.D.degree in materials and surfaces science from the Ecole Centrale de Lyon (ECL),Ecully,France,in2007.

From June2008to November2009,he was with Tokyo University,Japan, working on MOCVD growth and processing of GaAs quantum dots laser devices.In November2009he joined the Commissariatàl’Energie Atom-ique/Laboratoire d’Electronique de Technologie de l’Information(CEA/LETI), Grenoble,where he is currently in charge of wafer bonding development for photonic applications.

Christian Seassal graduated from Institut National des Sciences Appliquées de Lyon,France,in1993,and received the Ph.D.degree in condensed matter in 1997from Ecole Centrale de Lyon,France.

He joined the INL/CNRS,Ecole Centrale de Lyon as a CNRS Researcher in1998.His research activities have concerned Micro-Opto-Electro-Mechan-ical Systems(MOEMS)based on III-V compound semiconductors.His current research interest concerns photonic crystals and nanostructures for integrated photonics and photovoltaics.

Pedro Rojo-Romeo(M’09)received the Ing.Dipl.degree in physics in1981 from the Institut National des Sciences Appliquées(INSA)in Lyon,France, and the Ph.D.degree in electronic devices in1984at INSA,Lyon,France.

He is currently an Associate Professor(since1988)in electronics at Ecole Centrale de Lyon(France),at the Institute of Nanotechnologies of Lyon(INL). His primary research interests include electrical and optical device fabrication technology,characterization of microelectronic and optoelectronic micronan-odevices.He is also involved in optical interconnection systems,nanotechnolo-gies,and optical integrated circuits technologies.

Philippe Regreny was born in France,in1967.He received the M.Sc.degree in materials sciences from Rennes University,Rennes,France,in1991,and the Ph.D.degree in electronics from Ecole Centrale de Lyon,Lyon,France,in1997. Since1998he has been a Research Engineer at Institut des Nanotechnologies de Lyon(INL)/Centre National de la Recherche Scienti?que(CNRS),Ecole Centrale de Lyon.He has authored or coauthored80publications.His current research interests include epitaxial growth of III-V semiconductors and oxide materials and their integration on silicon.

Pierre Viktorovitch is Research Director at INL/CNRS,Ecole Centrale de Lyon,Ecully,France.

His research activities have been concerned with silicon microelectronic devices,photovoltaic solar-energy-conversion devices based on amorphous silicon,III-V compound semiconductor microelectronic devices.His current research interests concern micro-opto-electro-mechanical systems(MOEMS) based on III-V compound semiconductors,micronanophotonic devices (especially based on photonic crystals)and III-V/silicon/active-passive hetero-geneous or hybrid integration.

SDN及ODL概括性总结

1、SDN是什么? SDN(Software Defined Network)即软件定义网络,是一种网络设计理念。网络硬件可以集中式软件管理,可编程化,控制转发层面分开,则可以认为这个网络是一个SDN网络。SDN 不是一种具体的技术,不是一个具体的协议,而是一个思想,一个框架,只要符合控制和转发分离的思路就可以认为是SDN. 2、传统网络面临的问题? 1)传统网络部署和管理非常麻烦,网络厂商杂,设备类型多,设备数量多,命令行不一致2)流量全局可视化难 3)分布式架构中,当网络发生震荡时,网络收敛过程中,有可能出现冗余的路径通告信息4)网络流量的剧增,导致底层网络的体积膨胀、压力增大;网络体积越大的话,需要收敛的时间就越长 5)想自定义设备的转发策略,而不是网络设备里面的固定好的转发策略 -------->sdn网络可以解决的问题 3、SDN的框架是什么 SDN框架主要由,应用层,控制层,转发层组成。其中应用层提供应用和服务(网管、安全、流控等服务),控制层提供统一的控制和管理(协议计算、策略下发、链路信息收集),转发层提供硬件设备(交换机、路由器、防火墙等)进行数据转发、 4、控制器 1)控制器概述 在整个SDN实现中,控制器在整个技术框架中最核心的地方控制层,作用是上接应用,下接设备。在SDN的商业战争中,谁掌握了控制器,或者制定了控制器的标准,谁在产业链条中就最有发言权 2)控制器功能 南向功能支撑:通过openflow等南向接口技术,对网络设备进行管控,拓扑发现,表项下

发,策略指定等 北向功能:目前SDN技术中只有南向技术有标准文案和规范,而北向支持没有标准。即便如此,控制器也需要对北向接口功能进行支持,REST API,SOAP,OSGI,这样才能够被上层的应用调用 东西向功能支持:分布式的控制器架构,多控制器之间如何进行选举、协同、主备切换等3)控制器的种类 目前市场上主要的控制器类型是:opendaylight (开发语言Java),Ryu(开发语言python), FloodLihgt(开发语言Java)等等 5、opendaylight(ODL)控制器介绍 ODL拥有一套模块化、可插拔灵活地控制平台作为核心,这个控制平台基于Java开发,理论上可以运行在任何支持Java的平台上,从Helium版本开始其官方文档推荐的最佳运行环境是最新的Linux(Ubuntu 12.04+)及JVM1.7+。 ODL控制器采用OSGi框架,OSGi框架是面向Java的动态模型系统,它实现了一个优雅、完整和动态的组件模型,应用程序(Bundle)无需重新引导可以被远程安装、启动、升级和卸载,通过OSGi捆绑可以灵活地加载代码与功能,实现功能隔离,解决了功能模块可扩展问题,同时方便功能模块的加载与协同工作。自Helium版本开始使用Karaf架构,作为轻量级的OSGi架构,相较于早前版本的OSGi提升了交互体验和效率,当然其特性远不仅仅于此。 ODL控制平台引入了SAL(服务抽象层),SAL北向连接功能模块,以插件的形式为之提供底层设备服务,南向连接多种协议,屏蔽不同协议的差异性,为上层功能模块提供一致性服务,使得上层模块与下层模块之间的调用相互隔离。SAL可自动适配底层不同设备,使开发者专注于业务应用的开发。 此外,ODL从Helium开始也逐渐完成了从AD-SAL(Application Driven Service Abstraction Layer)向MD-SAL(Model Driven Service Abstraction Layer)的演进工作,早前的AD-SAL,ODL控制平台采用了Infinispan技术,In?nispan是一个高扩展性、高可靠性、键值存储的分布式数据网格平台,选用Infinispan来实现数据的存储、查找及监听,用开源网格平台实现controller的集群。MD-SAL架构中采用Akka实现分布式messageing。 6、ODL的总体框架 ODL控制器主要包括开放的北向API,控制器平面,以及南向接口和协议插件。北向API 有OSGI和REST两类,同一地址空间应用使用OSGI类,而不同地址空间的应用则使用REST 类。OSGI是有状态的连接,有注册机制,而rest是无状态链接。上层应用程序利用这些北

