文档库 最新最全的文档下载
当前位置:文档库 › 无穷级数-1

无穷级数-1

无穷级数-1
无穷级数-1

高等数学基本公式整理(级数部分)

常数项级数: 是发散的调和级数:等差数列:等比数列:n n n n q q q q q n n 1312112 )1(3211111 2+++++=++++--=++++- 级数审敛法: 散。存在,则收敛;否则发、定义法: 时,不确定时,级数发散时,级数收敛,则设:、比值审敛法: 时,不确定时,级数发散时,级数收敛,则设:别法): —根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=?? ???=><=?? ???=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理: —的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数; 肯定收敛,且称为绝对收敛,则如果为任意实数; ,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n 幂级数:

0010)3(lim )3(1111111221032=+∞=+∞=== ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρρρ 函数展开成幂级数: +++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00lim )(,)()! 1()()(! )()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: )()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

高等数学(级数)期末试卷

《高等数学》--级数期末考试试卷 班级 学号 姓名 一、填空:本大题共8小题,每题2分,共16分。 1、写出几何级数 ,通项为 。 2、写出调和级数 ,通项为 。 3、写出p 级数 ,第100项为 。 4、设级数1 n n u ∞ =∑收敛于s ,a 为不等于零的常数,则级数1 n n au ∞ ==∑ 。 5、已知级数1 2!n n n ∞ =∑收敛,则2lim !n n n →∞= 。 6、若级数1 n n u ∞=∑发散,则原级数1 n n u ∞ =∑ (填敛散性)。 7、将函数()sin f x x =展开成马克劳林级数为 。 8、将函数()cos f x x =展开成幂级数为 。 二、选择题:本大题共8小题,每小题3分,共24分。在每小题给出的四个选项 中,只有一项是符合题意要求的。 9、lim 0n n u →∞ =是级数 1 n n u ∞ =∑收 敛的------------------------ --------------------------------------------------------------------------------------------( ) A 、充分条件 B 、必要条件 C 、充要条件 D 既非充分又非必要条件

10、设级数1 n n u ∞=∑收敛,级数1 n n v ∞=∑发散,则级数1 ()n n n u v ∞ =+∑------( ) A 、收敛 B 、绝对收敛 C 、发散 D 、敛散性不定 11、下列级数收敛的是----------------------------------------------------( ) A 、1n n ∞ =∑ B 、1ln n n ∞ =∑ C 、11n n n ∞ =+∑ D 、1 1 (1)n n n ∞ =+∑ 12、下列级数的发散的是-------------------------------------------------( ) A 、1n ∞ = B 、111 248+++ C 、0.001 D 、13 ()5n n ∞ =∑ 13、若级数1 n n u ∞ =∑收敛,n s 是它的前n 项部分和,则1 n n u ∞ =∑的和为( ) A 、n s B 、n u C 、lim n n s →∞ D 、lim n n u →∞ 14、幂级数0! n n x n ∞ =∑的收敛区间为 -----------------------------------( ) A (-1,1) B 、(0,)+∞ C 、(,)-∞+∞ D 、(1,2) 15、被世界公认的微积分的创始人为----------------------------( ) A 、阿基米德和刘徽 B 、牛顿和庄子 C 、莱布尼兹和牛顿 D 、欧拉 16、若幂级数0n n n a x ∞ =∑的收敛区间为(1,2)-则-------------------( ) A 、在1x =-处收敛 B 、在4x =处不一定发散 C 、在2x =处发散 D 、在0x =处收敛

