文档库 最新最全的文档下载
当前位置:文档库 › 高中数学椭圆双曲线和抛物线的总结及例题精讲

高中数学椭圆双曲线和抛物线的总结及例题精讲

高中数学椭圆双曲线和抛物线的总结及例题精讲
高中数学椭圆双曲线和抛物线的总结及例题精讲

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -Q 在双曲线上 ∴(2 2 33 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程 (x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。 (1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0 此方程可用于解决两圆的位置关系: 配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4 其圆心坐标:(-D/2,-E/2) 半径为r=√[(D^2+E^2-4F)]/2 此方程满足为圆的方程的条件是: D^2+E^2-4F>0 若不满足,则不可表示为圆的方程 (2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系: ⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。 ⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。 ⑶当(x1-a)^2+(y1-b) ^20,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1x2时,直线与圆相离; 当x1 (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4 => 圆心坐标为(-D/2,-E/2) 其实只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为一个结论运用的 且r=根号(圆心坐标的平方和-F) <二>椭圆的标准方程 椭圆的标准方程分两种情况: 当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0); 当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即

椭圆、双曲线、抛物线的标准方程与几何性质

一、知识要点: 椭圆、双曲线、抛物线的标准方程与几何性质

第一种定义:平面内与两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准方程: (1))0(122 22>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中 c=2 2b a -. (2))0(122 22>>=+b a a y b x ,焦 点 :F 1(0,-c),F 2(0,c), 其 中 c= 2 2b a -. 3.椭圆的参数方程:? ??==θθ sin cos b y a x ,(参数θ是椭圆上任意一点的离心率). 4.椭圆的几何性质:以标准方程)0(12222>>=+b a b y a x 为例: ①范围:|x|≤a,|y|≤b; ②对称性:对称轴x=0,y=0,对称中心为O(0,0); ③顶点A(a,0),A ′(-a,0),B(0,b),B ′(0,-b);长轴|AA ′|=2a,短轴|BB ′|=2b; ④离心率:e=a c ,0

⑤准线x=±c a 2 ;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任 意一点. 二、基本训练 1.设一动点 P 到直线3x =的距离与它到点A (1,0)的距离之比为 3, 则动点P 的轨迹方程是 ( ) () A 22 132 x y += ()B 22 132 x y -= ()C 2 2 (1)132 x y ++= ()D 22 123 x y += 2.曲线 192522=+y x 与曲线)9(19252 2<=-+-k k y k x 之间具有的等量关系 ( ) ()A ()C 3且过点(3,0)A 4.底面直径为12cm 30的平面所截, , 短轴长 ,离心率5.已知椭圆22 221(x y a b +=的离心率为5,若将这个椭圆绕着它的右

高中数学-双曲线例题

高中数学-双曲线典型例题 一、根据方程的特点判断圆锥曲线的类型。 例1 讨论19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 解:(1)当9-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92, 16222=-=b a c ,这些椭圆有共同的焦点(-4,0) ,(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为:()16014162 2<<=+--λλ λy x ∵双曲线过点()223,,∴1441618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=-y x 三、求与双曲线有关的角度问题。 例3 已知双曲线116 92 2=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小. 解:∵点P 在双曲线的左支上 ∴621=-PF PF ∴362212221=-+PF PF PF PF ∴10022 21=+PF PF ∵()100441222221=+==b a c F F ∴ο9021=∠PF F (2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索. 四、求与双曲线有关的三角形的面积问题。 例 4 已知1F 、2F 是双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足ο9021=∠PF F ,求21PF F ?的面积. 分析:利用双曲线的定义及21PF F ?中的勾股定理可求21PF F ?的面积. 解:∵P 为双曲线14 22 =-y x 上的一个点且1F 、2F 为焦点. ∴4221==-a PF PF ,52221==c F F ∵ο9021=∠PF F ∴在21F PF Rt ?中,202 2122 21==+F F PF PF

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 165 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

