文档库 最新最全的文档下载
当前位置:文档库 › 如何通过实时示波器进行抖动测试和分析

如何通过实时示波器进行抖动测试和分析

如何通过实时示波器进行抖动测试和分析
如何通过实时示波器进行抖动测试和分析

SDH抖动测试(DOC)

SDH抖动测试 一、抖动特性 1、抖动的概念 在理想情况下,数字信号在时间域上的位置是确定的,即在预定的时间位置上将回出现数字脉冲(1或0)。然而由于种种非理想的因素会导致数字信号偏离它的理想时间位置。我们将数字信号的特定时刻(例如最佳抽样时刻)相对其理想时间位置的短时间偏离称为定时抖动,简称抖动。这里所谓短时间偏离是指变化频率高于10H的相位变化,而将低于的相位变化称为漂移。事实上,两者的区分不仅在相位变化的频率不同,而且在产生机理、特性和对网络的影响方面也不尽相同。 定时抖动对网络的性能损伤表现在下面几个方面: *对数字编码的模拟信号,解码后数字流的随机相位抖动使恢复后的样值具有不规则的相位,从而造成输出模拟信号的失真,形成所谓抖动噪声,影响业务信号质量,特别是图像信号质量。 *在再生器中,定时的不规则性使有效判决点偏离接收眼图的中心,从而降低了再生器的信噪比余度,直至发生误码。 *对于需要缓存器和相位比较器的数字设备,过大的抖动会造成缓存器的溢出或取空,从而导致不可控滑动损伤。 2、抖动机理 (1)、PDH与SDH共有的抖动源 A、随机性抖动源 * 各类噪声源 * 定时滤波器失谐 * 完全不相关的图案抖动 B、系统性抖动源 * 码间干扰 * 有限脉宽作用 * 限幅器的门限漂移 * 激光器的图案效应 (2)、SDH设备特有的抖动机理 A、指针调整抖动 SDH设备的支路信号的同步机理采用所谓的指针调整,即利用指针值的增减调整来补偿低速支路信号的相位变化和频率变化,由于指针调整是按字节为单位进行的,调整时将带来很大的相位跃变。带有这些相位跃变的数字信号通过带限电路时将会产生很长的相位过滤过程。处于正常同步工作的SDH网中的指针调整主要是由于同步分配过程中的随机噪声引起的,因而由之引起

发动机振动测试技术研究

硕士研究生课程论文 发动机振动测试系统研究 任课教师:XXX 学生姓名:XXX 年级:2013级 学生编号: 专业:车辆工程 时间:2014年1月10日 发动机振动测试系统研究 摘要:发动机振动是影响汽车性能的重要因素,会严重影响汽车的平顺性以及其

他性能。因此对发动机振动的测试、信号处理以及分析是发动机测试中十分重要的环节。本文简述了发动机振动测试的意义,对发动机测试的方法、信号采集与分析的基本理论和测试系统的基本组成做了简要介绍。 关键词:发动机振动;振动测试;测试系统 Study on Engine Vibration Test System Abstract: The vehicle vibration is the important factor which influences vehicle functions and this kind of vibration will seriously influence the performances and functions of the whole vehicle. So, vehicle vibration measurement, signal processing and analysis is a very important part.The significance of engine vibration test, basic theory of acquisition and analysis methods of the engine test signals and the constitute of the test system is introduced briefly in this thesis. Key words:engine vibration;vibration test;test system

