文档库 最新最全的文档下载
当前位置:文档库 › 金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳应力腐蚀试验及宏观断口分析
金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳、应力腐蚀试验及宏观断口分析

在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。

图1-1 疲劳宏观断口

一﹑实验目的

1.了解测定材料疲劳极限的方法。

2.掌握金属材料拉拉疲劳测试的方法。

3.观察疲劳失效现象和断口特征。

4.掌握慢应变速率拉伸试验的方法。 二、实验设备

1.PLD-50KN-250NM 拉扭疲劳试验机。

2.游标卡尺。

3.试验材料S135钻杆钢。

4.PLT-10慢应变速率拉伸试验。 三﹑实验原理及方法

在交变应力的应力循环中,最小应力和最大应力的比值为应力比:

max

min σσ=

r (1-1) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为max 1σ,经历N 1次循环后,发生疲劳失效,

则N 1称为最大应力r 为时的max 1σ疲劳寿命(简称寿命)

。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力max σ与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图1-2所示。由图可见,当应力降到某一极限值r σ时,S-N 曲线趋

近于水平线。即应力不超过r σ时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。

实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107

次循环下仍未失效的最大应力作为持久极限r σ。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

图1-2 疲劳试验S-N 曲线

工程问题中,有时根据零件寿命的要求,在规定的某一循环次数下,测出max σ,并称之为疲劳强度。它有别于上面定义的疲劳极限。

疲劳试验常采用循环加载,其加载波形如图1-3所示。

图1-3 疲劳应力循环

扭转疲劳试验在PLD-100KN 型拉-拉电液伺服疲劳试验机上进行,扭转疲劳试验时,采用应力控制,加载频率为5Hz ,加载波形为三角波,试验环境为实验室大气。

慢应变速率法是基于在一定的应变速率ε

下,发生应力腐蚀开裂的倾向最大的现象提出来的。该方法是将试样(一般是光滑试样,但也可用缺口试样或预制裂纹的试样)浸入介质中,以恒定的速率(ε

在410?~810? /s 范围内)将试样拉断,测量断口的断面收缩率。

定义介质影响系数β:

K

S

K

?ψψβ?= (1-2) 作为断口脆化程度来预测金属的应力腐蚀开裂倾向。式(1-2)中K ψ和S ψ分别为试样在空气和介质中的断面收缩率。所以确定β或断口脆化程度都要参照在空气中金属的试验结果。 四﹑实验方法

1.试验标准

本实验参照GB/T 12443-2007《金属材料扭应力疲劳试验方法》和GB 3075-80《金属轴向疲劳试验方法》进行试验。

2.试样

疲劳试样的主要有圆柱形、漏斗形、板状,如图1-4所示。

(a )圆柱形试样 (b )漏斗形试样

(c )板状试样 图1-4 试样形状

3.试验参数的确定 轴向应力由下式求得:

2

r

F πσ=

或 ab F =σ (1-3) 式中,F 为轴向应力,r 为试验件的半径。

试验过程中试验机的夹头以一定的位移速度移动,试样即以慢恒速(t L ??/)拉伸。由于试验机部分的刚度比试样高的多,所以试样伸长L ?可用卡头的相应位移来代替。可按照下式计算:

L L

?=

ε (1-4) t

L L t L L o ??=

??=?

011

ε (1-5) 式中:ε-工程应变;0L -试样标矩长度;?

ε-应变速率;t L ??/-夹头的位移速度。

当夹头移动速度保持恒定时,可认为试样的应变速率保持不变。但严格地说,试样的应变速率应该是

t

L

L ??01,L 为瞬时标矩长度。事实上,在整个试验过程中L 是一个变量,所以试样的应变速率在整个试

验过程中并不是恒定的量,而是变量。特别是对韧性金属材料拉伸时,一旦出现颈缩,则在颈缩区的实际应变速率可能会增加一个数量级。这就有可能使试样的应变速率进入或者偏离临界应变速率范围。预制裂纹试样裂纹尖端塑性区尺寸如果保持相同,则应变速率也保持在一恒定值。因此,用预制裂纹试样做慢应变速率试验要比采用普通的光滑试样更为合适、方便。 五﹑试样的制备

1.取样及要求

试验取样部位、取向和方法按有关标准和双方协议。同一批试样所用材料应为同一牌号和同一炉号,并要求质地均匀没有缺陷。疲劳强度与试样取料部位﹑锻压方向等有关,并受表面加工﹑热处理等工艺条件的影响较大。

2.机加工

所有的机械加工不允许改变试样的冶金组织或力学性能,且引起的试样表面加工硬化应尽可能小。磨削精加工较硬材料的试样时,应提供足够的冷却液,确保试样表面不过热。

工作部分与过度圆弧的连接应光滑,不应出现机加工痕迹。 3.表面抛光

抛光后,试样工作部分的表面粗糙度a R 的允许最大值为0.32m m 六、试验过程

1.安装试样

将试样紧固于试验机上,使试样与试验机夹头保持良好同轴。 2.试验参数设置

包括轴向应力幅、平均应力、试验频率 3.测定在一定轴向应力下的疲劳性能 七﹑实验结果处理

1.下列情况实验数据无效:载荷过高致试样弯曲变形过大,造成中途停机;断口有明显夹渣致使寿命偏低。

2.将所得实验数据列表。

材 料 应力比r 应力幅a σ 疲劳寿命f N S135

0.1

444.4

169059

3.观察破坏断口的特征。

S135钻杆钢疲劳断口 S135钻杆钢拉伸断口、

4.结合所学知识区分说明下列断口的特征。

八﹑思考题

1.疲劳试样的有效工作部分为什么要磨削加工,不允许有周向加工刀痕?

2.实验过程中若有明显的振动,对寿命会产生怎样的影响?