圆锥曲线(椭圆、双曲线、抛物线)基础知识及常用结论

圆锥曲线必背口诀(红字为口诀)-椭圆 一、椭圆定义 定点为焦点,定值为长轴.(定值=2a ) 椭圆.定点为焦点,定直线为准线,定值为离心率.(定值=e ) 定点为短轴顶点,定值为负值. (定值2k e 1=-) 二、椭圆的性质定理 长轴短轴与焦距,形似勾股弦定理① 准线方程准焦距,a 方、b 方除以c ② 通径等于 2 e p ,切线方程用代替③ 焦三角形计面积,半角正切连乘b ④ 注解: 1长轴2a =,短轴2b =,焦距2c =,则:222a b c =+ 2准线方程:2 a x c = ( a 方除以c ) 3椭圆的通径 d :过焦点垂直于长轴的直线与椭圆的两交点之间的距

离称为椭圆的通径.(通径22 c b 2b 2a c a d 2ep =??==) 过椭圆上00x y (,)点的切线方程,用00x y (,)等效代替椭圆方程得到. 等效代替后的是切线方程是:0022x x y y 1a b += 4、焦三角形计面积,半角正切连乘b 焦三角形:以椭圆的两个焦点12F F ,为顶点,另一个顶点P 在椭圆上的三角形称为焦三角形.半角是指12F PF θ=∠的一半. 则焦三角形的面积为:2 S b 2 tan θ = 证明:设1PF m =,2PF n =,则m n 2a +=由余弦定理: 222m n 2mn 4c cos θ+-?= 22224a 4b m n 4b ()=-=+- 即:2 2mn 2mn 4b cos θ-?=-,即:22b 1mn (cos )θ=+. 即:2 122b mn PF PF 1||||cos θ==+ 故:12 F PF 1S m n 2sin θ=??△2 2 12b b 211sin sin cos cos θθθθ=? ?=?++ 又:22221222 sin cos sin tan cos cos θθ θ θ θθ = =+ 所以:椭圆的焦点三角形的面积为122 F PF S b 2tan θ ?=. 三、椭圆的相关公式 切线平分焦周角,称为弦切角定理① 1F 2F O x y P m n

高中数学椭圆、双曲线、抛物线历年真题及详解

【考点8】椭圆、双曲线、抛物线 2009年考题 1、(2009湖北高考)已知双曲线141222 2 222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=( ) A.3 B.5 C.3 D.2 选C.可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、(2009陕西高考)“0m n >>”是“方程2 21mx ny +=”表示焦点在y 轴上的椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 【解析】选C.将方程2 2 1mx ny +=转化为 22 111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须 满足 11 0,0,m n >>且11n m >,故选C.3、(2009湖南高考)抛物线 28y x =-的焦点坐标是( ) A .(2,0) B .(- 2,0) C .(4,0) D .(- 4,0) 【解析】选B.由 28y x =-,易知焦点坐标是(,0)(2,0)2 p - =-,故选B. 4、(2009全国Ⅰ)已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =( ) (A) 2 (B) 2 3 (D) 3 【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =u u u r u u u r ,故2 ||3 BM =. 又由椭圆的第二定义,得222 ||233 BF = = ||2AF ∴=5、(2009江西高考)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的 三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3

高中数学双曲线经典例题

高中数学双曲线经典例题 一、双曲线定义及标准方程 1.已知两圆C1:(x+4)2+y2=2,C2:(x﹣4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是() A.x=0 B. C.D. 2、求适合下列条件的双曲线的标准方程: (1)焦点在 x轴上,虚轴长为12,离心率为; (2)顶点间的距离为6,渐近线方程为. 3、与双曲线有相同的焦点,且过点的双曲线的标准方程是