示波器在频谱测试中的作用

示波器在频谱测试中的作用 对于大量新型设计来说,频域分析是一种关键的调试功能。但是,频域分析必须与时域、数字信号或逻辑通道保持严密的同步。频谱分析对调试工作的价值通常取决于分析速度(更新速度),因此信号的捕捉和发现极富挑战性。此外,仪器还必须具备足够高的频域和时域灵敏度,以便能够捕捉到信号,如因电磁干扰或其它干扰所产生的频域杂散信号等微小信号。为了获得可以用来调试支持多种信号类型的复杂系统的有价值信息,必须基于时间事件、频率事件或数字码型实现精确触发。 在复杂的嵌入式系统中,通常需要同时监测时域和频域中的多个信号。尽管基带数字信号、射频信号和模拟信号是相互关联和依存的,但是基于传统的调试方法,人们常常无法描述或捕捉它们之间的关系。采用微控制器实现的RF 信号反馈控制、低速串行总线、严格的时序关系,以及RF和数字信号之间电磁干扰等都是原型设计阶段令人头痛的问题。 通常可以使用数字示波器分析这些信号所产生的问题,但是大多数开发人员却试图寻找其它的仪器。虽然最终可能完成了工作,但是却花费了大量时间,还需要非常丰富经验。将模拟信号、数字信号和RF信号的测试功能整合在一台仪器中,可以降低对不同设计项目所需要的时间和专家经验。 任何信号都是关于时间和幅值的函数。因此,不仅需要捕捉信号幅值,而且还要捕捉信号如何随时间而变化。傅立叶变换是将时域函数变换成频域频谱的主要技术。该变换可以为从某个时域波形中采样的信号给出某个时间点的频谱快照。它使得瞬时频谱可以测量,从而可以测量某个信号在任何时刻的频率分量。据此,可以观察频谱随时间而发生的变化,了解什么时候存在以及什么时候不存在干扰,时域事件和频域事件之间是如何关联的。

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

音频测试-示波器-使用方法

★目的:介绍示波器的使用方法,使相关人员能正确操作示波器。 ★示波器的概述 示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察和测量电信号。下图1为我厂常用的20MHz的双踪示波器。 ★示波器的操作方法 第一步骤:示波器的连接 1)连接电源线 用220V AC线把示波器连上220V市电。(如上图2) 2)连接信号线 将探头插入到示波器左边的CH1接口并顺时针扭动半圈(如上图3)。当探头接在示波器的CH1通道上时,模式开关须打在CH1上(如下图4)。当探头接在示波器的CH2通道上时,模式开关须打在CH2上。(如下图5) 图 1 图 2 图 3 探头接在 CH1通道上

3) 信号耦合开关的选择(AC GND DC ) 信号耦合开关一般紧挨着输入通道,CH1通道和CH2通道各有1个。当只用来观察被测信号中的交流成分时,将开关拔至AC 档(本厂一般选择此档);当信号的直流成份和交流成分都要观察或信号的频率较低时,将开关拔至DC 档;当开关拔至GND 档时,输入端处于接地状态,用以确定输入端为零时光迹所在位置。(如下图6) 第二步骤:开机与光迹调节 上述步骤完成后,接下来需要开机预热和调节光迹。(如下图7和图8) 1) 开机(POWER ) 按电源键开机,开机后电源指示灯会亮。电源按键旁一般标有英文单词power 。 2) 亮度调节(INTENSITY ) 如果光迹的亮度正常,就不需要调节。当亮度不正常时,我们就左右调节亮度旋纽,顺时针旋转为增亮,逆时针为调暗。亮度调节旋纽旁一般会标有“INTE ”的字样。亮度的英文单词为 intensity 。注意亮度不宜太高,以免影响示波器的使用寿命。 3) 聚焦调节(FOCUS ) 用以调节示波管电子束的焦点,使显示的光点成为细而清晰的圆点。当光束正常时,我们也不需要调节,只有在光束太粗或不清晰时,我们左右调节聚焦旋纽,使光束处于细而清晰的状态。聚焦调节旋纽旁一般会标有“FOCUS ”的字样。聚焦的英文单词为focus 。 4) 光迹平行度调节(TRACE ROTATION ) 图 5 电源开关 电源指示灯 亮度调节 聚焦调节 图 7 光迹平行度调节 光 迹 图 8 正弦波信号光迹 模式开关选择 CH1通道 图 6 图 4 模式开关选择 CH2通道 探头接在 CH2通道上 信号耦合 选择开关