AE抠像实用插件PrimatteKeyer详细教程

AE抠像实用插件PrimatteKeyer详细教程 2010年08月06日 08:54 Primatte Keyer是Puttin Designs公司发行的插件,Primatte Keyer抠像插件提供了强大的用于高质量图像合成的超精度型板控制功能,Primatte软件是独立于解析度的,而且支持视频HDTV 甚至是电影图像,此插件具有: 1.独一无二的计算抠像(键)值的方法。 2.在图像柔和抠像部分的高级颜色处理 3.干净和精确的蓝色溢出排除功能。 4.以及简单的参数设置和操作方法。 下面我简单介绍一下Primatte Keyer控制界面。 下面就《鹤舞》形象片中的Primatte Keyer插件的应用与大家共同探讨。

1.选择抠蓝舞者的图层,执行命令Effectlputtin primattekeyerlprimatte keyer,从我们实拍的抠像素材中可以看出蓝背景中的蓝色不均,而且还有结缝、布褶,如图1。 2.用鼠标激活Auto setup自动抠像钮之后,使用鼠标右键在合成影响窗口的蓝色区域点一下,采集蓝色标本.结果如图2,此采集可以采集一点,也可以采集多个点(Alt 鼠标左键移动)。 3.单击遮片按钮观看遮片,在遮片较暗的区域中相当多灰的布纹与斑点。如图3。 4.为了除去这样的斑点,单击Select BG 按钮.然后在某些噪音区域采样,如果一个采样不够只须持续采样,直到背景区域变成纯黑色,如图

4.为了除去这样的斑点,单击Select BG按钮.然后在某些噪音区域采样,如果一个采样不够只须持续采样,直到背景区域变成纯黑色,如图4。 5.当我们看遮片时,会发现白色遮片中有一些小黑点,单击Select FG,按钮然后在小黑点区域进行采样,一直到前景呈现纯白色。 6.无论SelectBG或是Select FG按钮进行采样时,舞者右下角的布褶是抠不下去的,采样数值过大时,会发现虽然布褶下去了,但头发丝也已经没有了,为此我们采用FineTuning按钮,进行精细调整,在保持飘动头发丝的细节不变的情况下,尽量使布褶透明下去,如图5。 7.然后我们用AE的遮罩功能。点击Effect/Layer/new mask用遮罩把布褶遮下去,给mask的Feather输入一定的羽化值,这样边界比较柔和,如图6。 8.在以上处理过程中,去除溢出色可能产生染色,这样抠像得到的景象可能偏色,所染的颜色,取决于被抠像的原始颜色一一

上市公司投资分析报告参考框架

上市公司投资价值分析报告参考框架 一、公司背景及简介 1、成立时间、创立者、性质、主营业务、所属行业、注册地; 2、所有权结构、公司结构、主管单位; 3、公司重大事件(如重组、并购、业务转型等)。 二、公司所属行业特征分析 1、产业结构: ①该行业中厂商的大致数目及分布; ②产业集中度:该行业中前几位的厂商所占的市场份额、市场占有率的具体数据(一般衡量指标为四厂商集中度或八厂商集中度); ③进入壁垒和退出成本:具体需要何种条件才能进入,如资金量、技术要求、人力成本、国家相关政策等,以及厂商退出该行业需花费的成本和转型成本等。 2、产业增长趋势: ①年增长率(销售收入、利润)、市场总容量等的历史数据; ②依据上述历史数据,及科技与市场发展的可能性,预测该行业未来的增长趋势; ③分析影响增长的原因:探讨技术、资金、人力成本、技术进步等因素是如何影响行业增长的,并比较各自的影响力。(应提供有关专家意见)。 3、产业竞争分析: ①行业内的竞争概况和竞争方式; ②对替代品和互补品的分析:替代品和互补品行业对该行业的影响、各自的优劣势、未来趋势; ③影响该行业上升或者衰落的因素分析; ④分析加入WTO对整个行业的影响,及新条件下其优劣势所在。 4、相关产业分析:

①列出上下游行业的具体情况、与该行业的依赖情况、上下游行业的发展前景,如可能,应作产业相关度分析; ②列出上下游行业的主要厂商及其简要情况。 5、劳动力需求分析: ①该行业对人才的主要要求,目前劳动力市场上的供需情况; ②劳动力市场的变化对行业发展的影响。 6、政府影响力分析: ①分析国家产业政策对行业发展起的作用(政府的引导倾向、各种优惠措施等); ②其它相关政策的影响:如环保政策、人才政策、对外开放政策等。 三、公司治理结构分析 1、股权结构分析:列出持股10%(必要时列出10%)以上的股东,有可能应找到最终持有人; 2、是否存在影响公司的少数股东,如存在分析该股东的最终持有人等情况,及其在资本市场上的操作历史; 3、“三会”的运行情况:如股东大会的参加情况、对议案的表决情况、董事会董事的出席情况、表决情况、监事会的工作情况及其效率; 4、经理层状况:总经理的权限等; 5、组织结构分析:公司的组织结构模式、管理方式、效率等; 6、主要股东、董事、管理人员的背景、业绩、声誉等; 7、重点分析公司第一把手的情况(教育背景、经营业绩、任职期限、政府背景)其在公司中的作用; 8、分析公司中层管理人员的总体情况,如素质、背景、对公司管理理念的理解、忠诚度等。 四、主营业务分析 1、主导产品 ①名称、价格、质量、产品生命周期、公司规模、特许经营、科技含量、占有

IMF宏观经济模型

国际货币基金组织宏观经济分析 摘要:本文对国际基金组织的宏观经济分析框架进行探讨。该分析框架主要包括四部门分析方法、CEGR 汇率评估方法、债务可持续性分析、全球经济模型(GEM)等具体内容。从中可以体现出基金组织宏观经济分析中系统性的思维方式、市场化的基本理念以及用数据说话、注重实际调查、强调国别经济的比较研究等特点。在上述基础上,我们可看到其经济分析中面临着经济问题的政治化、技术工具的科学性以及政策建议的及时性等方面的挑战。最后,我们得出一些重要的启示与借鉴。 关键词:宏观经济,汇率,国际货币基金组织 一、引言 上世纪两次世界大战结束之后,为了充分吸取战争的教训,避免各国在经济政策方面的矛盾,加强宏观政策协调和货币金融合作,国际货币基金组织(IMF)应运而生。作为在布雷顿森林体系下建立起来的国际机构,基金组织已经历了六十多年的发展历程,对促进世界经济的发展和维护全球金融的稳定发挥了重要的作用。近年来,尽管基金组织受到了各种批评和改革的压力,但作为当前货币金融领域最重要的国际机构,其领导地位仍然是其他机构在短期内难以超越的。特别是在宏观经济的研究方面,基金组织拥有强大的资源优势和竞争实力,长期以来形成了良好的声誉。基金组织定期发布的经济预测以及出版的《世界经济展望》、《区域经济展望》、《全球金融稳定报告》等已经成为全球经济分析领域不可或缺的重要资源。 值得一提的是,在关于中国宏观经济的研究领域,目前基金组织已几乎成为了中国区首席经济学家的“摇篮”。我们可以很清楚地看到,在各类金融机构和组织的中国经济分析团队中(摩根士坦利、高盛、德意志银行、瑞银、美洲银行、巴克莱、中国国际金融公司、中国进出口银行、香港金管局、美国经济研究局等)的主要研究人员都直接来自于基金组织。事实上,这些首席经济学家们的研究方法正在潜移默化地影响着中国宏观经济分析的导向。无庸质疑的是,他们的研究方法都充分吸收了基金组织宏观经济分析框架的有关内容,这也在一定程度上表明基金组织的分析框架在现实中的成功。 二、基金组织宏观经济分析框架的主要内容 基金组织有一套完整的分析宏观经济的方法和数据库系统,其研究的成果直接体现在基金组织第四条款磋商、工作论文及其众多出版物之中。归纳起来,该分析框架主要包括以下四个方面的内容: (一)宏观经济的四部门分析方法 在基金组织的分析框架中,整个宏观经济可以简单地分成四个部门:实体经济部门、对外部门、货币部门和财政部门(如图1)。宏观经济是不断变化的系统,各个变量相互影响,一个变量的变动可能引发其它一系列变量的变动。

AE中抠像的常用方法

AE中抠像的常用方法 (1)如果素材图像主要为蓝背景,首先用某种色键(如Color Difference Key 颜色差值键),建一个橙色固态层作为参考背景,通过遮罩视图(Matte View)调整键控范围,包括透明、半透明和不透明的区域.再使用Spill Suppressor 溢出控制器,消除键控色留下的痕迹; Alpha Level 调整Alpha 通道的透明程度:Matte Choker 遮罩堵塞工具凋整遮罩中的空洞. 调整到满意后,在合成图像中,将固态层替换为新的背景素材。最后,根据素材变化,调整键控及遮罩参数,并设置关键帧,完成作品。 (2)对在蓝色或绿色背景中具有平稳亮度的素材键控的方法: 首先可以用Color Difference Key 颜色差值键控,再用Spill Suppressor溢出控制器,清除键控色的痕迹。如果要求更高,还可以使用Simple Choker 简单堵塞工具和Matte Choker 遮罩堵塞工具进行精细调整。如果结果还不满意,暂时关闭Color Difference Key , 重新使用Linear Color Key 线性色键。 (3)对在蓝色或绿色背景中包含有多种颜色或亮度不稳定的素材

键挖的方法: 首先应用Color Range 颜色范围键控,再用Spill Suppressor 溢出控制器和其它遮罩工具。 如果结果不满意,重新使用或加入Linear Color Key 线性色键。 (4)在黑暗和阴影的区域产生透明的方法: 先用Extract 抽取键控,设置为Luminance Channel 亮度通道。 (5)对固定背景(可以是复杂背景)应用键控的方法: 首先用Difference Matte 差值遮罩键控,以单独的背景图层作为遮罩参考,进行差值。 再加入Spill Suppressor 溢出控制器和其它遮罩工具。对于不同的实际情况,选择适当的键控方法,以得到满意的效果。对复杂的键控处理,可能要用到不同的键控才能得到满意的结果,可以组合两个或者更多的键控和遮罩。 通过效果开关应用或不应用效果,观察键控效果。

