文档库 最新最全的文档下载
当前位置:文档库 › 第11章 运算放大器

第11章 运算放大器

第一章 高性能放大器

第一章高性能(特殊)运算放大器 内容: 一.集成运算放大器的主要参数 二.动态校零型斩波放大器 三.仪器放大器 四.隔离放大器 五.仪器放大器和隔离放大器的应用 引言 问题1:放大器的作用?等效模型?有哪几个参数? 问题2:运放的基本结构?多级直接耦合放大电路存在的主要问题?为何采用差分输入级? 放大电路的等效模型:主要有Ri,Ro和Avo三个参数。还有其它一些参数如:带宽等。 集成电路运算放大器是一种①高电压增益、②高输入阻抗和③低

输出阻抗的④多级直接耦合放大电路。它的类型很多,电路也不一样,但结构具有共同之处。图1-1是集成运故的内部电路组成原理框图,图1-2是uA741的内部电路图。 (1)图中输入级一般是由BJT,JFET或MOSFET组成的差分式放大电路,利用它的对称特性可以提高整个电路的共模抑制比和抑制零点漂移,它的两个输入端构成整个电路的反相输入端和同相输入端。 (2)电压放大级的主要作用是提高电压增益,它可由一级或多级直接耦合放大电路组成。 (3)输出级一般由电压跟随器或互补电压跟随器所组成,以降低输出电阻,提高带负载能力。 (4)偏置电路是为各级提供合适的工作电流。此外还有一些辅助环节,如电平移动电路、过载保护电路以及高频补偿环节等。

复习:运算放大器理想化模型所做的几点假设是什么? (1) (2) (3) (4) 复习:理想运放在负反馈电路中有哪两个特点? 问题1:反相比例放大器的电路, 放大倍数,反馈类型和特点,电路特点? 问题2:同相比例放大器的电路, 放大倍数,反馈类型和特点,电路特点? 问题3:一个实际使用时的有趣问题:下图中输出电压Vo=?

模电训练题及答案第二章

【1】电路如图(a)所示。设为A理想的运算放大器,稳压管DZ的稳定电压等于5V。 (1)若输入信号的波形如图(b)所示,试画出输出电压的波形。 (2)试说明本电路中稳压管的作用。 图(a) 图(b) 【相关知识】 反相输入比例器、稳压管、运放。 【解题思路】 (1)当稳压管截止时,电路为反相比例器。 (2)当稳压管导通后,输出电压被限制在稳压管的稳定电压。 【解题过程】 (1)当时,稳压管截止,电路的电压增益 故输出电压 当时,稳压管导通,电路的输出电压被限制在,即 。根据以上分析,可画出的波形如图(c)所示。

图(c) (2)由以上的分析可知,当输入信号较小时,电路能线性放大;当输入信号较大时稳压管起限幅的作用。 【2】在图(a)示电路中,已知, ,,设A为理想运算放大器,其输出电压最大值为,试分别求出当电位器的滑动端移到最上端、中间位置和最下端时的输出电压的值。反馈类型? 图(a) 【相关知识】 反相输入比例器。 【解题思路】 当时电路工作闭环状态;当时电路工作开环状态。 【解题过程】 (1)当的滑动端上移到最上端时,电路为典型的反相输入比例放大电路。输出电压

(2)当的滑动端处在中间位置时,画出输出端等效电路及电流的参考 方向如图(b)所示。图中。 图(b) 由图可知 以上各式联立求解得 代入有关数据得 (3)当的滑动端处于最下端时,电路因负反馈消失而工作在开环状态。此时,反相输入端电位高于同相输入端电位,运放处于负饱和状态。输出电压。 【3】电压-电流转换电路如图所示,已知集成运放为理想运放,R2=R3=R4=R7=R,R5=2R。求解i L与u I之间的函数关系。

第一章习题答案

《传感器与测试技术》复习题 1.什么是传感器?它由哪几个部分组成?分别起到什么作用? 解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。2.传感器技术的发展动向表现在哪几个方面? 解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。 (2)开发研制新型传感器及组成新型测试系统 ①MEMS技术要求研制微型传感器。如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。 ②研制仿生传感器 ③研制海洋探测用传感器 ④研制成分分析用传感器 ⑤研制微弱信号检测传感器 (3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。它们的特点是传感器与微型计算机有机结合,构成智能传感器。系统功能最大程度地用软件实现。 (4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。 (5)多功能与多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。 3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。 1)传感器的线性度是指传感器的输出与输入之间数量关系的线性程度; 2)传感器的灵敏度S是指传感器的输出量增量Δy与引起输出量增量Δy的输入量增量Δx 的比值; 3)传感器的迟滞是指传感器在正(输入量增大)反(输入量减小)行程期间其输出-输入特性曲线不重合的现象;