金属疲劳试验方法

铝合金疲劳实验 李慕姚 1351626 一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 了解测定材料疲劳极限的方法。 二、实验设备 1. 疲劳试验机。 2. 游标卡尺。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值 r=m ax m in σσ (2-16) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为σ 1m ax ,经历N 1次循环后,发生疲劳失效,则N 1称为最大应力为σ1 m ax 时的疲劳寿命(简称寿 命)。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力σmax 与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图2-31所示。从图线看出,当应力降到某一极限值σr 时,S-N 曲线趋近于水平线。即应力不超过σr 时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限σr 。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

图2-31 疲劳试验曲线图 工程问题中,有时根据零件寿命的要求,在规定的某一循环次数下,测出σmax ,并称之为疲劳强度。它有别于上面定义的疲劳极限。 用旋转弯曲疲劳实验来测定对称循环的疲劳极限σ-1.设备简单最常使用。各类旋转弯曲疲劳试验机大同小异,图2-32为这类试验机的原理示意图。试样1的两端装入左右两个心轴2后,旋紧左右两根螺杆3。使试样与两个心轴组成一个承受弯曲的“整体梁”上,它支承于两端的滚珠轴承4上。载荷P 通过加力架作用于“梁”上,其受力简图及弯矩图如图2-33所示。梁的中段(试样) 为纯弯曲,且弯矩为M=21 P ɑ。“梁”由高速电机6带动,在套筒7中高速旋转,于是试样横截面上任一点的弯曲正应力,皆为对称循环交变应力,若试样的最小直径为d min ,最小截面边缘上一点的最大和最小应力为 max σ=I Md 2min , min σ=-I Md 2min (2-17) 式中I=64π d 4 m in 。试样每旋转一周,应力就完成一个循环。试样断裂后,套筒压迫停止开关使试验机自动停机。这时的循环次数可由计数器8中读出。 四﹑实验步骤 (1)测量试样最小直径d min ; (2)计算或查出K 值;

金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳、应力腐蚀试验及宏观断口分析 在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。 图1-1 疲劳宏观断口 一﹑实验目的 1.了解测定材料疲劳极限的方法。 2.掌握金属材料拉拉疲劳测试的方法。 3.观察疲劳失效现象和断口特征。 4.掌握慢应变速率拉伸试验的方法。 二、实验设备 1.PLD-50KN-250NM 拉扭疲劳试验机。 2.游标卡尺。 3.试验材料S135钻杆钢。 4.PLT-10慢应变速率拉伸试验。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值为应力比: max min σσ= r (1-1) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为max 1σ,经历N 1次循环后,发生疲劳失效, 则N 1称为最大应力r 为时的max 1σ疲劳寿命(简称寿命) 。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力max σ与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图1-2所示。由图可见,当应力降到某一极限值r σ时,S-N 曲线趋 近于水平线。即应力不超过r σ时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107 次循环下仍未失效的最大应力作为持久极限r σ。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

断口分析

断口分析 研究金属断裂面的学科,是断裂学科的组成部分。金属破断后获得的一对相互匹配的断裂表面及其外观形貌,称断口。断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。通过断口的形态分析去研究一些断裂的基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。如果要求深入地研究材料的冶金因素和环境因素对断裂过程的影响,通常还要进行断口表面的微区成分分析、主体分析、结晶学分析和断口的应力与应变分析等。随着断裂学科的发展,断口分析同断裂力学等所研究的问题更加密切相关,互相渗透,互相配合;断口分析的实验技术和分析问题的深度将会取得新的发展。断口分析现已成为对金属构件进行失效分析的重要手段。 断口的宏观和微观观察断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。通常把低于40倍的观察称为宏观观察,高于40倍的观察称为微观观察。 对断口进行宏观观察的仪器主要是放大镜(约10倍)和体视显微镜(从5~50倍)等。在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径。但如果要对断裂起点附近进行细致研究,分析断裂原因和断裂机制,还必须进行微观观察。 断口的微观观察经历了光学显微镜(观察断口的实用倍数是在 50~500倍间)、透射电子显微镜(观察断口的实用倍数是在 1000~40000倍间)和扫描电子显微镜(观察断口的实用倍数是在 20~10000倍间)三个阶段。因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的焦深,尽可能宽的放大倍数范围和高的分辨率。扫描电子显微镜最能满足上述的综合要求,故近年来对断口观察大多用扫描电子显微镜进行(见金属和合金的微观分析)。 脆性断口和延性断口根据断裂的性质,断口大致可以分为几乎不伴随塑性变形而断裂的脆性断口,和伴随着明显塑性变形的延性断口。脆性断口的断裂面通常与拉伸应力垂直,宏观上断口由具有光泽的结晶亮面组成;延性断口的断裂面可能同拉伸应力垂直或倾斜,分别称为正断口和斜断口;从宏观来看,断口上有细小凹凸,呈纤维状。对于单轴拉伸断口和冲击断口,在理想情况下,其断裂面是由三个明显不同的区域(即纤维区、放射区和剪切唇区)所构成(图1)。这三个区域实际上是裂纹形成区、裂纹扩展区和剪切断裂区(对冲击拉伸则有终了断裂区),通常称它们为断口三要素。对于同一种材料,三个区域的面积及其所占整个断口的比例随外界条件的改变而变化。例如:加载速率愈大,温度愈低,则裂纹扩展区(即放射区)所占的比例也愈大。如果定义裂纹扩展区对另外两个区面积的比值为R,则通常把R=1时的断裂温度称为材料的韧性-脆性转变温度(或延性-脆性转变温度、塑性-脆性转变温度)。如果在同一温度和加载速率下比较两种材料的断裂性质,则R值愈小的材料,其延性(塑性)愈好。 金属断裂的微观机制为了阐明断裂的全过程(包括裂纹的生核和扩展,以及环境因素对断裂过程的影响等),提出种种微观断裂模型,以探讨其物理实质,称为断裂机制。在断口的分析中,各种断裂机制的提出主要是以断口的微观形态为基础,并根据断裂性质、断裂方式以及同环境和时间因素的密切相关性而加以分类。根据大量的研究成果,目前已知主要的金属断裂微观机制可以归纳在表1中。