公司分析框架

项目投资价值分析报告 第一部分概述 项目名称: 项目单位: 一、企业简介 1、目标企业得历史沿革,隶属关系,企业性质及制度;目前职工人数。 2、地理位置,占地面积;各交通运输条件(铁、公路、码头与航空港口等),运输方式。 3、年设计及实际生产能力,运营状况。 4、产品种类,主导产品名称及产量。 5、能源供应条件(水、电、汽、气、冷冻等)配套情况。 6、主要原、辅、燃料得供应量及距离,费用情况。 7、产品质量状况及产品在国内、外市场得定位与知名度。 8、产品出口量、主要国家与国外市场份额。

二、项目概要 三、简要分析结论 第二部分团队与管理 一、董事长、法人代表 二、原有股东情况 三、主要管理人员 四、主要技术负责人员 五、员工与管理 管理及人力资源评价指标 1、内部调控就是否合理 2、管理组织体系就是否健全 3、管理层就是否稳定团结 4、管理层对市场拓展、技术开发得重视程度 5、有否科学得人才培训计划 6、各层面得执行情况

第三部分产品与技术 一、产品介绍 二、产品应用领域及性能特点 三、主要技术内容 四、技术先进性 五、产品技术指标 六、国内外技术发展状况 产品评价指标 1)产品就是否具有独特性,难以替代 2)产品得开发周期 3)产品得市场潜力 4)产品得产业化情况 5)产品结构就是否合理 6)产品得生产途径 技术评价指标 1)技术得专有性(技术来源) 2)技术得保密性(专利保护) 3)技术得领先性 技术开发 1)技术开发投入占总收入得比重2)技术开发体系与机构 3)技术储备情况

第四部分市场及竞争分析 一、市场需求 二、目前得市场状况 产品市场分布 三、产品应用市场前景分析 四、产品市场需求预测 五、产品市场竞争力分析 (1)产品质量竞争力分析 (2)生产成本竞争力分析 (3)产品技术竞争力分析 六、主要竞争对手分析 (1)国内主要竞争对手分析,列出前20名。做出竞争对手一览表。(2)国外竞争对手分析 (3)潜在竞争对手分析 (4)竞争对手融资情况、技术情况、资产规模情况 七、市场竞争状况分析 (1)市场垄断情况 (2)该行业就是否存在剩余生产能力,目前就是什么情形?(3)该行业转换成本高低 (4)该行业进入壁垒与退出壁垒 八、企业发展趋势与行业发展趋势比较 (1)技术发展趋势比较

ODL之SDN入门篇

本文作为码农学ODL系列的SDN基础入门篇,分为两部分。第一部分,主要讲述SDN是什么,改变了什么,架构是什么样的,第二部分,简要介绍如何去学习SDN。 1.什么是SDN SDN(Software Define Network) ,即为软件定义网络,可以看成网络界的操作系统。从SDN的提出至今,其内涵和外延也不断地发生变化,越来越多的人认为“可以集中控制、开放可编程和转控分离的网络”就是SDN网络,并且还延伸出软件定义计算、软件定义存储以及软件定义安全等。SDN加快了新业务引入的速度,提升了网络自动化运维能力,同时,也降低了运营成本。SDN的基础

知识如下图所示,下面各小节内容将根据该图内容进行展开论述: 1.1.SDN基础 1.1.1.SDN本质及核心 我们知道,传统网络中的路由器也存在控制平面和转发平面,在高端的路由器或交换机还采用物理分离,主控板上的CPU不负责报文转发,专注于系统的控制;而业务板则专注于数据报文转发。所以路由器或交换机内的控制平面与转发平面相对独立又协同工作,如图所示:

但这种分离是封闭在被称为“盒子”的交换机或路由器上,不可编程;另一方面,从IP网络的维度来考虑,采用的是分布式控制的方式:在控制面,每台路由器彼此学习路由信息,建立各自的路由转发表;在数据面,每台路由器收到一个IP 包后,根据自己的路由转发表做IP转发; IP网络的这种工作方式带来了运维成本高、业务上线慢等问题,并越来越难以满足新业务的需求,传统上通过添加新协议、新设备等手段来缓解问题的方式,收益越来越少。穷则思变,许多人产生了革命的想法,现有的网络架构既然无法继续演进发展,为何不推倒重来,重新定义网络呢?真可谓“时势造英雄”,2006年斯坦福大学Nick McKeown教授为首的研究团队提出了OpenFlow的概念用于校园网络的试验创新,后续基于OpenFlow给网络带来可编程的特性,SDN (Software Defined Network)的概念应运而生。 SDN将原来封闭在“盒子”的控制平面抽取出来形成一个网络部件,称之为SDN 控制器,这个控制器完全由软件来实现,控制网络中的所有设备,如同网络的大脑,而原来的“盒子”只需要听从SDN控制器的命令进行转发就可以了。在SDN 的理念下,所有我们常见的路由器、交换机等设备都变成了统一的转发器,而所有的转发器都直接接受SDN控制器的指挥,控制器和转发设备间的接口就是OpenFlow协议。其简单模型如图所示:

AE内置特效中英文对照

Distort扭曲特效 --Bezier warp贝赛尔曲线弯曲 --Bulge凹凸镜 --CC Bend It 区域卷曲效果 --CC Bender 层卷曲效果 --CC Blobbylize 融化效果 --CC Flo Motion 两点收缩变形 --CC Griddler 网格状变形 --CC Lens 鱼眼镜头效果,不如Pan Lens Flare Pro --CC Page Turn 卷页效果 --CC Power Pin 带有透视效果的四角扯动工具,类似Distort/CornerPin --CC Ripple Pulse 扩散波纹变形,必需打关键帧才有效果 --CC Slant 倾斜变形 --CC Smear 涂抹变形 --CC Split 简单的胀裂效果 --CC Split 2 不对称的胀裂效果 --CC Tiler 简便的电视墙效果 --Corner pin边角定位 --Displacement map置换这招 --Liquify像素溶解变换 --Magnify像素无损放大 --Mesh warp液态变形 --Mirror镜像 --Offset位移 --Optics compensation镜头变形 --Polar coordinates极坐标转换 --Puppet木偶工具 --Reshape形容 --Ripple波纹 --Smear涂抹 --Spherize球面化 --Transform变换 --Turbulent displace变形置换 --Twirl扭转 --Warp歪曲边框

--Wave warp波浪变形 Expression Controls表达式控制特效 --Angel control角度控制 --Aheckbox control检验盒控制 --Color control色彩控制 --Layer control层控制 --Point control点控制 --Slider control游标控制 Generate 渲染 --4-ccolor gradient四角渐变 --Advanced lightning高级闪电 --Audio spectrum声谱 --Audio waveform声波 --Beam光束 --CC Glue Gun 喷胶效果 --CC Light Burst 2.5 光线缩放 --CC Light Rays 光芒放射,加有变形效果--CC Light Sweep 过光效果 --Cell pattern单元图案 --Checkerboard棋盘格式 --Circle圆环 --Ellipse椭圆 --Eyedropper fill滴管填充 --Fill 填充 --Fractal万花筒 --Grid网格 --Lens flare镜头光晕 --Paint bucker颜料桶 --Radio waves电波 --Ramp渐变 --Scribble涂抹 --Stroke描边 --Vegas勾画 --Write-on手写效果

风险投资报告框架

********项目尽职调查及投资分析报告 ****基金 二零一二年十一月

摘要 ●公司简介 公司名称: 所属行业: 注册资本: 注册地址: ●项目简介 ●本次融资方案: ●盈利预期 ●上市计划 。

目录 第一部分本次投资概要 (6) 1.1 目标公司概况 (6) 1.2 融资主体 (6) 1.3投资方案 (6) 1.4 投资亮点 (6) 1.4.1 国家大力支持行业 (6) 1.4.2 行业发展前景广阔 (6) 1.4.3 技术优势 (6) 1.4.3 人力 (7) 1.5 投资风险管理 (7) 1.5.1 产品进入市场风险 (7) 1.5.2 生产风险 (7) 1.5.3 财务风险 (7) 1.5.4 团队管理风险 (7) 第二部分公司基本概况 (7) 2.1 公司简介 (7) 2.2 历史沿革及股权变更 (7) 2.3 公司组织机构 (8) 2.3 公司管理层 (8) 2.3.1管理层主要人员 (8) 2.3.2管理/技术人员变动情况 (8) 2.3.3管理层团队评价 (8) 2.4 员工结构 (8) 2.5 薪酬结构 (8) 2.5.1薪金制度 (8) 2.5.2奖励计划 (8) 2.5.3保险、福利计划 (8) 第三部分技术及产品 (8) 3.1 主要核心技术 (8) 3.1.1技术来源及所有权情况 (8) 3.1.2 技术先进性 (9) 3.1.3专利情况 (9) 3.1.4 研发能力说明 (9) 3.2 主要产品及特点 (9) 3.2.******************** (9) 3.2.2 国内其他产品比较 (9) 3.2.3 市场壁垒 (9)