运算放大器应用设计的技巧总结

运算放大器应用设计的几个技巧 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA?级,选择输入电流pA?级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题? 有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题? 对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。 网友“camel”和“windman”还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑! 而嘉宾张世龙则建议,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决: 1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。

第一章 模拟电子技术基础答案_黄瑞祥版

运算放大器习题解答 1.1 在图P1.1所示的电路中,运算放大器的开环增益A 是有限的,Ω=M R 11,Ω=K R 12。当V v i 0.4=时,测得输出电压为V v o 0.4=,则该运算放大器的开环增益A 为多少? i v 图P1.1 解:V v R R R v i 1001441010106 33212=?+=+=+,100110014400===-=+-+v v v v v A 1.2 假设图P1.2所示电路中的运算放大器都是理想的,试求每个电路的电压增益i o v v G = ,输入阻抗i R 及输出阻抗o R 。 (a) i v Ω K 100 (b) i v i R Ω K 100(c) i v o Ω K 100(e) i v (d) i v i R Ω K 100(f) i v i R Ω K 100 图P1.2

解: (a )01010=Ω=-=O i R K R G ,, (b )01010=Ω=-=O i R K R G ,, (c )01010=Ω=-=O i R K R G ,, (d )00==-∞=O i R R G , , (e )0100=Ω==O i R K R G ,, (f )Ω=Ω=-=501010O i R K R G , , 1.3有一个理想运算放大器及三个ΩK 10电阻,利用串并联组合可以得到最大的电压增益 G (非无限)为多少?此时对应的输入阻抗为多少?最小的电压增益G (非零)为多少? 此时对应的输入阻抗为多少?要求画出相应的电路。 解:最大的电压增益可以采用同相放大器形式,如下图(a ),其电压增益为3,对应的输入阻抗为无穷大; 最小的电压增益可以采用反相放大器形式,如下图(b ),其电压增益为0.5,对应的输入阻抗为ΩK 10或ΩK 5; i v i R Ω K 10o i v i R Ω K 10ΩK 10 1.4一个理想运算放大器与电阻1R 、2R 组成反相放大器,其中1R 为输入回路电阻,2R 为闭合环路电阻。试问在下列情况下放大器的闭环增益为多少? (a )Ω=K R 101,Ω=K R 502 (b) Ω=K R 101,Ω=K R 52

第四章 集成运算放大器(36)

第四章集成运算放大器 运算放大器简称运放,它是一种高增益直流放大器,因最初用于模拟计算机中进行各种数学运算而得名。如果将整个运算放大器制在一小块硅片上,就成了集成运算放大器。 集成运放具有性能稳定、可靠性高、寿命长、体积小、重量轻、耗电量少等优点,在电子技术中的应用非常广泛。 §4-1 集成运放的组成与性能 一、集成运算放大器的组成 1.集成运放的基本组成及各组成部分的特点和作用 a.集成运放的组成方框图如图4-1(a)所示。 b.各组成部分的特点和作用: (1)输入级一般采用差动放大电路,其特点是输入阻抗高、零漂小、抗共模干扰信号的能力强。 (2)中间级一般由共发射极放大电路构成,其主要作用是进行高增益的电压放大。 (3)输出级一般由互补对称电路或射极跟随器构成,其特点是输出阻抗低、带负载的能力强、能够输出足够大的电压与电流。 (4)偏臵电路一般由各种恒流源电路构成,其作用是为上述各级电路提供稳定和合适的偏臵电流,决定各级的静态工作点。 (5)为防止输入信号过大或输出端短路,在集成运放中还设臵有过电流保护电路。 2.集成运放的电路符号 a.集成运放的电路符号如图4-1(b)所示。箭头所指方向是信号的正向传输方向;“∞”表示放大倍数很