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

应力腐蚀试验操作规程

文件名称:应力腐蚀试验作业标准 文件编号: 版号: 修改: 生效日期: 编制单位:

编制:年月日 审核:年月日 批准:年月日 发放编号: 受控印章: 目录

1.岗位职责及权限……………………………………………………………………(3 ) 2.主要设备参数及工装………………………………………………………………(3 ) 3.作业流程与操作规程………………………………………………………………(3~6)试样制备和要求………………………………………………………………( 3 ) 试验溶液………………………………………………………………………( 4 ) 推荐的试验装置………………………………………………………………( 4 ) 试验条件与步骤………………………………………………………………(4~5) RCC-M氯化镁应力腐蚀试验…………………………………………………(6 )结果处理………………………………………………………………………( 6 ) 4.相关文件……………………………………………………………………………(6 ) 5.质量记录……………………………………………………………………………(6 ) 6.修訂記錄……………………………………………………………………………(7 ) 7.附件…………………………………………………………………………………(7 )

1.岗位职责与权限 岗位职责 1.1.1按相关应力腐蚀试验技术标准进行试验。 1.1.2提前五分钟到岗,检查晶腐室水、电及药品的使用情况,做好试验前准备工作。 1.1.3坚守工作岗位不得随便离开,有事应向主管请假。 1.1.4认真填写本职责范围内的原始记录、对试验结果负责。 1.1.5负责提出药品及器材的购置计划。 1.1.6有责任接收上级主管部门的考核,复查结果。 1.1.7努力钻研技术,熟悉并认真执行标准,掌握好本岗位的操作技能。 权限 1.2.1对职权范围内的检验任务,按产品的规定有权作出检验结论。 1.2.2对既无产品性能说明,又无技术标准的产品有权拒绝接收检验。 1.2.3有权拒绝外来人员进入试验室,以防药品外流及干扰自已的分析测试工作。 2.主要设备参数及工装 试验采用温度计、回流冷凝器、锥形磨口密封烧瓶(1L)、箱式电阻炉、智能工业调节器AI-804、控温精度≦%、双目显微镜 3.作业流程与操作规程 试样制备和要求 3.1.1GB 3.1.1.1板状试样尺寸:厚1~3mm,宽10mm或15mm,长75mm。 3.1.1.2若试样厚度超过3mm,则仅切削其中一面,使厚度达到3mm,将非切削表面作为试验表面。 3.1.1.3试样的加工采用对于材质影响少的锯切等方法。在剪切的情况下,对切口断面进行切削和磨削加工,以消除剪切的影响。加工后的试样,可根据试验目的需要,进行消除残余应力影响的热处理。 3.1.1.4整个试样表面用GB/T 中规定的水砂纸依次磨到W40号。然后用适当溶剂除油、洗净。 3.1.2 ASTM

疲劳试验简介

疲劳试验(fatigue test)利用金属试样或模拟机件在各种环境下,经受交变载荷循环作用而测定其疲劳性能判据,并研究其断裂过程的试验,即为金属疲劳试验。 1829年德国人阿尔贝特(J.Albert)为解决矿山卷扬机服役过程中钢索经常发生突然断裂,首先以10次/分的频率进行疲劳试验。1852~1869年德国人沃勒(A.W hler)为研究机车车辆,开始以15次/分的频率对车辆部件进行拉伸疲劳试验,以后又用试样以72次/分的频率在旋转弯曲疲劳试验机进行旋转弯曲疲劳试验,他的功绩是指出一些金属存在疲劳极限,并将疲劳试验结果绘成应力与循环周次关系的S-N曲线(图1),又称为W hler曲线。1849年英国人古德曼(J.Goodman)首先考虑了平均应力不为零时非对称载荷下的疲劳问题,并提出耐久图,为金属制件的寿命估算和安全可靠服役奠定理论基础。1946年德国人魏布尔(W.Weibull)对大量疲劳试验数据进行统计分析研究,提出对数疲劳寿命一般符合正态分布(高斯分布),阐明疲劳测试技术中应采用数理统计。 60年代初,从断裂力学观点分析金属疲劳问题,进一步扩大了疲劳研究内容。近年来,由于电液伺服闭环控制疲劳试验机的出现以及近代无损检验技术、现代化仪器仪表等新技术的采用,促进了金属疲劳测试技术的发展。今后应着重各种不同条件(特别是接近服役条件)下金属及其制件的疲劳测试技术的研究。 试验种类和判据 金属疲劳试验种类很多,通常可分为高周疲劳、低周疲劳、热疲劳、冲击疲劳、腐蚀疲劳、接触疲劳、声致疲劳、真空疲劳、高温疲劳、常温疲劳、低温疲劳、旋转弯曲疲劳、平面弯曲疲劳、轴向加载疲劳、扭转疲劳、复合应力疲劳等。应根据金属制件的服役(工作)条件来选择适宜的疲劳试验方法,测试条件要尽量接近服役条件。进行金属疲劳试验的目的在于测定金属的疲劳强度(抗力),由于试验条件不同,表征金属疲劳强度的判据(指标)也不一样。 高周疲劳:高周疲劳时,金属疲劳强度判据是疲劳极限(或条件疲劳极限)即金属经受“无限”多次(或规定周次)应力循环而不断裂的最大应力,以σr表示,其中γ为应力比,即循环中

腐蚀疲劳断口讲解

西安石油大学本科课程设计(论文) 课程设计(论文) 题目:钻杆钢腐蚀疲劳的断口分析学院(系):材料科学与工程学院 专业:金属材料工程 班级:金材1002 学生姓名:李佳典 指导教师:雒设计 所在单位:西安石油大学 完成时间:2013年9月