AE抠像教程

AE抠像教程 “抠像”即“键控技术”在影视制作领域是被广泛采用的技术手段,实现方法也普遍被人们知道一些――当您看到演员在绿色或蓝色构成的背景前表演,但这些背景在最终的影片中是见不到的,就是运用了键控技术,用其它背景画面替换了蓝色或绿色,这就是“抠像”。 当然,“抠像”并不是只能用蓝或绿,只要是单一的、比较纯的颜色就可以,但是与演员的服装、皮肤的颜色反差越大越好,这样键控比较容易实现。如果是实时的“抠像”都需要视频切换台或者支持实时色键的视频捕获卡。但价格比较昂贵,个人基本上是承受不了的。在After Effects中,实现键控的工具都在特技效果中,标准版的After Effects 5.5内置的特效只包括Color Key色键和Luma Key亮键:完整版After Effects 5.5 Production Bandle包含了 Color Difference Key颜色差值键、 LinerColor Key线性色键, Difference Matte差值遮罩、 Color Range颜色范围键控、 Extract抽取键控。 1,应用Color Key 对于单一的背景颜色,可称为键控色。当选择了一个键控色(即吸管吸取的颜色〕,应用Color Key,被选颜色部分变为透明。同时可以控制键控色的相似程度.调整透明的效果。还可以对健控的边缘进行羽化,消除“毛边”的区域。 具体使用Color Key色键的方法:举个小例子,使用一张白色背景的蝴蝶图片和一张黑背景的花朵图片,抠去蝴蝶图片的白色背景,使其看上去好像落在花上。首先选择要应用色键的层。――-在例子中我选择白色背景的蝴蝶图片。再给其加上Color Key特效(菜单Effect>Keying>Color Key),应用Color Key 色键。其次,效果控制窗口中,单击小吸管,鼠标箭头变成吸管状,然后在蝴蝶图片的白色区域单击一下,(或者点击颜色方块,弹出“颜色”对话框,用HSL或RGB方式指定一个颜色)。击“吸管”按钮,在层窗口或合成窗口中选择颜色,如图--单击后,我们看到白色区域消失了,但蝴蝶边缘还有白色的锯齿毛边。这时需要调整以下参数: Color Tolerance用于控制颜色容差范围。值越小,颜色范围越小。 Edge Thin 用于调整键控边缘,正值扩大遮罩范围,负值缩小遮罩范围。 Edge Fether用于羽化键控边缘,产生细腻、稳定的键控遮罩。 2,使用Color Range颜色范围键控 Color Range颜色范围键控通过键出指定的颜色范围产生透明,可以应用的色彩空间包括Lab、YUV和RGB。这种键控方式,可以应用在背景包含多个颜色、背景亮度不均匀和包含相同颜色的阴影(如玻璃、烟雾等),遮罩视图用于显示遮罩情况的略图。 键控滴管用于在遮罩视图选择开始的键控色。 加滴管增加键控色的颜色范围。 减滴管减少键控色的颜色范围。 Fuziness 用于调整边缘柔化度、 Color Space选择颜色空间,有 Lab、YUV和RGB可供选择。 Min/Max精确凋整颜色空间参数L,Y,R、a,U,G和b,V,B代表颜色空间的三个分量。Min**调整颜色范围开始,Max**调整颜色范围结束。 3,使用Difference Matte差值遮罩 Difference Matte差值遮罩通过比较两层画面,键出相应的位置和颜色相同的像素。最典型的应用是静态背景、固定摄像机、固定镜头和曝光,只需要一帧背景素材,然后让对象在场景中移动,效果控制参数如图: View可以切换预览窗口和合成窗口的视图,选择Final Output最终输出结果、Source Only显示源素材和Matte Only显示遮罩视图。Difference Layer选择用于比较的差值层,None表示没有层列表中的某一层。If Layer Sizes Differ用于当两层尺寸不同的时候。可以选择Center将差值层放在源层中间比较,其它的地方用黑色填充:Stretch to Fit伸缩差值层,使两层尺寸一致,不过有可能使背景图像变形。Matching

基本面分析框架介绍(DOC)

投资理念总结 清晰的买股逻辑:如果不能持有一个股票1年以上,就不要去碰它!!!(铁律)理念的介绍: 运用自下而上的分析方法,减少对宏观经济政策的预测,不受媒体情绪的影响干扰,保持思维独立和客观。交易以左侧为主,对“事件分析”多从事物的对立面思考,立足于企业的价值(价格)(主要是低于行业平均的估值:低PE,低PB,低PC,加上适度成长:年复合10%以上),不追市场热点(可考虑提前伏击热点),有足够的耐心等待合适的价格出现,不可贪胜,中长期持股(做好一年以上的持股周期)。先做好低估值,未来再将标的股往潜在的伟大公司拓展。控制股票的仓位,时刻提醒自己,在市场中活着才是最重要的。 股市有句话:会买的是徒弟,会卖的才是师傅。我的任务是把“买”做好,把选股做好,把基本面分析再深入和详尽一些,把该考虑的问题以及未来可能会面临的抉择(最坏的情况)做一个预演,来坚定自己的持股信念!把“卖”交给时间和制定的规则。 一、选股标准,切记规避价值陷阱(低估值是由于市场因素和行业周期造成): 1)缓慢增长型个股:低PE<20倍;市值<100亿;分红率>2%;适度的利润增长率>10%;资产结构稳健。有点类似于彼得林奇的“沙漠之花”。 2)小市值(50亿以内)+新行业(互联网、软件、新材料、高端装备等)+低估值(动态PE<30倍)+安全边际; 安全边际主要来自合适的价格,其他的因素包括:董监高增持,定增(有大股东、核心高管、高知名度机构参与),员工持股(股权激励)等;当股价跌入安全区域后,再结合基本面进一步分析; 3)周期股:这是一块很大的市场,包括:有色、钢铁、煤炭、化工、地产、汽车制造等,周期股需要较好的基本面分析功底,把整个行业包括上下游的都有一个详细的理解和跟踪,但也蕴藏着较多的机会。由于周期股盈利的波动巨大,所以较难估值:可以采取的标准是:市值/max(5年内净利)<5倍,并且财务稳健。这一块要深入研究,还需要去充电,感兴趣的行业:化工、有色、汽车制造(包括零部件)。借用约翰内夫的一句话:除非从低估值中得到补偿,否则绝对不投周期股。其中也说明了周期性的难测,很多个股需要持股几年才能获得较好的回报。 4)大市值个股(市值>500亿),必须满足以下条件:PE<10倍;分红率>4%;过去3年平均扣非净利增长率>10%; 5)防御性企业:食品饮料和医药、医疗等非周期性行业,往往是长牛的出处地,标准静待完善。 6)10倍股的逻辑分析,需要去做一个专题分析。 组合持股数量不能过多,集中持股,重仓股限制在5只以内,单个股最大持股比例不超过20%,保证重仓股的安全边际;

OpenDaylight与Mininet应用实战之复杂网络验证(五)

OpenDaylight与Mininet应用实战之复杂网络验证(五) 1多交换机的测试 Mininet中本身就支持多交换机网络拓扑的模拟创建,可通过Python API自定义拓扑创建满足使用者在仿真过程中的多方位需求。 下面举出具体示例验证多交换机支持: 执行此条命令后,查看ODL的Web界面显示的网络拓扑。界面拓扑显示如下: 对所有的虚拟host之间进行互ping操作,通过pingall命令,验证主机间的连通性,继而可验证支持多交换机的功能。