高数 级数

《高等数学(下)》自学、复习参考资料Ⅲ ——使用前请详细阅读后面所附的“使用指南” 授课教师:杨峰(省函授总站高级讲师) 强烈建议同志们以《综合练习》为纲,仔细掌握其中的所有习题内容!各章复习范围: 第一部分《矢量代数与空间解析几何》 ————第八章第一至六节、第八节(即是除了第七节之外都要复习)第二部分《多元函数微积分》 ————第九章第一至五节(其中第四节只要求“全微分”) ————第十章第一至三节、第五节(即是第四、六节暂不作要求)第三部分《级数论》 ————第十一章都要复习 敬告学员——本门课程复习资料我们是根据听课和教研的基本情况结合自己的理解、加工,尽量全面、系统地整理出来,但是也只能供大家参考使用而已,并不能代表考试的任何信息,特此说明。不便之处,敬请原谅! 另外,以后象这样的数理学科,众所周知,其难度较大,数字稍作变化,许多同志未必能做出来。因此,这些科目的面授课建议大家都能克服困难,积极地参加,以获取准确的知识和复习信息,否则光是依赖网上复习参考资料,随时有不能一次通过的危险。

第十一章 级数 一、常数项级数的概念与性质(了解) 1、无穷级数的概念 设有无穷数列 ,,,,,21??????n u u u 则式子 ,21???++???++n u u u 称为无穷级数,简称级数。记作 ∑∞ =1 n n u 。即 , 211 ???++???++=∑∞ =n n n u u u u 其中,,,,,21??????n u u u 叫做级数的项,而n u 叫做级数的一般项或通项,各项都是常数的级数称为常数级数。 例如 ???++???+++n 321, ???++???+++n 3 1 31313132。 就是常数项级数。 2、级数的收敛与发散 定义 设级数,21 ???++???++n u u u 当n 无限增大时,

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

【精品完整版】解析函数展开成幂级数的方法分析

解析函数展开成幂级数的方法分析 姓名:媛媛 学号:201100171431 专业:物理教育 指导教师:莉莉

解析函数展开成幂级数的方法分析 姓名 某某大学物理与电气信息工程学院 摘要:将解析函数展开成幂级数的方法不一,且比较复杂。本论文着重介绍了将解析函数展开成幂级数的几种方法以及分析。 关键词:解析函数,幂级数,展开,奇点等。 一前言 解析函数的应用及现状:解析函数边值问题和广义解析函数边值问题在奇异积分方程方面有广泛的应用,它们在弹性力学、流体力学方面也有重要的应用。这些方面的理论及其应用,主要是由苏联学者建立和发展起来的。自20世纪60年代以来,中国的数学工作者在这些方面也做了不少工作。 关于解析函数的不同定义在20世纪初被证明是等价的。基于魏尔斯特拉斯的定义,区域上的解析函数可以看作是其内任一小圆邻域上幂级数的解析开拓,关于解析开拓的一般定义是,f(z)与g(z)分别是D与D*上的解析函数,若DÉD*,且在D*上f(z)=g(z)。则称f(z)是g(z)由D*到D的解析开拓。解析开拓的概念可以推广到这样的情形:f(z)与g(z)分别是两个圆盘D1与D2上的幂级数,在D1∩D2上f(z)=g(z)则也称f与g互为解析开拓,把可以互为解析开拓的(f(z),Δ)的解析圆盘Δ全连起来,作成一个链。它们的并记作Ω,得到了Ω上的一个解析函数,称它为魏尔斯特拉斯的完全解析函数,这里可能出现这样的情形,在连成一个链的圆盘中,有一些圆盘重叠在一起,但在这些重叠圆盘的每一个上的解析函数都是不一样的,它们的每一个都称为完全解析函数的分支。这样的完全解析函数实际是一个多值函数。黎曼提出将多值解析函数中的那些重叠的圆盘看作是不同的“叶”,不使他们在求并的过程中只留下一个代表,于是形成了一种称为黎曼面的几何模型。将多值函数看作是定义于其黎曼曲面上的解析函数,这样多值解析函数变成了单值解析函数。解析函数的基本性质:解析函数的导函数仍然是解析函数;单连通域内解析

06-函数展开成泰勒级数的方法--间接展开法PPT

函数展开成幂级数的间接展开法

一、基本初等函数的间接展开法根据唯一性,利用常见展开式,通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分等 方法,求展开式。 ?基本公式:).,( ,)!12()1(sin ). ,( , !).1,1( 1101 200 +∞-∞∈+-=+∞-∞∈=-∈=-∑∑∑∞=+∞=∞ =x n x x x n x e x x x n n n n n x n n ,