目录 1.引言 (2) 2. 钻杆钢 (2) 2.1 钻杆钢的分类及应用 (2) 2.2 钻杆钢在腐蚀环境下的失效分析 (2) 3. 实验方法 (3) 3.1 实验材料的选用 (3) 3.2 断口的制备和保存及注意事项 (4) 4. 腐蚀疲劳的断口形貌分析 (4) 4.1 宏观断口形貌特征分析 (5) 4.2 疲劳裂纹源的微观断口形貌特征分析 (6) 4.3 疲劳裂纹扩展区的微观断口形貌特征分析 (7) 5. 结果分析 (8) 5.1 钻杆钢腐蚀疲劳断口形貌特征的影响因素 (8) 6. 结论 (8) 参考文献 (9)

1.引言 许多工程结构件的使用状态,不但是处于交变载荷和常温大气的条件下,而大多数是经受交变载荷和腐蚀介质的共同作用。金属的腐蚀疲劳[1]是工程中经常出现的一种现象,钻探管道,压缩机和燃气轮的叶片,舰船用螺旋桨和舵,蒸汽和水管道,化学工业中的泵轴等,往往遭受到腐蚀疲劳破坏。所以,随着现代化工业的发展,腐蚀疲劳已成为在石油、化工、冶金和海洋灯用钢结构中的重要研究课题之一。国外非常重视腐蚀疲劳研究工作,1973年召开过国际腐蚀疲劳会议。近些年来,已将断裂力学应用于腐蚀疲劳研究中,但是,国内对金属腐蚀疲劳研究很少。 鉴于我国目前海水用钢和抗硫化氢用钢等防腐蚀用钢发展的需要,应积极采取措施在现有疲劳试验机上增加腐蚀装置,大力开展腐蚀疲劳的实验研究工作。 2. 钻杆钢 2.1 钻杆钢的分类及应用 石油钻杆一般采用中碳合金钢,钢管都以热处理状态交货,通常采用调质热处理,得到回火索氏体组织,其具有良好的综合机械性能。按美国石油学会标准API5D钻杆按钢级可分为E-75,X-95,G-105,S-135,短线后的数字代表最小屈服强度,其中S135材质相对于36CrNiMo,36CrMnMo,30CrMn,也可以采用不锈钢材质,如00Cr13Ni5Mo。 钻杆是尾部带有缧纹的钢管,用于连接钻机地表设备和位于钻井底端钻磨设备或底孔装置。钻杆的用途是将钻探泥浆运送到钻头,并与钻头一起提高、降低或旋转底孔装置。钻杆必须能够承受巨大的内外压、扭曲、弯曲和振动。在油气的开采和提炼过程中,钻杆可以多次使用,钻杆的长度一般在九米左右。 光管和原钢管材在经过多次加工步骤后被制成钻杆。首先,通过钢管加厚工序的处理,光管外表面向内弯,钢管管壁加厚。下一步,进行螺纹加工并镀上能够增加强度的铜。然后进行非破坏性质量控制检验,随后进行钢管管体接头的焊接。而后,管体会经历焊接热处理和焊接最终处理,以消除焊接残余压力。在对成品钻杆进行渡漆和包装前要对钢管成品进行其他的一些检测,包括硬度测试,压力测试和非破坏性测试。 2.2 钻杆钢在腐蚀环境下的失效分析 钻杆腐蚀疲劳失效[2,3], 是腐蚀介质和弯曲交变载荷共同作用的结果从大量钻杆失效分析中观察到,腐蚀疲劳失效大都发生在内加厚过渡区终了处,即接头端面0.5~1.0m

常用的金属材料疲劳极限试验方法

常用的金属材料疲劳极限试验方法 疲劳试验可以预测材料或构件在交变载荷作用下的疲劳强度,一般该类试验周期较长,所需设备比较复杂,但是由于一般的力学试验如静力拉伸、硬度和冲击试验,都不能够提供材料在反复交变载荷作用下的性能,因此对于重要的零构件进行疲劳试验是必须的。 MTS 810 金属材料疲劳试验的一些常用试验方法通常包括单点疲劳试验法、升降法、高频振动试验法、超声疲劳试验法、红外热像技术疲劳试验方法等。 单点疲劳试验法

适用于金属材料构件在室温、高温或腐蚀空气中旋转弯曲载荷条件下服役的情况。该种方法在试样数量受限制的情况下,可近似测定疲劳曲线并粗略估计疲劳极限。试验所需的疲劳试验机一般为弯曲疲劳试验机和拉压试验机。 升降法疲劳试验 升降法疲劳试验是获得金属材料或结构疲劳极限的一种比较常用而又精确的方法,在常规疲劳试验方法测定疲劳强度的基础上或在指定寿命的材料或结构的疲劳强度无法通过试验直接测定的情况下,一般采用升降法疲劳试验间接测定疲劳强度。 主要用于测定中、长寿命区材料或结构疲劳强度的随机特性。所需试验机一般为拉压疲劳试验机。 高频振动疲劳试验法 常规疲劳试验中交变载荷的频率一般低于200Hz,无法精确测得一些零件在高频环境状态下的疲劳损伤。高频振动试验利用试验器材产生含有循环载荷频率为1000Hz左右特性的交变惯性力作用于疲劳试样上,可以满足在高频、低幅、高循环环境条件下服役金属材料的疲劳性能研究。