由pingall显示的结果可看出,主机间能够互相通信,且将数据包的流转发给交换机,并由交换机上报给ODL控制器来下发流表使主机通信。 主机通信过程中可查看交换机的流表信息及本身信息。 由交换机流表信息显示可知,控制器通过策略将流表下发到交换机中,使主机发出的数据包转发到下一目的地址。每个交换机查看信息的端口都不同,从第一个交换机端口号为6634开始,以后每一个交换机依次在之前交换机端口号的基础上加1,如第二个交换机的端口为6635。其他交换机的流表信息及自身设备信息可根据此说明进行查看。 2多控制器的测试 多控制器验证支持测试包括两种情况: ■OpenFlow网络中多个同一类型的控制器; ■OpenFlow网络中多个不同类型的控制器; 2.1多个同一类型的控制器验证 测试OpenFlow网络中多个同一类型的controller,比如OpenDaylight,多个ODL之间通过

OpenFlow1.0协议标准交互。 通过Mininet验证,在Mininet中模拟创建的OvS交换机不能指定连接多个控制器,且在同一个Mininet中创建的多个交换机不能指定不同的控制器。所以在验证交换机被多个同一类型的控制器管控时,不能通过用Mininet来验证,但是可通过真实交换机来验证。 如,在真实交换机中设置连接此文中的ODL控制器及另一个ODL控制器,命令为: 连接两个相同类型的ODL控制器,其中192.168.5.203为上述实验使用的控制器,192.168.5.111为另外安装使用的ODL控制器。通过执行如下命令查看交换机连接的控制器信息。 is_connected:true表示交换机都成功连接上控制器。交换机连接到这两个控制器后,控制器通过设备拓扑管理也可以发现此交换机,同时控制器管控存在主备关系,但控制器都可对交换机进行管控、下发流表等操作。 通过真实OpenFlow交换机连接多个控制器,可以实施,且已经验证,控制器和控制器之间存在主备关系,多控制器都可以对连接的交换机进行管控。 2.2多个不同类型的控制器验证 在OpenFlow网络中多个不同类型的controller,比如同时存在NOX和ODL,它们之间如果遵循OpenFlow协议标准的话,也是能够协作工作的。多个不同类型的控制器管控交换机与2.1小节是同样的道理。 如,在真实交换机中设置连接此文中的ODL控制器及其他另一个不同类型的控制器,如POX,命令为: 连接两个不同控制器,其中192.168.5.203为上述实验使用的控制器,192.168.5.111为另外安装使用的POX控制器。经试验验证,ODL与POX都遵循OF1.0版本的协议标准,所以在复杂网络多控制器情况下,只要控制器遵循相同的标准规范,控制器之间可进行对网络的通信管理等。此处实验结果与2.1节一致。交换机连接这两个控制器后,控制器管控存在主备关系,但控制器都可对交换机进行管控、下发流表等操作。 3总结 本文主要对复杂网络多交换机及多控制器的支持验证。因Mininet现在无法模拟多控制器管控一个交换机的情况,所以本专题还是侧重对多交换机的管控实验。至此,OpenDaylight 与Mininet应用实战专题将结束,有介绍不到位或者有疑问的地方请多多指教,互相交流。谢谢!

菜鸟水平初步设置OpenDaylight-OVSDB-+-Openstack测试环境

菜鸟水平初步设置OpenDaylight OVSDB + Openstack测试环境 Hannibal (SDNAP首发) 刚接触SDN和OpenDaylight两个多月时间,还处于人云亦云照葫芦画瓢的水平,在很多大牛的指导文章帮助下,初步搭建一个很简单的OpenDaylight OVSDB + Openstack调试环境。第一次写技术文章,请多包涵。 一、准备 硬件: 双核Core i7,内存4GB,一个以太网卡的Thinkpad X201t,普通个人用笔记本 Host环境: 64位Ubuntu 13.10,OVS 2.0.90 VM环境: 2个Virtualbox VM,Fedora 19 + OVS 2.0.0 + Devstack 。导入Virtualbox都是缺省配置。两个VM的下载地址: https://https://www.wendangku.net/doc/0518043460.html,:443/v1/96991703573236/imgs/Fedora19--2node-Devstack.tar.bz2 Size: 4983728003 bytes MD5sum: dfd791a989603a88a0fa37950696608c 二、原理 OpenDaylight(ODL)是一个由Linux基金会支持,多个网络厂商参与的开源SDN控制器项目。Openstack是开源的IaaS项目。如何让两个平台整合以便更好的发挥作用是本环境搭建的目的。 现有的解决方案之一,就是利用Openstack Neutron的ML2 Plugin,将网络复杂性丢到ODL。也就是说,Openstack通过ML2 Plugin,与OpenDaylight的NB API进行会话,具体网络部署的实现交由OpenDaylight Controller来实现。

Openstack的Ocata版本与opendaylight 的Carbon版本集成详解

Openstack的Ocata版本与opendaylight 的Carbon版本集成详解 作者:胡章丰,zfhu2001@https://www.wendangku.net/doc/0518043460.html, 前提条件 ===================================================================== 1.已搭建好的可用openstack ocata环境一套 2.已下载的opendaylight carbon-sr1发布版本 3.本文档所述环境地址:控制节点:192.168.137.101,网络节点192.168.137.101,计算节点:192.168.137.101,192.168.137.102,ODL控制器节点:192.168.137.100 4.建议ODL控制器节点与Openstack控制节点采用独立节点安装,否则会有端口冲突,需要修改若干配置文件来避免冲突 ===================================================================== 部署opendaylight控制器 ===================================================================== ODL控制器节点执行: 解压缩软件包 tar xzvf distribution-karaf-0.6.1-Carbon.tar.gz cd distribution-karaf-0.6.1-Carbon/ 开启iptables规则(建议将下列规则写入脚本文件,配置开机自动执行,否则每次重启后需要手动添加这些规则) iptables -I INPUT -p tcp --dport 8181 -j ACCEPT iptables -I INPUT -p tcp --dport 8080 -j ACCEPT iptables -I INPUT -p tcp --dport 6640 -j ACCEPT iptables -I INPUT -p tcp --dport 6653 -j ACCEPT 启动odl控制器 ./bin/karaf 安装odl组件(只能装这几个) feature:install odl-netvirt-openstack odl-dlux-core odl-mdsal-apidocs 验证是否安装成功(打开如果是黑板一块,则说明安装成功) 看看能否打开http://ODL控制器节点ip地址:8181/index.html =====================================================================