二、典型例题例1. )( 的幂级数展开成将x a x f x =由于令注意到解 . ln , ln a x u e a a x x ==).,( ,! 1!2112+∞-∞∈+++++=u u n u u e n u ),(!ln !2ln ln 122+∞-∞∈+++++=x x n a x a a x a n n x 代入上式得 将 ln a x u =

++-+-+-=+)! 12()1(!51!31sin 1253n x x x x x n n , ),( 时解:当+∞-∞∈x 例2、. cos )( 的幂级数展开成将x x x f =对上式逐项求导得 +-+-+-=)! 2()1(!41!211cos 242n x x x x n n

.11)( )1(:x x f +='解例3、. 的幂级数展开成将下列函数x ∑?? ∞ =-=+=+000)1(1)1ln( n x n n x dt t t dt x 则). 1,1( ,1 )1(10-∈+-=+∞=∑x x n n n n ).1,1( ,)1()(1111 0 -∈-=--=+∑∞=x x x x n n n 又.arctan )()2( ; )1ln()( (1)x x f x x f =+=板书

高等数学基本公式整理(级数部分)

常数项级数: 是发散的 调和级数:等差数列:等比数列:n n n n q q q q q n n 1 312112 )1(3211111 2 +++++= ++++--= ++++-ΛΛΛ 级数审敛法: 散。 存在,则收敛;否则发、定义法: 时,不确定 时,级数发散 时,级数收敛 ,则设:、比值审敛法: 时,不确定时,级数发散 时,级数收敛 ,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞ →+∞→∞ →+++=?? ? ??=><=?? ? ??=><=lim ;3111lim 2111lim 1211Λρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u ΛΛ绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11 1 )1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n Λ ΛΛΛ 幂级数:

01 0)3(lim )3(111 1111 221032=+∞=+∞ === ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρ ρρΛΛΛΛ函数展开成幂级数: Λ ΛΛ Λ+++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00 lim )(,)()!1() ()(! )()(!2)())(()()(2010)1(00)(2 0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: ) ()!12()1(!5!3sin )11(! )1()1(!2)1(1)1(1 21532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m ΛΛΛΛΛ 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin ) sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞ =ΛΛnx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

函数的幂级数展开

教案 函 数 的 幂 级 数 展 开 复 旦 大 学 陈纪修 金路 1. 教学内容 函数的幂级数(Taylor 级数)展开是数学分析课程中最重要的内容之一,也是整个分析学中最有力的工具之一。通过讲解将函数展开成幂级数的各种方法,比较它们的优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数选择最简单快捷的方法来展开幂级数,提高学生的计算与运算能力。 2.指导思想 (1)函数的幂级数(Taylor 级数)展开作为一个强有力的数学工具,在分析学中占有举足轻重的地位。通常的数学分析教科书往往注重于讲解幂级数的理论,而忽视了讲解将函数展开成幂级数的方法,这样容易造成学生虽然掌握了幂级数的基本理论,但在实际计算中,即使对于一个很简单的函数,在求它的幂级数展开时也会感到很困难,这种状况必须加以改变。 (2)求函数的幂级数展开是每个数学工作者时时会碰到的问题,虽然我们有函数的幂级数展,但一般来说,直接利用(*)式来求函数的幂级数展开往往很不因此有必要向学生介绍一些方便而实用的幂级数展开方法,提高学生的实际计算能力, 3. f (x )在 x 0 的某个邻域O (x 0, r )中能级数: (*).,(0r x O (1) x ∈(-∞, +∞)。 (2) =+0 !)12(n n )!12() 1(!5!31253+-+-+-=+n x x x x n n + …, x ∈(-∞, + ∞)。 (3) f (x ) = cos x = ∑∞ =-02! )2()1(n n n x n )! 2()1(!4!21242n x x x n n -+-+-= + …, x ∈(-∞, + ∞)。