4、求焦点在坐标轴上,且经过点A(,﹣2)和B(﹣2,)两点的双曲线的标准方程. 5、已知P是双曲线=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为. 二、离心率 1、已知点F1、F2分别是双曲线的两个焦点,P为该双曲线上一点,若△PF1F2为等腰直角三角形,则该双曲线的离心率为. 2、设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为. 3、双曲线的焦距为2c,直线l过点(a,0) 和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l 的距离之和.则双曲线的离心率e的取值范围是() A. B.C.D. 3、焦点三角形

1、设P是双曲线x2﹣=1的右支上的动点,F为双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为. 2、.已知F1,F2分别是双曲线3x2﹣5y2=75的左右焦点,P是双曲线上的一点,且∠F1PF2=120°,求△F1PF2的面积. 3、已知双曲线焦点在y轴上,F1,F2为其焦点,焦距为10,焦距是实轴长的2倍.求: (1)双曲线的渐近线方程; (2)若P为双曲线上一点,且满足∠F1PF2=60°,求△PF1F2的面积. 4、直线与双曲线的位置关系 已知过点P(1,1)的直线L与双曲线只有一个公共点,则直线L的斜率k= ____ 5、综合题型

椭圆双曲线抛物线公式性质表

高中数学循环记忆学案

基本题目过关; 22 12 211,F F 1F AB 169 FAB _____,|AB|=5|x y +=?11 已知,是椭圆的两个焦点,过点 的直线交椭圆于两点 则的周长为若,则AF|+|BF|=______. 22 2,x+y=4,如图OA中点为N,M在圆上,MN的垂直平分线交 OM于P点,当M点在椭圆上运动时P点的轨迹方程是什么图形__ 3,已知椭圆的中心在原点,焦点在坐标轴上,椭圆与坐标轴交点坐标为 A (-3,0),B(0,5),则椭圆的标准方程为______ 且常州常时段周长的两倍,则该椭圆的标准方程为________ 5,已知椭圆的中心在原点,焦点x轴上,椭圆C上的点到焦点的最大值为 3,最小值为1,则椭圆的标准方程为_________ 22 xy 6,若方程+=1,表示焦点在 y轴上的椭圆,则m的 |m|-12-m 取值范围是_________ 7,椭圆的短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点 9,设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴的两端点的连线互相垂直 且此焦点与长轴上较近的端点距离为4,则此椭圆的方程为________________ 2210,椭圆5x +ky =5的一个焦点为(0,2)则k=_________

22 11,M 123 M x y w 是椭圆+=1的焦点为焦点,过直线L;x-y+9=0上一点作椭圆, 要使所作椭圆长轴最短,点应在何处____并求出椭圆的方程_____ PQ OP OQ ⊥12,已知椭圆的中心在原点,坐标轴为对称轴直线y=x+1与椭圆相交于两点,且, 11122 121222213,F A B P PF FA PO//AB e=( ) 11 A B C.D 232 AB F BAF =90x y a b ⊥∠o 如图已知是椭圆的左焦点,,分别是椭圆的右顶点和上顶点为椭圆上一点,当,时, 14,F F 是椭圆+=1(a>b>0)的两焦点,过F 的弦与构成等 腰直角三角形,若角,则e=_________ F C B C BF C D BF FD u u u r u u u r 15,已知是椭圆的一个焦点,是椭圆短轴的一个端点,线段 的延长线交于点,且=2,则e=______ 22 122212P x y a b F PF ∠o 16,F F 是椭圆+=1(a>b>0)的两焦点,为椭圆上一点, =90,离心率的最小值为__________ 22 12221217,P =x y x a b F F PF ∠o 过椭圆+=1(a>b>0)的左焦点F ,作轴的垂线交椭圆于, 为右焦点,若60,则e=______ 22 12122212P PF 1 2 x y PF a b ∠u u u r u u u u r 18,为F F 为焦点的椭圆+=1(a>b>0)上一点,若=0 tan PF F =,则e=______

高中数学《双曲线》典型例题12例(含标准答案)