高频振动试验主要用于军民机械工程的需要。试验装置通常包括:控制仪、电荷适配器、功率放大器、加速度计、振动台等。 超声法疲劳试验 超声法疲劳试验是一种加速共振式的疲劳试验方法,其测试频率(20kHz)远远超过常规疲劳测试频率(小于200Hz)。超声疲劳试验可以在不同载荷特征、不同环境和温度等条件下进行,为疲劳研究提供了一个很好的手段。嘉峪检测网提醒超声疲劳试验一般用于超高周疲劳试验,主要针对10^9以上周次疲劳试验。高周疲劳时,材料宏观上主要表现为弹性的,所以在损伤本构关系中采用应力、应变等参量的弹性关系处理,而不涉及微塑性。 红外热像技术疲劳试验方法 为缩短试验时间、减少试验成本,能量方法成为疲劳试验研究的重要方法之一。金属材料的疲劳是一个耗散能量的过程,而温度变化则是研究疲劳过程能量耗散极为重要的参量。 红外热像技术是一种波长转换技术,即将目标的热辐射转换为可见光的技术,利用目标自身各部分热辐射的差异获取二维可视图像,用计

黄铜制成品应力腐蚀试验方法

《黄铜制成品应力腐蚀试验方法》 编制说明 1.任务来源 鉴于环保要求,当今世界上无铅黄铜新材料研发方兴未艾,黄铜的特点之一是会产生应力腐蚀开裂,因此新材料研发及产品应用必须经过应力腐蚀试验验证。黄铜制成品除残余应力外,还可能受到安装应力的作用,而且不能通过热处理方法消除,故必须进行模拟安装使用状态下的应力腐蚀试验,但这正是现行的国家标准所欠缺的。国家标准GB/T 10567.2-2007《铜及铜合金加工材残余应力检验氨熏试验法》仅适用于黄铜加工材,不适用黄铜制成品。因此,很有必要制定《黄铜制成品应力腐蚀试验方法》的全国性通用标准。 根据工业和信息化部工信厅科[2010]74号文《关于印发2010年第一批行业标准制修订计划的通知》精神,全国有色金属标准化技术委员会以有色标委[2010] 21号文下达了制定《黄铜制成品应力腐蚀试验方法》行业标准的项目计划(计划号2010-0426T-YS),由路达(厦门)工业有限公司、中铝洛阳铜业有限公司负责起草标准,并要求在2011年完成标准制定工作。 2.起草过程 标准起草单位首先查阅了国内外有关黄铜应力腐蚀试验方法的标准和资料。国内标准有GB/T 10567.2-2007《铜及铜合金加工材残余应力检验氨熏试验法》。国外同类标准主要有:国际标准ISO 6957-1988《铜合金抗应力腐蚀的氨熏试验》、欧盟标准EN 14977-2006《铜及铜合金拉应力检测 5%氨水试验》(在英、法、德等国普遍使用)、美国标准ASTM B 858-06《检测铜合金应力腐蚀破裂敏感性的氨熏试验方法》和日本标准JIS H 3250-2006《铜及铜合金棒》。 本着起草通用试验新标准应积极采用国际标准和国外先进标准,且技术水平应不低于相应国际标准的原则,标准起草单位对ISO 6957-1988等国外同类标准进行正确翻译和认真解读。然后,根据正交实验原理,对多元因子分别选择多种水平,对典型产品在各种不同使用工况条件下进行了试验研究,掌握了大量的试验数据。通过对试验结果进行深入分析和比较,对国内外相关标准的技术水平有

综述-铝合金疲劳及断口分析报告

文献综述 (2011级) 设计题目铝合金疲劳及断口分析 学生姓名胡伟 学号201111514 专业班级金属材料工程2011级03班指导教师黄俊老师 院系名称材料科学与工程学院 2015年4月12日

铝合金疲劳及断口分析 1 绪论 1.1 引言 7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。 现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。这种断裂形式,对人身以及财产安全造成了不可挽回的损失。经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。 1.2 7系铝合金的发展历史 在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。T。 D683 等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20世纪50年代,德国

疲劳断口宏观分析

1 疲劳断口的形貌特征 疲劳断口是指金属材料或零构件在疲劳断裂过程中形成的一种匹配的表面, 称断裂面或断口。分析它的目的在于确定零构件是否属于疲劳破坏?其破坏的原因是什么?从而提出防止事故的措施和方法,为今后的设计、选材以及加工等问 题提出改进意见。 对断口的形貌进行分析包括两个方面,即宏观断口分析和微观断口分析。所 谓宏观分析是指用肉眼或20—30倍以下放大镜观察断口的形貌特征。微观分析 是指用光学显微镜或电子显微镜对断口进行分析。宏观分析不要求专门设备,被观察断口尺寸不受限制,可以观察断件和断口全貌,了解各个方面变化情况,所以说宏观分析是断口分析的基础。微观分析是用高倍的光学显微镜、c透射电镜,扫描电镜对断口进行分析,能观察断口的精细结构及裂纹形态。 1.1 疲劳断口宏观特征 由于零构件经常承受拉、压、弯、扭或复合应力的作用,因载荷类型不同, 在宏观断口上表现出的形貌特征也不相同。 (1)弯曲应力作用下的疲劳断口 图1-2是在弯曲疲劳载荷作用下的断口示意图。零件在弯曲疲劳载荷作用下,其表面应力最大,中心应力最小,疲劳源首先在表面形成,然后沿着与最大正应力相垂直方向扩展,到最后瞬断。图中(a)是单向弯曲疲劳断口,它的疲劳源 首先在受拉应力一侧表面形成,瞬断区在疲劳源相对侧,其面积大小由材料抗拉强度和外加载荷的大小来决定。图中(b)是双向弯曲疲劳断口,由于双向弯曲,试件上下两侧交替承受拉应力作用,故疲劳源在相对两侧面形成,瞬断区在中间。