大;它有两个输入端,一个是同相输入端、一个是反相输入端,输出端的电压相位与同相输入端的相同。 b.在集成运放的电路符号中,一般没有将正、负电源的连接端以及调零端、相位补偿端画出来。但在实际电路中这些端子都是非常重要的。 c.在应用集成运放时,重要的是掌握它各个管脚的用途及它的主要性能指标,至于它内部电路的结构如何,可以不去关注。 3.集成运放的分类:常用的集成运放有通用型、低功耗型、高精度型、高输入阻抗型、高速型、宽带型和高压型等。各种集成运放的性能详见教材的附录四。 二、集成运算放大器的主要性能指标 为了正确挑选和使用集成运放,需对集成运放的主要性能指标有所了解。 1.输入失调电压U IO: a.理想集成运放无失调,实际集成运放存在失调现象(即输入的零时,输出不为零)。 b.输入失调电压U IO的定义:为了使集成运放的输出电压为零,而加在其输入端的直流补偿电压(输入这个直流补偿电压后,输出电压将为零),叫做集成运放的输入失调电压U IO。(U IO =U os/A ud,U os是输入电压为零时的输出电压,A ud为集成运放的电压增益。) c. U IO的大小反映了差动输入级的对称程度,U IO越大,集成运放的对称性越差。 2.输入失调电流I IO: a. I IO就是无输入信号时,两个输入端的静态电流I+与I-之差,即I IO=I+-I-。 b. I IO是由差动输入级两个晶体管的β值不一致而引起的。 3.开环电压增益A ud: a.定义:运放开环运用(无外接反馈电路)时 。

仪表放大器的应用技巧(摘)

仪表放大器电路设计技巧 Charles Kitchin,Lew Counts 美国模拟器件公司 长期以来,为仪表放大器供电的传统方法是采用双电源或双极性电源,这具有允许正负输入摆幅和输出摆幅的明显优势。随著元器件技术的发展,单电源工作已经成为现代仪表放大器一个越来越有用的特性。现在许多数据采集系统都是采用低电压单电源供电。对于单电源系统,有两个至关重要的特性。首先,仪表放大器的输入范围应当在正电源和负电源之间(或接地电压)扩展。其次,放大器的输出摆幅也应当接近电源电压的两端(R-R),提供一个与电源电压的任一端或地电位相差100mV(或小于100mV)以内的输出摆幅(V-+0.1V~V+-0.1V)。比较起来,一个标准的双电源仪表放大器的输出摆幅只能与电源电压的任一端或地电位相差1V或2V以内。当采用5V 单电源工作时,这些仪表放大器仅具有1V或2V输出电压摆幅,而真正的R-R输出仪表放大器能提供几乎与电源电压一样高的峰峰输出摆幅。另一个重要点是单电源或R-R仪表放大器采用双电源仍能工作(甚至更好)并且通常其工作电源电压比传统的双电源器件低。 电源解耦是一个经常被工程师忽视的重要细节。通常,旁路电容器(典型值为0.1μF)连接在每个IC的电源引脚和地之间。尽管通常情况适合,但是这在实际应用中可能无效或甚至产生比根本没有旁路电容器更坏的瞬态电压。因此考虑电路中的电流在何处产生,从何处返回和通过什麽路径返回是很重要的问题。一旦确定,应当在地周围和其他信号路径周围旁路这些电流。 通常,像运算放大器一样,大多数单片仪表放大器都有其以电源的一端或两端为参考端的积分器并且应当相对输出参考端解耦。这意味著对于每颗晶片在每个电源引脚与仪表放大器的参考端在PCB上的连接点之间应连接一个旁路电容器,如图1所示。 图1、电源旁路的推荐方法 1.输入接地返回的重要性 当使用仪表放大器电路时出现的一个最常见的应用问题是缺乏为仪表放大器的输入偏置电流提供一个DC返回路径。这通常发生在当仪表放大器的输入是容性耦合时。图2示出这样一个电路。