《双曲线》典型例题12例 典型例题一 例1 讨论 19252 2=-+-k y k x 表示何种圆锥曲线,它们有何共同特征. 分析:由于9≠k ,25≠k ,则k 的取值范围为9-k ,09>-k , 所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<-k ,09<-k ,所给方程表示双曲线,此时, k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25

∴所求双曲线方程为19 162 2=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c , ∴设所求双曲线方程为:162 2 =-- λ λy x (其中60<<λ) ∵双曲线经过点(-5,2),∴164 25 =-- λ λ ∴5=λ或30=λ(舍去) ∴所求双曲线方程是15 22 =-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉. (3)设所求双曲线方程为: ()16014162 2<<=+--λλλy x ∵双曲线过点() 223, ,∴144 1618=++-λ λ ∴4=λ或14-=λ(舍) ∴所求双曲线方程为18 122 2=- y x 说明:(1)注意到了与双曲线 14 162 2=-y x 有公共焦点的双曲线系方程为14162 2=+--λ λy x 后,便有了以上巧妙的设法. (2)寻找一种简捷的方法,须有牢固的基础和一定的变通能力,这也是在我们教学中应该注重的一个重要方面. 典型例题三 例3 已知双曲线116 92 2=- y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F ∠的大小.

双曲线习题及标准答案

圆锥曲线习题——双曲线 1. 如果双曲线2 42 2y x - =1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( ) (A) 3 64 (B) 3 6 2 (C)62 (D)32 2. 已知双曲线C ∶22 221(x y a a b -=>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的 圆的半径是 (A )a (B)b (C)ab (D)22b a + 3. 以双曲线 221916 x y -=的右焦点为圆心,且与其渐近线相切的圆的方程是( ) A .2 2 1090x y x +-+= B .22 10160x y x +-+= C .2 2 10160x y x +++= D .2 2 1090x y x +++= 4. 以双曲线2 2 2x y -=的右焦点为圆心,且与其右准线相切的圆的方程是( ) A.2 2 430x y x +--= B.22 430x y x +-+= C.2 2 450x y x ++-= D.2 2 450x y x +++= 5. 若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它到左准 线的距离,则双曲线离心率的取值范围是( ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 6. 若双曲线122 22=-b y a x 的两个焦点到一条准线的距离之比为3:2那么则双曲线的离心 率是( ) (A )3 (B )5 (C )3 (D )5 7. 过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的 两条渐近线的交点分别为,B C .若1 2 AB BC = ,则双曲线的离心率是 ( )

椭圆双曲线抛物线公式(精)