图1-3是轴在旋转弯曲应力作用下的疲劳断 口示意图,由于旋转弯曲应力也是表面最大,中 心最小,疲劳源也开始于表面,且疲劳源两侧裂 纹发展速度较中心快,故贝纹线比较扁平。最终 瞬断区虽然也在疲劳源对面,但总是相对于轴的 旋转方向逆偏转一个角度,此种现象称为偏转现 象。 因此,从疲劳源与瞬断区的相对位置便能推知轴的旋转方向。 轴上有无应力集中及应力集中大小,其最终瞬断区的位置是不同的。若应力 集中较小时,疲劳源只在一处发生,最终瞬断区在疲劳源相对应的一侧。若应力集中较大时,则沿周向缺口将同时有几个疲劳源产生,瞬断区的位置则在轴的内部。另外,最终瞬断区的位置还受轴上名义应力大小的影响。名义应力越大,瞬断区越移向轴的中央,如图l—4所示。 图1—5综合给出了上述各种弯曲应力条件下的疲劳断口形态图。

金属疲劳试验

金属疲劳试验主讲教师:

一、实验目的 1. 了解疲劳试验的基本原理。 2. 掌握疲劳极限、S-N曲线的测试方 法。

二、实验原理 1.疲劳抗力指标的意义 目前评定金属材料疲劳性能的基本方法就是通过试验测定其S-N曲线(疲劳曲线),即建立 最大应力σ max 或应力振幅σ α 与其相应的断裂 循环周次N之间的关系曲线。不同金属材料的S-N曲线形状是不同的,大致可以分为两类,如图1所示。其中一类曲线从某应力水平以下开始出现明显的水平部分,如图1(a)所示。这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。

这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。因此将水平部分所对应的应力称之为金属的疲劳极限,用符号σ R 表示(R为最小应力与最大应力之比,称为应力比)。若试验在对称循环应力(即R=-1)下进行,则其疲劳 极限以σ -1表示。中低强度结构钢、铸铁等材料的S- N曲线属于这一类。对这一类材料在测试其疲劳极限时,不可能做到无限次应力循环,而试验表明,这类材料在交变应力作用下,如果应力循环达到107周次不断裂,则表明它可承受无限次应力循环也不会断裂,所以对这类材料常用107周次作为测定疲劳极限的基数。另一类疲劳曲线没有水平部分,其特点是随应力降低,循环周次N不断增大,但不存在无限寿命。如图1(b)所示。在这种情况下,常根据实际需要定出一定循环周次(108或5×107…)下所对应的应力作为金属材料的“条件疲劳极限”,用符号σ R(N) 表示。

2.S-N 曲线的测定 (1) 条件疲劳极限的测定 测试条件疲劳极限采用升降法,试件取13根以上。每级应力增量取预计疲劳极限的5%以内。第一根试件的试验应力水平略高于预计疲劳极限。根据上根试件的试验结果,是失效还是通过(即达到循环基数不破坏)来决定下根试件应力增量是减还是增,失效则减,通过则增。直到全部试件做完。第一次出现相反结果(失效和通过,或通过和失效)以前的试验数据,如在以后试验数据波动范围之外,则予以舍弃;否则,作为有效数据,连同其他数据加以利用,按下列公式计算疲劳极限: ()11n R N i i i v m σσ==∑ 1

金属疲劳试验机

一、产品用途: FLPL金属疲劳试验机主要用于金属材料复合材料合金材料的耐久疲劳性能测定。配置FL高温炉系统可以试验高温疲劳的测试,配置FLWK高低温环境试验装置可以实现高低温疲劳性能的测定。 计算机控制系统疲劳试验软件基于WINDOWS操作系统作为平台,强大的数据处理功能,试验条件和试验结果自动存盘,显示、打印符合相关国家标准的随机成组试验数据、S-N试验曲线、试验报告,广泛适用于科研院所、冶金建筑、航空航天、大专院校、机械制造、交通运输等行业。 二、疲劳机技术参数: 1.试验机型号:FLPL504、FLPL105、FL305; 2.动态试验力:±25KN、±50KN、±250KN; 3.试验力精度:±2%; 4.试验力测量范围:1%--100%FS; 5.伺服作动器的最大位移:±50mm/75mm; 6.试验频率范围:0.1-50 Hz; 7.框架形式:双立柱距离:≥500mm;上下夹头拉伸空间:50~600 mm按要求订制; 8.控制系统:动态闭环疲劳伺服控制系统; 9.控制方式:力、位移、变形控制; 10. 试验波形:正弦波、方波、三角波、斜波、随机波形以及外部输入波形;可实现多段不同频率或幅值组合的正弦波形;用户可以自定义参数的随机波形等; 11.配置FL1200度高温炉、FLWK高低温试验箱、高温变形引伸计、高温疲劳试验夹具等实现复杂的动态力学性能测定; 12.金属疲劳试验机控制系统设计有一套完善的智能化安全管理系统,能实时对试验系统进行巡回自检,实时判断、报告系统的工作状态和工作进程,具有自动监测、自动报警和自动停机功能; 13.试验控制软件FULETEST,在Windows 多种环境下运行,界面友好,操作简单,能完成试验条件、试样参数等设置、试验数据处理,试验数据能以多种文件格式保存,试验结束后可再现试验历程、回放试验数据,试验数据可导入在Word、Excel、Access、MATLAB等多种软件下,进行统计、编辑、分类、拟合试验曲线等操作,试验完成后,可打印出试验报告。

金属材料疲劳研究综述

金属材料疲劳研究综述 摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。本文主要讲述了国内外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。 关键词:金属材料疲劳裂纹疲劳寿命 一.引言 金属疲劳的概念,最早是由J.V.Poncelet 于1830 年在巴黎大学讲演时采用的。当时,“疲劳”一词被用来描述在周期拉压加载下材料强度的衰退。引述美国试验与材料协会( ASTM) 在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义: 在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。在材料结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是