集成运算放大器练习题及答案

第十章 练习题 1. 集成运算放大器是: 答 ( ) (a) 直接耦合多级放大器 (b) 阻容耦合多级放大器 (c) 变压器耦合多级放大器 2. 集成运算放大器的共模抑制比越大, 表示该组件: 答 ( ) (a) 差模信号放大倍数越大; (b) 带负载能力越强; (c) 抑制零点漂移的能力越强 3. 电路如图10-1所示,R F2 引入的反馈为 : 答 ( ) (a) 串联电压负反馈 (b) 并联电压负反馈 (c) 串联电流负反馈 (d) 正反馈 图10-1 4. 比例运算电路如图10-2所示,该电路的输出电阻为: 答 ( ) (a) R F (b) R 1+R F (c) 零 图10-2 5. 电路如图10-3所示,能够实现u u O i =- 运算关系的电路是: 答 ( ) (a) 图1 (b) 图2 (c) 图3 图10-3 6. 电路如图10-4所示,则该电路为: 答 ( )

(a)加法运算电路; (b)反相积分运算电路; (c) 同相比例运算电路 图10-4 7. 电路如图10-5所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 O u i 1 u i2 图10-5 8. 电路如图10-6所示,该电路为: 答 ( ) (a) 加法运算电路 (b) 减法运算电路 (c) 比例运算电路 u O u i 1u i2 图10-6 9. 电路如图10-7所示,该电路为: 答 ( ) (a)比例运算电路 (b) 比例—积分运算电路 (c) 微分运算电路 O u 图10-7 10. 电路如图10-8所示 ,输入电压u I V =1,电阻R R 1210==k Ω, 电位器R P 的阻值为20k Ω 。 试求:(1) 当R P 滑动点滑动到A 点时,u O =? (2) 当R P 滑动点滑动到B 点时,u O =? (3) 当R P 滑动点滑动到C 点(R P 的中点)时 , u O =?

运算放大器基础

运算放大器核心是一个差动放大器。 就是两个三极管背靠背连着。共同分担一个横流源的电流。三极管一个是运放的 正向输入,一个是反向输入。正向输入的三极管放大后送到一个功率放大电路放 大输出。 这样,如果正向输入端的电压升高,那么输出自然也变大了。如果反相输入端电 压升高,因为反相三级管和正向三级管共同分担了一个恒流源。反向三级管电流 大了,那正向的就要小,所以输出就会降低。因此叫反向输入。 当然,电路内部还有很多其它的功能部件,但核心就是这样的。 数字电路即为TTL或C-MOS逻辑电路,而谈到模拟电路,首先就应想到运算放大器。但是,这里讲的运算放大器是怎样一个器件呢? 简而言之,运算放大器是具有两个输入端,一个输出端,以极大的放大率将两输入端之间的电压放大之后,传递到输出端的一种放大器。 如果以电路符号来表示运算放大器,则如 右图,可表示为三角形。它的两个输入部分分 别叫做非倒相输入(1N+)和倒相输入(IN-)。 它以极大的放大率将倒相输入端与非倒相输 人端之间的电压放大,然后从输出端(OUT)输 出。 模拟/zh2002202 发表于2007-04-09, 14:09 1.“虚断”和“虚短”概念 如果为了简化包含有运算放大器的电子电路,总是假设运算放大器是理想的,这样就有“虚短”和“虚断”概念。 “虚短”是指在理想情况下,两个输入端的电位相等,就好像两个输入端短接在一起,但事实上并没有短接,称为“虚短”。虚短的必要条件是运放引入深度负反馈。 “虚断”是指在理想情况下,流入集成运算放大器输入端电流为零。这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路。但事实上并没有开 路,称为“虚断”。 2.集成运算放大器线性应用电路 集成运算放大器实际上是高增益直耦多级放大电路,它实现线性应用的必要条件是引入深度负反馈。此时,运放本身工作在线性区,两输入端的电压与输出电压成线 性关系,各种基本运算电路就是由集成运放加上不同的输入回路和反馈回路构成。 在分析由运放构成的各种基本运算电路时,一定要抓住不同的输入方式(同相或反相)和负反馈这两个基本点。 3.有源滤波电路