双曲线的标准公式为:X^2/a^2 - Y^2/b^2 = 1(a>0,b>0 而反比例函数的标准型是xy = c (c ≠ 0 但是反比例函数确实是双曲线函数经过旋转得到的 因为xy = c的对称轴是 y=x, y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是x轴,y轴 所以应该旋转45度设旋转的角度为a (a≠0,顺时针(a为双曲线渐进线的倾斜角则有X = xcosa ysina Y = - xsina ycosa 取a = π/4 则 X^2 - Y^2 = (xcos(π/4 ysin(π/4^2 -(xsin(π/4 - ycos(π/4^2 = (√2/2 x √2/2 y^2 -(√2/2 x - √2/2 y^2 = 4 (√2/2 x (√2/2 y = 2xy. 而xy=c 所以X^2/(2c - Y^2/(2c = 1 (c>0 Y^2/(-2c - X^2/(-2c = 1 (c<0 由此证得,反比例函数其实就是双曲线函数椭圆的面积公式S=π(圆周率×a×b(其中a,b分别是椭圆的长半轴,短半轴的长. 或S=π(圆周率×A×B/4(其中A,B分别是椭圆的长轴,短轴的长. 椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。椭圆周长(L的精确计算要用到积分或无穷级数的求和。如L = ∫[0,π/2]4a * sqrt(1- (e*cost^2dt≈2π√((a^2 b^2/2 [椭圆近似周长], 其中a为椭圆长半轴,e为离心率椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则e=PF/PL 椭圆的准线方程x=±a^2/C 椭圆的离心率公式e=c/a(e<1,因为2a>2c 椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0与准线x= a^2/C的距离,数值=b^2/c 椭圆焦半径公式 |PF1|=a ex0 |PF2|=a-ex0 椭圆过右焦点的半径r=a-ex 过左焦点的半径r=a ex 椭圆的通径:过焦点的垂直于x轴(或y轴的直线与椭圆的两焦点A,B之间的距离,数值=2b^2/a 点与椭圆位置关系点M(x0,y0 椭圆 x^2/a^2 y^2/b^2=1 点在圆内: x0^2/a^2 y0^2/b^2<1 点在圆上: x0^2/a^2 y0^2/b^2=1 点在圆外: x0^2/a^2 y0^2/b^2>1 直线与椭圆位置关系y=kx m ①x^2/a^2 y^2/b^2=1 ②由①②可推出x^2/a^2 (kx m^2/b^2=1 相切△=0 相离△<0无交点相交△>0 可利用弦长公式:A(x1,y1 B(x2,y2 |AB|=d = √(1 k^2|x1-x2| = √(1 k^2(x1-x2^2 = √(1 1/k^2|y1-y2| = √(1 1/k^2(y1-y2^2 椭圆通径(定义:圆锥曲线(除圆外中,过焦点并垂直于轴的弦公式:2b^2/a 椭圆的斜率公式过椭圆上x^2/a^2 y^2/b^2上一点(x,y的切线斜率为b^2*X/a^2y 抛物线

圆锥曲线(椭圆、双曲线、抛物线)知识点总结

双曲线知识点 一、 双曲线的定义: 1. 第一定义: 到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. 要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支; 当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在. 2. 第二定义: 动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 二、 双曲线的标准方程:

122 22=-b y a x (a >0,b >0)(焦点在x 轴上); 122 22=-b x a y (a >0,b >0)(焦点在y 轴上); 1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b. 2. 与双曲线12222=-b y a x 共焦点的双曲线系方程是122 2 2=--+k b y k a x 3. 双曲线方程也可设为:22 1(0)x y mn m n - => 例题:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的 轨迹方程。 三、 点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线: 点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?-> 点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-< 点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>上22 0022-=1x y a b ? 2 直线与双曲线: (代数法) 设直线:l y kx m =+,双曲线)0,0(122 22>>=-b a b y a x 联立解得 02)(222222222=----b a m a mkx a x k a b 1) 0m =时,b b k a a -<<直线与双曲线交于两点(左支一个点右支一个点); b k a ≥,b k a ≤-,或k 不存在时直线与双曲线没有交点; 2) 0m ≠时, k 存在时, 若0222=-k a b a b k ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点; 若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ?=----- 222222 4()a b m b a k =+-

重点高中数学椭圆、双曲线、抛物线历年真题及详解

重点高中数学椭圆、双曲线、抛物线历年真题及详解

————————————————————————————————作者:————————————————————————————————日期:

【考点8】椭圆、双曲线、抛物线 2009年考题 1、(2009湖北高考)已知双曲线141222 2 222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=( ) A.3 B.5 C.3 D.2 选C.可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、(2009陕西高考)“0m n >>”是“方程2 21mx ny +=”表示焦点在y 轴上的椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 【解析】选C.将方程2 2 1mx ny +=转化为 22 111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须 满足 11 0,0,m n >>且11n m >,故选C. 3、(2009湖南高考)抛物线 28y x =-的焦点坐标是( ) A .(2,0) B .(- 2,0) C .(4,0) D .(- 4,0) 【解析】选B.由 28y x =-,易知焦点坐标是(,0)(2,0)2 p - =-,故选B. 4、(2009全国Ⅰ)已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =( ) (A) 2 (B) 2 (C) 3 (D) 3 【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =u u u r u u u r ,故2 ||3 BM =. 又由椭圆的第二定义,得222 ||233 BF = ?= ||2AF ∴=. 5、(2009江西高考)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的 三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3