OpenDaylight的Helium(氦)版本安装

OpenDaylight的Helium版本安装 OpenDaylight(后面缩写ODL)的Helium(氦)版本已发布,具体详情可参考ODL官网。Helium(氦)版本只发布了一个版本,下载链接地址为https://www.wendangku.net/doc/0518043460.html,/software/downloads/helium。官网中分别共享了版本、安装向导、用户向导、开发者向导手册,可进行下载学习。 git clone https://https://www.wendangku.net/doc/0518043460.html,/gerrit/p/integration.git 1.1.Helium安装 此Helium(氦)版本安装研究是基于Ubuntu12.04的基础上进行安装的,此ODL源文件版本是完全可移植的,但是需要Java7.0以上兼容JVM来运行。如果是用到Oracle的话,JDK版本在 1.7.0_45以上。 解压已获取的安装包文件,并进入解压目录: #unzip distribution-karaf-0.2.0-Helium.zip #cd distribution-karaf-0.2.0-Helium/ #cd bin #./karaf##出现问题? 经验证,此时执行./karaf时,会出现线程异常且No route to host错误,,需要进入上级目录修改文件org.apache.karaf.management.cfg: #cd.. #cd etc #vi org.apache.karaf.management.cfg#打开此文件 将 serviceUrl= service:jmx:rmi://0.0.0.0:${rmiServerPort}/jndi/rmi://0.0.0.0:${rmiRegistryPort}/karaf-${karaf.na me}修改成 serviceUrl= service:jmx:rmi://127.0.0.1:${rmiServerPort}/jndi/rmi://127.0.0.1:${rmiRegistryPort}/karaf-${kar https://www.wendangku.net/doc/0518043460.html,}, 再次进入ODL启动目录: #cd bin #./karaf##执行karaf文件 出现以下正确界面,如图所示:

宏观研究分析框架(上)

试 题 一、单项选择题 1. 根据课程内容,未来在一定程度上是在重复着过去,但并不是在原则上严密地重复着过去,因 此,商业研究预测准确率的边界取决于( )。 A. 设计精巧的数理模型 B. 渊博的知识和经验 C. 未来在多大程度上对过去的重复 D. 个人、企业、政府的理性预期 您的答案:C 题目分数:10 此题得分:10.0 2. 根据课程内容,对于一些自然现象、市场变动和经济现象,人们往往会提出各种合乎逻辑的解 释,为了验证解释的正确性,需要将这种解释转化为一个直观、可观察的结果,而这个转化过程 要同时满足三个约束,下列选项中不属于这三个约束的是( )。 A. 在逻辑上这种解释一定能够推导出相应的结果 B. 相应的结果只有这种解释能够推导出来 C. 相应结果必须可以很方便、直观地进行观察 D. 这种解释推导相应结果的过程必须建立复杂的数理模型 您的答案:D 题目分数:10 此题得分:10.0 二、多项选择题 3. 根据课程内容,宏观研究分析的基本步骤包括( )。 A. 系统性的搜集经验事实,验证理论预测 B. 从理论的内在逻辑出发,提出预测 C. 提出假说,解释现象 D. 观察现象,提出问题 您的答案:A,B,C,D 题目分数:10 此题得分:10.0 三、判断题 4. 无论多么设计精巧的数理模型、多么渊博的知识和经验,商业研究的预测永远做不到百分之百 的确定,其中总会有运气成分发挥作用。( ) 您的答案:正确 题目分数:10 此题得分:10.0 5. 根据课程内容,与商业的宏观经济研究不同,学校的学术研究更多地是站在中国资本市场参与

者的角度出发分析宏观经济现象,重点思考宏观经济层面数据的变化对资本市场的影响及相互的联系。( ) 您的答案:错误 题目分数:10 此题得分:10.0 6. 根据课程内容,1996年?2013年中国和美国的年度PPI数据相关性强。( ) 您的答案:正确 题目分数:10 此题得分:10.0 7. 由于科学技术发展的不可预测性,个人、企业、政府的理性预期和人类认识局限性等原因,未来在原则上并不是过去的简单重复,所以在原则上,未来就是不可预测的。( ) 您的答案:正确 题目分数:10 此题得分:10.0 8. 金融机构研究人员从事商业研究的目的是做预测,而检验一个金融机构研究成果的最主要标准,甚至可以说是唯一的标准就是预测的准确率。( ) 您的答案:正确 题目分数:10 此题得分:10.0 9. 根据课程内容,在中国,通货膨胀率的高低直接决定了货币政策松紧,货币政策的松紧又直接决定了金融市场,特别是股票市场流动性的好坏,因此,可以说货币政策的松紧是金融市场运行的最主要外部条件。( ) 您的答案:正确 题目分数:10 此题得分:10.0 10. 根据课程内容,1981年?1995年中国和美国的年度PPI数据相关性强。( ) 您的答案:错误 题目分数:10 此题得分:10.0 试卷总得分:100.0

相关文档
相关文档 最新文档