第9章 集成运算放大器 习题参考答案

第9章 集成运算放大器 习题参考答案 9.1 理想运算放大器有哪些特点?什么是“虚断”和“虚短”? 解:开环电压放大倍数A u o →∞; 差模输入电阻r id →∞; 输出电阻r o →0; 共模抑制比K CMRR →∞。 -+≈u u 由于两个输入端间的电压为零,而又不是短路,故称为“虚短”; 0≈=-+i i 像这样,输入端相当于断路,而又不是断开,称为“虚断”。 9.2 电路如图9.2所示,求下列情况下,U O 和U i 的关系式。 (1)S 1和S 3闭合,S 2断开时; (2)S 1和S 2闭合,S 3断开时。 解:(1)这是反相比例运算电路,代入公式,得 i u u -=0 (2)根据叠加原理得i u u =0 。 9.3 如图9.2.2所示是用运算放大器测量电阻的原理电路,输出端接有满量程5V ,500mA 的 电压表。当电压表指示2.5V 时,试计算被测电阻R x 的阻值。 解:因为流过R x 和R 1的电流相等,即10V/ R 1=2.5 V/ R x ,所以计算得R x =500K Ω。 9.4 电路如图9.2.9所示,已知初始时刻电容两端的电压为零,C=1μF ,R =10K Ω。输入电 压波形如图9.2所示。画出输出电压u o 的波形,并求出u o 从0V 变化到-5V 需要多少 时间?

解:t RC t u 1000-=- =,波形如图: u o 从0V 变化到-5V 需要的时间 为-100t=-5V ,则t=0.05S 。 9.5 在图9.2.1的反相比例运算电路中,设R 1=10K Ω,R f =500 K Ω。 试求闭环电压放大倍数。若u i =10mV ,则u o 为多少? 解:5105001 -=Ω Ω- =- =K K R R A f uf mV mV u 501050-=?-=。 9.6 在图9.2.3的同相比例运算电路中,设R 1=2K Ω,R f =10 K Ω。 试求闭环电压放大倍数。若u i =10mV ,则u o 为多少? 解:6210111 =Ω Ω+ =+ =K K R R A f uf ,mV mV u 601060=?= 。 9.7 在图9.3中,已知R f = 2R 1,u i = -2V 。 试求输出电压u o 。 解:前一级是电压跟随器电路,后一级是反相比例运算电路,所以V u R R u i f 41 0=- = 。 9.8 图9.4是利用两个运算放大器组成的较高输入电阻的差动放大电路。 试求输出u o 与输入u i1 ,u i2的运算关系式。 解:前一级是同相比例运算电路,后一级是差动运算电路,所以10111i u K u ??? ??+= 。 9.9 积分运算电路如图9.2.5所示,R 1=10K Ω,其输出与输入的关系为?-=t u u d 100 S o ,求 C =?。 解:因为?- =t u RC u d 1S o ,所以1/RC=100,C=1μF 。

第八章 集成运算放大器及应用

第八章 集成运算放大器及应用 §8.1 知识点归纳 一、通用集成运放的特点 集成运放(OA )是模拟IC 中最重要的品种。它是一个以差动放大器作输入级的高增益直接耦合电压放大器,一般具有很高的输入电阻和很低的输出电阻的特点。 通用集成运放741电路分析(图8-3): ·输入级:CC-CB 差放(41~T T ),有源负载(75~T T ),恒流源偏置(98~T T ) ·第一隔离级:射极输出器(16T ) ·中间高增益级:共射组态(17T ),有源负载(12T ,a T 13) ·第二隔离级:射级输出器(a T 24),有源负载(12T ,b T 13) ·输出级:NPN-PNP 互补OCL 电路(14T ,18T ),克服交越失真的偏置(15T ,23T ) ·保护电路:(1)输出保护电路(19T ,20T ) (2)中间级保护电路(22T ,21T ),20T 工作时,启动该电流源对16T 提供保护。 相位补偿电路:内部电路中唯一的电容具有单位增益补偿功能,使741在闭环增益为1时仍不会自激。 二、集成OA 的主要指标 ·开环增益vd A ,一般在80~120dB 。 ·差模输入电阻id R ,数十6k ~10M ΩΩ。 ·输入失调电压IO v 及其温度系数T V IO d d 。 ·输入失调电流IO I 及其温度系数d d IO I T 。 两个失调参数是衡量高精度运放的指标。 ·电源电压:一般在36V 以下。有双电源和单电源运放之分。“轨到轨”运放是指最 大输出几乎等于电源电压的运放。低电压工作运放是手持通信设备所需的品种。 ·增益带宽积G BW :指频率升高使1=vd A 时的频率值。射频运放的G BW 可高达1GHz 以上。G BW 是衡量运放放大高频小信号能力的参数。 ·转换速度SR :运放对输入大信号的上升沿和下降沿的响应速度。SR 是衡量运放对 高速信号处理的能力,高速OA 的SR 可达到4000V/s μ。 三、理想运放及理想运放分析法 1.集成OA 具有vd A 、id R 极大,0R 很小的接近理想电压放大器的特点。 在OA 负反馈应用电路中,往往满足深负反馈条件。故在分析这类应用电路时,把OA 视为“理想运放”。分析理想运放应用电路时,可采用理想运放满足的“虚短路(-+=V V )”和“虚开路(0==-+I I )”的条件。 2.运放的两种基本负反馈放大器 采用理想运放分析法可获得运放同相和反相放大器的一些指标。总结为表8-2。 表8-2 反相放大器与同相放大器比较