非常有必要的。 由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。由于但是条件的限制,还不能查明疲劳破坏的原因。在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳。2002 年 5 月,华航一架波音747-200 型客机在由台湾中正机场飞往香港机场途中空中解体,19 名机组人员及206名乘客全部遇难。调查发现,飞机后部的金属疲劳裂纹造成机体在空中解体,是导致此次空难的根本原因。直到出现了电子显微镜之后,人类在揭开金属疲劳秘密的道路上不断取得了新的成果,才开发出一些发现和消除金属疲劳的手段。 二.金属疲劳的有关进展 1839年巴黎大学教授在讲课中首先使用了“金属疲劳”的概念。1850一1860年德国工程师提出了应力-寿命图和疲劳极限的概念。1870一1890年间,Gerber研究了平均应力对疲劳寿命的影响。Goodman提出了考虑平均应力影响的简单理论。1920年Griffith发表了关于脆性材料断裂的理论和试验结果。发现玻璃的强度取决于所包含的微裂纹长度,Griffith理论的出现标志着断裂力学的开端。1945年Miner用公式表达出线性积累损伤理论。五十年代,力学理论上对提出应力强度因子K的概念。六十年代,Manson—Coffin公式概括了塑性应变幅值和疲劳寿命之间的关系。Paris在1963年提出疲劳裂纹扩展速率da/dN和应力强度因子幅值?k之间的关系。1974年,美

飞行器结构疲劳强度与断裂分析综述.

飞机结构疲劳强度与断裂分析的现状和未来的发展 学院:经济管理学院 班级:940802020 学号:2009040802050 姓名:冉超 飞机结构疲劳强度与断裂分析的现状和未来的发展疲劳强度是指飞机结果在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。实际上,飞机结构并不可能作无限多次交变载荷试验。 断裂是指飞机结构被断错或发生裂开. 讨论的主要是脆性断裂情况,其断裂面是看得见摸得着的。还有两类断裂的断裂面则是看得见却不一定摸得着的。 许多飞机结果,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后会产生裂纹或突然发生完全断裂。 疲劳破坏是机械零件失效的主要原因之一。据统计,在飞机结构失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。 疲劳失效是金属材料常见的失效形式, 特别是轴类, 连杆, 轴承类等零件, 长期在应力下工作的工件材料都要求较高的疲劳强度, 这样的可以提高零件的使用寿命。疲劳强度同时还与硬度、强度、韧性有较大关系,所以他是金属材料的重要力学性能指标

疲劳强度是材料能够承受无数次应力循环时的最大应力。疲劳强度关系到零件的寿命以及零件工作时能够承受的最大应力,这对零件的安全设计有重大意义。 例如:在齿轮设计中,当接触疲劳强度不满足要求时,假定不再更换材料的前提下,可以用如下方法进行弥补: 1、增加齿轮的齿宽(增加轮齿的接触面积) 2、轮齿进行高频淬火(或中频淬火)、渗碳、渗氮(提高轮齿的表面硬度) 3、磨齿(降低齿轮运行中因为接触强度不足而致使齿面发生胶合、斑蚀的危险性能) 希望以上能对你有所帮助,谢谢 航空工业作为技术密集、知识密集的高技术产业,集材料、机械、发动机、空气动力、电子、超密集加工、特种工艺等各种前沿技术之大成。目前,国际航空技术发达国家早已实施损伤容限耐久性规范,并成为国际适航性条例要求。然而,在飞机结构的三维损伤容限耐久性预测设计方面,由于研究队伍严重萎缩,国际上的实质性进展非常缓慢,三维损伤容限耐久性技术的发展停滞不前。与此同时,现代飞机大量使用三维整体结构,已有技术与需求的矛盾更加突出。这一现状的存在,使得国内外的设计者们在已有技术基础上不得不依靠更加实际、但耗资巨大的全机试验和各级全尺寸部件试验来检验飞机结构的损伤容限和耐久性,虚拟试验的科学基础欠缺。近年随着计算机容量逐渐满足三维断裂分析的需要,国际上三维试验和数值研究 骤增,多尺度研究骤增,虚拟试验的概念形成并得以应用。有影响和代表水平的工作主要出自美国NASA 以Newman 为主的研究组、英国Sheffield 大学nCode 公司及其研究组、法国宇航院(ONERA、瑞典航空研究实验室(FOI,德文首字Blom 研究组,荷兰国防动力研究实验室、澳大利亚国防科技组织(DSTO等[5-8]。但是其损伤容限耐久性技术依据的理论基础仍然是二维疲劳断裂理论,未取得本质上的突破,考虑三维约束的疲劳寿命分析模型也都是建立在大量经验参数基础上

ASTM G139-05用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(中文翻译版)

ASTM G139-05(R2011) ASTM G139-05(R2015)最新 用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(中文翻译版) 1本试验方法由ASTM金属腐蚀委员会G01管辖,并由环境辅助开裂小组委员会G01.06直接负责。 当前版本于2011年9月1日批准。2011年9月出版。最初于2005年批准。上一版于2005年批准为G139-05。DOI: 10.1520/G0139-05R11。 本标准以固定名称G139发布;紧跟在名称后面的数字表示最初采用的年份,如果是修订,则表示最后修订的年份。括号中的数字表示上次重新批准的年份。上标(ε)表示自上次修订或重新批准以来的编辑性更改。 1、范围 1.1本试验方法涵盖了通过断裂荷载试验方法评估抗应力腐蚀开裂(SCC)性的程序,该方法使用剩余强度作为损伤演化(在这种情况下为环境辅助开裂)的测量方法。 1.2本试验方法包括试样类型和复制、试验环境、应力水平、暴露时间、最终强度测定和原始残余强度数据的统计分析。 1.3本试验方法适用于热处理铝合金,即2XXX合金和7XXX,含1.2%至3.0%铜,且试样的取向与晶粒结构(1,2)2相关,横向较短。然而,用于分析数据的残余强度测量和统计数据并非针对可热处理铝合金,可用于其他试样取向和不同类型的材料。 2括号中的黑体数字是指本标准末尾的参考文献列表。 1.4本标准并非旨在解决与其使用相关的所有安全问题(如有)。本标准的使用者有责任在使用前建立适当的安全和健康实践,并确定法规限制的适用性。 2、参考文件 2.1 ASTM标准:3 3有关参考的ASTM标准,请访问ASTM网站https://www.wendangku.net/doc/0f13508185.html,,或通过Service@https://www.wendangku.net/doc/0f13508185.html,联系ASTM客户服务。有关ASTM标准年鉴卷信息,请参阅ASTM网站上的标准文件摘要页。E8金属材料拉伸试验的试验方法 E691进行实验室间研究以确定试验方法精度的实施规程 G44在中性3.5%氯化钠溶液中交替浸入金属和合金的暴露规程 G47测定2XXX和7XXX铝合金产品应力腐蚀开裂敏感性的试验方法 G49直接拉伸应力腐蚀试样的制备和使用规程 G64热处理铝合金抗应力腐蚀开裂分类