高中数学双曲线经典考点及例题讲解

双曲线 考纲解读 1.根据双曲线的定义和性质求标准方程;2.根据双曲线的标准方程求双曲线的性质:离心率、渐近线等;3.利用双曲线定义及性质解决简单的直线与双曲线的关系问题. [基础梳理] 1.双曲线的定义 (1)平面内与两个定点F1,F2的距离之差的绝对值(|F1F2|=2c>0)为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫作双曲线的焦点,两焦点间的距离叫作焦距. (2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0. ①当2a<|F1F2|时,M点的轨迹是双曲线; ②当2a=|F1F2|时,M点的轨迹是两条射线; ③当2a>|F1F2|时,M点不存在. 2.双曲线的标准方程与几何性质 x2y2y2x2

[三基自测] 1.双曲线x 23-y 2 2=1的焦距为( ) A .32 B.5 C .2 5 D .45 答案:C 2.若双曲线E :x 29-y 2 16=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1| =3,则|PF 2|等于( ) A .11 B .9 C .5 D .3 答案:B 3.x 22+m -y 2m +1 =-1表示双曲线,则m 的范围为________. 答案:(-∞,-2)∪(-1,+∞) 4.(2017·高考全国卷Ⅰ改编)双曲线x 2- y 2 3=1的渐近线方程为________. 答案:y =±3x 考点一 双曲线定义及应用|易错突破 [例1] (1)已知两圆C 1:(x +4)2+y 2=2,C 2:(x -4)2+y 2=2,动圆M 与两圆C 1,C 2 都相切,则动圆圆心M 的轨迹方程是( ) A .x =0 B.x 22-y 2 14=1(x ≥2) C.x 22-y 2 14=1 D.x 22-y 2 14 =1或x =0 (2)已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43 |PF 2|,求△F 1PF 2的面积. [解析] (1)动圆M 与两圆C 1,C 2都相切,有四种情况:①动圆M 与两圆都外切;②动圆M 与两圆都内切;③动圆M 与圆C 1外切、与圆C 2内切;④动圆M 与圆C 1内切、与圆C 2外切.在①②情况下,显然,动圆圆心M 的轨迹方程为x =0;在③的情况下,设动圆M 的半径为r ,则|MC 1|=r +2,|MC 2|=r - 2. 故得|MC 1|-|MC 2|=22;

(完整版)高中数学-圆锥曲线练习题含答案

圆锥曲线专题练习 一、选择题 1.已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A .116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 4.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .2 15 D .10 5.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 6.如果22 2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 二. 填空题 7.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。 8.设AB 是椭圆22 221x y a b +=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ?=____________。 三.解答题 9.已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。

10、已知动点P 与平面上两定点(A B 连线的斜率的积为定值12- . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |= 3 24时,求直线l 的方程.

圆锥曲线(椭圆-双曲线-抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<

3. 焦半径公式: 椭圆上的任一点和焦点连结的线段长称为焦半径。 焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。 推导过程:由第二定义得 11 PF e d =(1d 为点P 到左准线的距离) , 则211000a PF ed e x ex a a ex c ?? ==+=+=+ ?? ?;同理得20PF a ex =-。 简记为:左“+”右“-”。 由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。 22221x y a b +=;若焦点在y 轴上,则为22 221y x a b +=。有时为了运算方便,设),0(122n m m ny mx ≠>=+。 双曲线的定义、方程和性质 知识要点: 1. 定义 (1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。 说明: ①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线; 若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。 ②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。 (2)第二定义:平面内动点到定点F 的距离与到定直线L 的距离之比是常数e (e>1)的点的轨迹叫双曲线,定点叫焦点,定直线L 叫相应的准线。

相关文档
相关文档 最新文档