示波器测试数据

_uc66267884c5de5517764cd4f5c (2016, May 11, Wednesday, 06:45:44) | Instrument Analysis:_uc477ac600152066790 | | Plot title: | | Analysis settings | | | Initial Conditions:_uc881ea52a84ea7751f521d59cb67614ef6 | | | Starting time (TSTART):0 | | | Stop time (TSTOP):1e+030 | | | Plotting increment (TSTEP):1e-005 | | | Maximum time step (TMAX):1e-005 | | _uc76267884c4e0081f4602768c067e5 | | _uc45206679053d891cf | | | _ucc57284eff771f7ed3675f65f6663e793a8bbe590753c26570 | | Representation as SPICE commands | | | begin-scope page | | | checknodes 3 | | | save all | | | iplot all | | | set trtol = 7 | | | set itl4 = 100 | | | set convlimit | | | set rshunt = 1e+012 | | | -param hrange 0 1e+030 | | | save | | | tran -env-options 1e-005 1e+030 0 1e-005 auto_ic | | | if-error end-scope audit-log-show | | | show all | | | showmod all | | | end-scope | | Multisim_uc69ed88ba45206679090099879 | | | _uca622a65ad95198bef4f308ba18fc75ea656e07d20: 7 | | | _uc84e0a90e877ac60018fed4ee396505236: 100 | | | _ucb4e3a4ee378016a21578b542f752896c64e2d534f52a9 | | | _ucc52066d417535963b4ece6a2162df828270b9523057309762: 1e+012 | _uc65de55177520667908f9351fa | | TRAN: _uc665f695f495f49694592a5c0f; time = 0.000420402, timestep = 1.25e-015:_uc46545969c828270b9b1:xu1#branch | | doAnalyses: timestep too small | | | | | | tran simulation(s) aborted _uc66267884c5de5517764cd4f5c (2016, May 11, Wednesday, 06:51:08) | Instrument Analysis:_uc477ac600152066790 | | Plot title: | | Analysis settings

示波器检测全电视视频信号的波形图解

示波器检测全电视视频信号的波形图解 彩电维修更是示波器用武之地,图①②③是全电视视频信号的波形,这种波形贯穿图像通道的全过程。对有光栅有伴音而无图像的故障此波形的有无处就是故障所在点。图④是场输出波形,当光栅出现异常是此波形将有明显变形。最下边是三幅波形图和对应的电视屏幕图像场畸形⑤是行输出变形,一般情况下不要测行管集电极,以免击穿探头。可测低压绕组的输出端,也可在1比10衰减探头后再接一个9M的电阻去测试。图⑩是行振荡电路输出的行激励波形。当行输出波形变成图11波形时多是行激励不足,行管发热温升快,易烧坏。图12是高压包局部短路的波形。图⑥是晶体振动器的波形,在示波器频率指标不够时看到的是一条亮带。它是判断CPU是否工作的主要依据。图⑦是开关电源开关管集电极的波形,是判断电源是否振荡的基本条件。如波形上沿有毛刺将导致开关变压器支支响和开关管损坏。图⑧是沙堡脉冲波形,它是由三个作用不同的脉冲组合而成,在场频时将观察不到它的全貌。它的有无将影响视频信号的色彩和亮度处理。图⑨是视放尾板上三个电子枪阴极的波形,与一些图纸上所标波形不一样,因图纸所 标是彩条信号的波形,这是电视图像的信号波形。

笔者最近将ET521A及健伍CS-4035模拟(40M)示波器进行了实际波形测试,并拍下了一些彩电波形供大 家参考。 健伍CS-4035为带宽40MHz的实时模拟示波器,属典型的手动调节(无CRT读出功能)测试示波器,其所有测试均需手动调节,需对水平扫描速度、垂直灵敏度、同步电平等控制功能进行适当调节方能获得稳定合适的波形显示,由于其采用屏幕为8*10cm内刻度高亮度示波管进行波形显示,故而扫描线亮度清晰度高,内设有电视行场同步触发滤波通道,能方便观察到稳定的行场同步电视信号波形,是比较适合的常 用模拟示波器。 ET521A波形测量采用数字取样、液晶显示,显示采用几秒刷新一次,方便人眼观察,当波形变化较多时,其显示的波形在显示一种波形后,下一次显示的波形又会有所不同,初次接触到的该类显示方式的朋友会不习惯,感觉到波形老是一跳一跳的,实际上是示波表在捕捉动态波形,进行静态显示,此时更能观察到波形的各个细节;当测量的波形为稳定而变化很小的信号时,则显示波形的稳定性与CRT模拟示波器显示无多大差别的,以上是笔者对数字示波表测量显示的粗浅理解,请大家多多指教。 被测彩电为21吋海信OM8370超级芯片彩电比较关键的波形,工作信号是A V信号(卫星接收机实时视频信号)输入;其中标有第“2(或其它)”脚是指OM8370的引脚序号,请大家注意,其它的一些波形都注明了电路功能位置的。下面的图形中标有图a的是CS-4035测得的波形,而标有图b波形为ET521A测 得的波形; 由于CS-4035为手动调节的模拟示波器,故而测量波形时须得适当调节水平扫描、垂直灵敏度、触发同步模式及同步电平等才能获得合适的波形显示,由于其档位难以完整记录,故而未列出其波形的周期、频率、Vp-p值等,只是为取得适当观察的波形进行拍摄,并不说明测量时不用调节其测量旋钮,其各项参数可参考ET521A的读数,ET521A全面的数据显示,可极其方便读取波形的频率、周期、Vp-p值,供参 考分析。 一、OM8370第②、③脚时钟、数据线波形图: 此主题相关图片如下:2脚波形.jpg 此主题相关图片如下:第2脚scl串行时钟信号波形图b.jpg