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

第3章.集成运算放大器及其应用习题解答

第3章集成运算放大器及其应用习题解答 3.1 差动放大电路的工作原理是什么? 解:最简单的差动放大电路由两个完全对称的单管放大电路拼接而成。由于电路的对称性,输出信号电压采用从两管集电极间提取的双端输出方式,对于无论什么原因引起的零点漂移,均能有效地抑制。 在电路的两个输入端输入大小相等、极性相同的信号电压,由于电路的对称性,两管集电极电位的大小、方向变化相同,输出电压为零(双端输出)。说明差动放大电路对共模信号无放大作用。共模信号的电压放大倍数为零。 在电路的两个输入端输入大小相等、极性相反的信号电压,由于电路的对称性,差动放大电路的输出电压为两管各自输出电压变化量的两倍。 3.2 集成运算放大器的基本组成有哪些? 解:从电路的总体结构上看,集成运算放大器基本上都由输入级、中间放大级、输出级和偏置电路四个部分组成。 3.3 集成运算放大器的主要参数有哪些? 解:1.开环差摸电压增益: 2.输入失调电压U io: 3.输入失调电流I io: 4.差摸输入电阻r id和输出电阻r o: 5.共模抑制比K CMR: 6.最大差模输入电压U idmax: 7.最大共模输入电压U icmax: 8.静态功耗P co: 9.最大输出电压U opp: 3.4 理想集成运算放大器的主要条件是什么? 解:(1)开环差模电压增益A ud=∞; (2)共模抑制比K CMR=∞; (3)开环差模输入电阻r id=∞; (4)开环共模输入电阻r ic=∞; (5)开环输出电阻r o=0。 3.5 通用型集成运放一般由几部分电路组成,每一部分常采用哪种基本电路?通常对每

一部分性能的要求分别是什么? 解:(1)输入级:一般采用具有恒流源的双输入端的差分放大电路,主要作用是减小放大电路的零点漂移、提高输入阻抗。 (2)中间放大级:一般采用多级放大电路,主要作用是放大电压,使整个集成运算放大器有足够高的电压放大倍数。 (3)输出级:一般采用射级输出器或互补对称电路,其目的是实现与负载的匹配,使电路有较大的输出功率和较强的带负载能力。 (4)偏置电路:是为上述各级电路提供稳定合适的偏置电流,稳定各级的静态工作点,一般由各种恒流源电路构成。 3.6 已知一个集成运放的开环差模增益A od为100dB,最大输出电压峰-峰值U opp=±14V,分别计算差模输入电压u I(即u+-u-)为10μV、100μV、1mV、1V和-10μV、-100μV、-1mV、-1V时的输出电压u o。 解:因为U=A od u I,A od=100dB即A od=105,所以, 当u I(即u+-u-)为10μV、100μV、-10μV、-100μV时 U=A od u I分别为1V、10V、-1V、-10V。 当u I(即u+-u-)为1mV、1V时,U=A od u I为最大值14V。 当u I(即u+-u-)为-1mV、-1V时,U=A od u I为负最大值-14V。 3.7 电路如图3-32所示,具有理想的对称性。设各管β均相同。 (1)说明电路中各晶体管的作用; (2)若输入差模电压为(u i1-u i2),则由此产生的差模电流为△i o,求解电路电流放大倍数A i的近似表达式。 图3-32 习题3.7的图 解:(1)T1和T2组成复合放大管,T3和T4也是组成复合放大管,具有放大差模信号和抑制共模信号的作用。T5和T6组成恒流源电路,具有恒流作用。