钻杆钢腐蚀疲劳的断口分析

科技论文写作 题目:钻杆钢腐蚀疲劳的断口分析钻杆钢腐蚀疲劳的断口分析

摘要:首先通过对钻杆钢进行了疲劳腐蚀实验,然后借助于扫描电镜对S135钻杆钢的腐蚀疲劳断口形貌进行宏观和微观分析研究,最后对其断口形貌形成的影响因素进行讨论。结果表明其疲劳断口是以脆性性为主的多源性断口,且在不同加载载荷下,腐蚀钻杆钢的疲劳断口主要由粗糙程度差异明显的疲劳裂纹源区和劳裂纹稳态扩展区与疲劳裂纹瞬断区组成,在裂纹源区断面相对光滑,裂纹扩展区断面相对粗糙,且疲劳裂纹扩展一般萌生于金属表面。而且随加载载荷的大小不同,其各区域面积也随之不同。 关键词:钻杆钢腐蚀疲劳疲劳断口断口分析 1 引言 随着现代工业的快速发展,当今社会对石油资源的需求越来越大。伴随着浅部油气层的长期开采,各大主力油田大多己进入开发的中后期,浅层勘探很难发现大型的油气资源,因此在今后的油气勘探中,深井、超深井和大位移井等高难度井将成为国内外各大油气田增产上储的主要手段。近年来随着定向井、大位移井、水平井、深井等高难度井应用的逐年增多,钻具失效断裂事故也随之增加。钻具失效在石油钻井界是普遍存在的。在深井!超深井、大位移井等高难度井钻井过程中,钻具的受力状况复杂,井下环境异常恶劣,处在内、外充满钻井液的狭长井眼里工作,通常承受弯曲、挤压、扭转、液体压力等载荷,因此钻具在井下的运动是一个复杂的动力学系统。钻井液是由固体、液体和化学处理剂组成的复杂混合液,碱性极强,pH值大多在7-11之间。在钻井过程中,由于钻井液及其它腐蚀介质(如硫化氢、二氧化碳等)和复杂交变应力的共同作用,会严重降低钻具的疲劳寿命,使钻具极易发生腐蚀疲劳断裂事故。钻具的腐蚀疲劳断裂没有疲劳极限,因此很难预测其疲劳寿命,危害性极大。钻井过程中钻具在任何部位断裂都会造成严重的后果,导致油井报废。美国的统计和估算表明:14%的钻柱断裂事故发生在井上,平均每发生一次损失约106000美元,这是正常消耗以外的巨额费用。据统计我国每年必须用数亿元人民币的外汇进口各种规格的钻杆和钻挺。 根据管材研究所2003年对国内十几个油田调查资料统计:全国每年发生钻具断裂事故约1000起,其中约70%发生在深井、定向井、大位移井、水平井等高难度井中。在管材研究所1999年到2003年完成的钻具失效分析中,有72%

【精品】应力腐蚀试验机

【关键字】精品 《YF-C1型(铝合金C环)应力周浸腐蚀试验机》一、概述 YF-C1型(铝合金C环)试样周期浸润应力腐蚀试验机适用于测量铝合金厚板、挤压件和锻件在高向(短横向)上的应力腐蚀试验。主要应用于铝合金C环试样在一定应力情况下置于周期浸润腐蚀试验箱内进行的应力腐蚀试验等。本产品能模拟户外自然大气腐蚀条件,通过对铝合金C环试样及其焊接材料的耐大气腐蚀的人工气候应力腐蚀加速试验,来评价其耐户外大气腐蚀的质量性能,可供各种科研机构、厂矿中心试验室及航空、航天、机械、电子领域等对产品试样进行浸润腐蚀试验用。 二、满足规范 HB 5259-83 《铝合金C环试样应力腐蚀试验方法》 GB/T 15970.5-1998 《金属和合金的腐蚀应力腐蚀试验》 TB/T2375-93 《铁路用耐侯钢周期浸润腐蚀试验方法》 HB5194-1981 《周期浸润腐蚀试验方法》 GB/T 19746-2005 《金属和合金的腐蚀盐溶液周浸试验》 三、技术指标 1、试验机工作室内尺寸:1200 X 650 X 900( L×D×H); 2、试验机外尺寸:1600 X 800 X 1500 ( L×W×H); 3、腐蚀溶液槽内尺寸:550×250×120 ( L×W×H); 4、试验温度控制范围:室温~ ; 5、湿度控制范围:40%~70%RH; 6、试验温度控制基本点:+和35+; 7、湿度控制基本点:≯45%+5%RH ; 8、温度波动度:≯+; 9、湿度波动度:≯+5%RH; 10、浸润周期时间设定范围:1—9999分钟/小时(任意设定); 11、枯燥周期时间设定范围:1—9999分钟/小时(任意设定); 12、试验时间定时控制:1—9999小时/分钟(任意设定); 13、周浸轮速度调节:无极调速,转速误差≯0.5%;

相关文档