高数知识汇总之级数

第七章 级数 7.1 常数项级数的概念与性质 7.1.1 常数项级数的概念 常数项级数: 一般的,设给定数列 12,,,, n a a a 则该数列所有项相加所得的表达式 12n a a a ++++ 叫做(常数项)无穷级数,简称(常数项)级数; 其中第n 项n a 叫做级数的一般项或通项。 级数简记为: 1 n n a ∞ =∑,即 121 n n n a a a a ∞ ==++++ ∑ 部分和: 作(常数项)级数12 n a a a ++ ++ 的前n 项的和121 n n n i i S a a a a ==++ +=∑, n S 称为级数(1)的前n 项部分和。 当n 依次取1,2,3,… 时,它们构成一个新的数列{}n S ,称为部分和数列。 级数收敛与发散: 如果级数 1 n n a ∞ =∑的部分和数列{}n S 有极限S ,即lim n n S S →∞ =(有限值),则称无穷级数 1 n n a ∞ =∑收敛,极限S 叫做该级数的和,并写成12n S a a a =++++ 。 如果{}n S 没有极限(lim n n S →∞ 不存在或为±∞),则称无穷级数 1 n n a ∞ =∑发散。 常用级数: (1)等比级数(几何级数): n n q ∞ =∑ 1 11q q -当时收敛于 1q ≥当发散

(2)p 级数: 11p n n ∞ =∑ 11p p ≤当时收敛当时发散 级数的基本性质: 性质1: 若级数 1n n a ∞ =∑收敛于和S ,则级数 1 n n Ca ∞ =∑(C 是常数)也收敛,且其和为CS 。 性质2: 若级数 1 n n a ∞ =∑和级数 1 n n b ∞ =∑分别收敛于和S 、σ,则级数 ()1 n n n a b ∞ =±∑也收敛,且其和为 S σ±。 注意:如果级数 1n n a ∞ =∑和 1 n n b ∞ =∑都发散,则级数 ()1n n n a b ∞ =±∑可能收敛也可能发散;而如果 两个级数 1 n n a ∞ =∑和 1 n n b ∞ =∑中有且只有一个收敛,则 ()1 n n n a b ∞ =±∑一定发散。 性质3: 在级数中去掉、加上或改变有限项,不会改变级数的敛散性。 性质4: 若级数 1 n n a ∞ =∑收敛,则对该级数的项任意加括号后所构成的新的级数 1121111()()()n n k k k k k a a a a a a -+++ +++++++++ 仍收敛,且其和不变。 注意:该性质的逆命题不成立。即,若一个级数加括号后的新级数收敛,则不能推出原级数收敛。 推论1: 若加括号后所成的级数发散,则原来级数也发散。 性质5: 若级数 1 n n a ∞ =∑收敛,则 lim 0n n a →∞ =。 注意:lim 0n n a →∞ =仅仅是级数1 n n a ∞ =∑收敛的必要条件,而非充分条件。