第一章 集成运算放大器测试题

第一章 集成运算放大器自测题 一、填空题 二、分析计算题 1、某运算放大器电路如图1所示,运算放大器为理想的,且电阻值R 为已知,设输入信号为s v 。试问: (1)当输入信号s v 仅接在端口A 处,端口B 接地,试求该放大器的电压增益 s o v v G = ,从A 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? (2)当输入信号s v 仅接在端口B 处,端口A 接地,试求该放大器的电压增益 s o v v G = ,从B 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? (3)当输入信号s v 跨接在端口A 、B 处时,且要求s v 信号A 端为正,B 端为负,

试求该放大器的电压增益s o v v G =,从A 、B 点看进去的输入阻抗i R ,输出阻抗o R 分别为多少? R 20o v 2、在图2所示的运算放大器电路中,假设运算放大器试理想的,并且各电阻为已知值。 (1)试写出输出函数的表达式(要求有过程)。 (2)试求图中所示的输入阻抗i R 和输出阻抗o R 。 1 v 2 v o 3、米勒积分器电路如图3(a )所示,且初始输入电压和输出电压均为0,时间常数为mS RC 1==τ 。若输入的波形如图3(b )所示,试画出输出的波形(要求坐标对齐并标明数值)。 o v 图3 i v 4、图4所示的电路为浮动负载(两个连接端都没接地的负载提供电压),这在电 源电路中有很好的应用性,假设运算放大器是理想的。 (1)当节点A 输入峰峰值为1V 的正弦波i v 时,试画出节点B 、节点C 对地时

的电压波形,并画出o v 的波形。 (2)电压增益 i o v v 为多少? C B 图4 i v 5、图5为实用的单电源供电的自举式同相交流电压放大器电路,假设运算放大器是理想的。已知Ω===K R R R 10431,Ω=K R 502,Ω=M R 15。 F C C C μ10321===,V V CC 15+=。问: (1)放大器的各信号端口的直流电位为多少?电容321C C C 、、的作用是什么? (2)交流放大倍数 i o v v 为多少,输入阻抗 i R 为多大? o 6、在图6所示的电路中,比较器的输出电压的最大值为V 10±。试画出个电路 的电压传输特性曲线。 1 o v 图6 2 o v (a) (c) v 2(b) v 33 o i v

第3章 集成运算放大器习题集答案

第3章 集成运算放大器及其应用 一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) 1.运放的输入失调电压U IO 是两输入端电位之差。( ) 2.运放的输入失调电流I IO 是两端电流之差。( ) 3.运放的共模抑制比c d CMR A A K ( ) 4.有源负载可以增大放大电路的输出电流。( ) 5.在输入信号作用时,偏置电路改变了各放大管的动态电流。( ) 6.运算电路中一般均引入负反馈。( ) 7.在运算电路中,集成运放的反相输入端均为虚地。( ) 8.凡是运算电路都可利用“虚短”和“虚断”的概念求解运算关系。 ( ) 9.各种滤波电路的通带放大倍数的数值均大于1。( ) 二、选择题 (注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) 1.集成运放电路采用直接耦合方式是因为 。 A.可获得很大的放大倍数 B .可使温漂小 C.集成工艺难于制造大容量电容 2.通用型集成运放适用于放大 。 A .高频信号 B. 低频信号 C. 任何频率信号 3.集成运放制造工艺使得同类半导体管的 。 A. 指标参数准确 B. 参数不受温度影响 C .参数一致性好 4.集成运放的输入级采用差分放大电路是因为可以 。 A .减小温漂 B. 增大放大倍数 C. 提高输入电阻 5.为增大电压放大倍数,集成运放的中间级多采用 。 A .共射放大电路 B. 共集放大电路 C .共基放大电路 6.现有电路:A. 反相比例运算电路 B. 同相比例运算电路 C. 积分运算电路 D. 微分运算电路 E. 加法运算电路 选择一个合适的答案填入空内。 (1)欲将正弦波电压移相+90O ,应选用 。 (2)欲将正弦波电压叠加上一个直流量,应选用 。 (3)欲实现A u =-100的放大电路,应选用 。 (4)欲将方波电压转换成三角波电压,应选用 。

运算放大器使用技巧

运算放大器使用技巧 一、采用哪种放大器 运算放大器基本电路有反相放大器及同相放大器,在实际使用中如何选择? 如果输入与输出要求反相,当然要采用反相放大器,若放大的是交流信号,并无相位要求则可以采用同相放大器或反相放大器。采用哪种好呢?这要根据具体情况来分析。 采用反相放大器的优点是:运放不管有无输入信号,其两输入端电位始终近似为零.两输入端之间仅有低于μV级的差动信号(或称差模信号).而同相输入放大器的两个输入端之间除有极小的差模信号外,同时还存在较大的共模电压。虽然运放有较大的共模抑制比,但多少也会因共模电压带来一些误差。同相放大器的优点是输入阻抗极高,因此输入电阻取大取小影响不大,而反相放大器的输入阻抗Zi与输入电阻Ri大小有关(输入阻抗Zi等于输人电阻Ri) 例如,输入阻抗要求100kΩ;增益要求300,则若采用反相放大器时,Ri=100kΩ,Rf=30MΩ.这样大的反馈阻值对通用运放很难正常工作了,在这种情况时,采用同相放大器更合适。 另外,还要看信号源的内阻大小。某些传感器的内阻较大,若采用输入阻抗较小的放大电路,会影响测量精度、在这种情况时采用同相放大器更为合适。 这里介绍一种既采用反相放大器,而且也不采用阻值大的反馈电阻的电路,如图1 所示这电路中的反馈电 阻Rf不直接接在输出端, 而按在由R1、R2组成分 压器的中点A。现对此电 路进行一些分析。 此电路要求输入阻抗为100KΩ,增益为-500。按一般反相放大器设计,Ri=100 K Ω,Rf=50MΩ。 A点的分压比为R1/(R1+R2)=1/500,且有R1《Rf。根据“虚短”及“虚断”原则,可以列出下式: Ii=Vi/100KΩ=If, IfRf=-VA,

运算放大器在电路中发挥重要的作用

运算放大器在电路中发挥重要的作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面扮演重要角色。在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电电路设计、偏置电路设计、PCB设计等方面的问题。在电子工程专辑网站举行的《运算放大器应用设计》专题讨论中,圣邦微电子有限公司总裁张世龙先生应邀回答与工程师进行互动。我们也基于此专题讨论,总结出了运算放大器应用设计的几个技巧,以飨读者。 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题?

电路第一章习题解答

第一章 1.由某元件一端流入该元件的电荷量为q =(6 t 2-12 t )mC ,求在t =0和t =3s 时由该端流入该元件的电流i 。 解: ()t i = dt dq = ( )dt t t d 1262-()mA 1212-=t ()mA ,0时s t =∴ i () t 0 =t =mA 12- ,3时s t =∴ i ()t 3=t =3mA 241212=-? 2.由某元件一端流入该元件的电流为 i =6 t 2-2 t A ,求从t =1s 到t =3s 由该端点流入该元件的电荷量。 解: ()= t i dt dq ][()?=∴2 1 21,t t dt t i t t q () ?-= 2 1 262 t t dt t t () 21 2 32t t t t -= 从t=1s 到t=3s,由该端流入的电荷量为 ][3,1q =() 1233222331 2 3?--?=-t t ()C 441=+ 3.一个二端元件的端电压恒为6V ,如果有3A 的恒定电流从该元件的高电位流向低电位,求(a )元件吸收的功率;(b )在2s 到4s 时间内元件吸收的能量。 解:()1元件吸收功率W p 1836=?= ()2在2s 到4s 时间内元件吸收的能量 ()dt t dw p = ][21,t t w ∴()?=2 1t t dt t p []4,2w ()J dt 3624181842 =-== ? 4.一个二端元件吸收的电能w 如图题1-4所示。如果该元件的电流和电压为关联参考方向,

且A π1000 cos 1.0t i =,求在t =1ms 和t =4ms 时元件上的电压。 13 10 图题1-4 解: dt dw p = 又ui p = i dt dw u = ∴ 在()ms t 20-=时 ()mJ t w 5= ()V t i i dt dw u π1000cos 1.05 5= ==∴ ()V u t 5010 1000cos 1.05 3 1 -=?= ∴-= 在()ms t 82-=时 ()22 810 1310---=-t w ()mJ t w 92 1 += ()V t t i dt dw u ππ1000cos 51000cos 1.021 ===∴ () ()V u t 510 41000cos 5 3 4 =??= ∴-=π 5.求图题1-5中各电源所提供的功率。 2A 6V -9V (a) (b) (c) (d)

相关文档
相关文档 最新文档