幂级数展开的多种方法

幂级数展开的多种方法 摘要:本文通过举例论证的说明方法,系统地对幂级数展开的多种解法进行了详细地概括、分类及总结 关键词:幂级数;泰勒展式;洛朗展式;展开 在复变函数的学习过程中,我们涉及了对解析函数幂级数展开的学习.由课本的知识知道,任意一个具有非零收敛半径的幂级数在其收敛圆内收敛于一个解析函数.这个性质是很重要的,但在解析函数的研究上,幂级数之所以重要,还在于这个性质的逆命题也是成立的.即有下面的泰勒定理和洛朗定理: 定理 1(泰勒定理)设()z f 在区域D 内解析,D a ∈,只要圆R a z K <-:含于D ,则()z f 在K 内能展成幂级数()()∑∞ =-= n n n a z c z f ,其中系数 () () () () ! 21 1n a f d a f i c n n n = -= ?Γ+ζζζ π.(ρ=-Γa z : R <<ρ0 n=0,1,2 )且展式唯 一. 定理2(洛朗定理)在圆环R a z r H <-<: (0≥r +∞≤R )内解析的函数 ()z f 必可展成双边幂级数()() ∑ ∞ -∞ =-= n n n a z c z f ,其中系数() () ζζζ πd a f i c n n ?Γ+-= 121 ( 2,1,0±±=n ρ=-Γa z : R r <<ρ) 且展式唯一. 这两个定理的存在,使得在函数解析的范围内,我们可以通过幂级数展开的方法来更好的研究解析函数的性质.而这两个定理,也是我们后面研究幂级数展开的基础和前提. 接下来,我们将着重开始讨论幂级数展开问题的多种解法: 1、直接法. 即按照泰勒定理和洛朗定理中所给的幂级数展开的公式,直接将函数展开. 例1 求()z z f tan =在4 0π =z 点处的泰勒展开式. 解:用公式 () () ! 0n z f c n n = 求n c :;14tan 0==π c ()2 ,24 sec | tan 12 4 ==='= c z z π π ;

同济大学(高等数学)第四篇无穷级数

第四篇 无穷级数 第七章 无穷级数 无穷级数是高等数学课程的重要内容,它以极限理论为基础,是研究函数的性质及进行数值计算方面的重要工具. 本章首先讨论常数项级数,介绍无穷级数的一些基本概念和基本内容,然后讨论函数项级数,着重讨论如何为将函数展开成幂级数和三角级数的问题,最后介绍工程中常用的傅里叶级数. 第1节 常数项级数的概念与性质 1.1常数项级数的概念 一般的,给定一个数列 ΛΛ,,,,,321n u u u u 则由这数列构成的表达式 ΛΛ+++++n u u u u 321 叫做(常数项)无穷级数, 简称(常数项)级数, 记为∑∞ =1 n n u , 即 3211 ???++???+++=∑∞ =n n n u u u u u , 其中第n 项n u 叫做级数的一般项. 作级数∑∞ =1n n u 的前n 项和

n n i i n u u u u u s +???+++==∑= 3211 称为级数∑∞ =1 n n u 的部分和. 当n 依次取1,2,3…时,它们构成一个新的数列 11s u =,212s u u =+,3123s u u u =++,…, 12...n n s u u u =+++,… 根据这个数列有没有极限,我们引进无穷级数的收敛与发散的概念。 定义 如果级数∑∞ =1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞ →lim , 则称无穷级数∑∞ =1 n n u 收敛, 这时极限s 叫做这级数的和, 并写成 ΛΛ 3211 +++++==∑∞ =n n n u u u u u s ; 如果}{n s 没有极限, 则称无穷级数∑∞ =1 n n u 发散. 当级数∑∞ =1 n n u 收敛时, 其部分和n s 是级数∑∞ =1 n n u 的和s 的近似值, 它们之间的差值 12n n n n r s s u u ++=-=++L 叫做级数∑∞ =1n n u 的余项. 例1 讨论等比级数(几何级数)n n aq ∑∞ =0 (a ≠0)的敛散性. 解 如果1≠q , 则部分和 q aq q a q aq a aq aq aq a s n n n n ---=--=+???+++=-111 1 2. 当1q 时, 因为∞=∞ →n n s lim , 所以此时级数n n aq ∑∞ =0 发散.

高数 第七章 无穷级数 知识点

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、 ? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数 ∑∞ =1 n n U ,满足 条件l U U n n n =+∞→1 lim : ①当1l 时,级数发散(或+∞=l ); ③当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满足 条件λ =∞ →n n n U lim : ①当1<λ时,级数收敛; ②当1>λ时,级数发散(或+∞=λ); ③当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。 6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩)

推论:若∑∞ =1n n U 与∑∞ =1 n n V 均为正项级数,且l V U n n n =∞→lim (n V 是已知敛散 性的级数) ①若+∞<

相关文档