抖动分类与测量

抖动分类与测量 李惠民力科公司华南区应用工程师 在现在的协议一致性测试中,“抖动”似乎已经成为了一个绕不开的名词,它是评估信号质量的一个关键指标。然而,各个通信协议对抖动似乎有着不同的要求,到底抖动的各个分量有什么意义呢?它们又是如何测量得到准确的结果呢?在系统设计中又该如何改善抖动指标呢?希望看完本文之后您能够得到一些帮助。 抖动的定义 过去,时钟频率只有10MHz。电路板或者封装设计的主要挑战就是如何自双层板上布通所有的信号线以及如何在组装时不破坏封装,在那个时代,数字信号基本上不需要考虑“信号质量”的;然而随着时钟频率的提高,信号周期和上升沿也已经普遍变短,这个时候,信号完整性就变得十分重要。特别的,当时钟频率超过1GHz时,由于时钟周期变短,“抖动”这个指标在信号质量也变得十分重要。 抖动是指信号与理想时钟之间的偏差[1]。如下面图1和图2两个时序中,可以明显看出,图2中信号与理想时钟之间偏差相对较图1比更大,若两个信号时钟频率相同,我们就可以说图2中的抖动比图1中大。 图1信号和理想时钟之间的偏差 图2更“大”的抖动 需要注意的是,抖动和频偏并不是不是相同的概念,一般讨论抖动是要在一段时间内实际信号和理想时钟之间速率相同或者相差很小的情况。图3中,这段

时间内,实际信号和理想时钟之间的频率偏差约为7%,一般来说我们讨论抖动的时候频偏不会超过5000ppm(即0.5%),图3这种情况不再我们的讨论范围之内。 图3“频偏”并不是我们所讨论的抖动 另外,抖动的绝对值在有些情况下参考意义并不太大。假若是10MHz的时钟频率,每个周期为100ns,1ns的抖动似乎对信号没有太大的影响。然而当频率为500MHz时,1ns的抖动就很的能会影响信号信号质量,使得信号在传输过程在出现误码。所以我们在很多情况下会用UI这个相对单位;1UI即为1个时钟周期所花费的时间。若信号的时钟周期为10MHz时,1UI对应为100ns。相应的还有mUI,1mUI即0.001UI。相对单位比绝对时间单位更能看出抖动对信号质量的影响。 抖动的分类 在说抖动分类之前,首先我想说一下源同步与时钟恢复技术。想必大家在学习和使用单片机的时候应该对同步通信和异步通信有比较深刻的认识;同步通信的典型代表就是SPI,特点就是同时传送时钟和数据;异步通信的经典代表是UART,只需要两根线就可以实现全双工。源同步和SPI类似,在通信的时候同时传输时钟和数据,但是高速的时钟信号在传输过程中衰减很大,而且容易引起EMI,所以一般会对同步时钟进行分频,源同步的代表有HDMI,其时钟频率是信号速率的1/10。时钟恢复技术可以在串行数据中提取出时钟,然后用恢复出来的时钟对信号进行采样,克服异步通信中由于不同源带来的的频偏和抖动,时钟恢复的代表有USB,万兆以太网等。 首先,我们需要明确的一点就是——抖动是时间的函数,确切的来说,抖动是和时钟周期相关的。 在讨论抖动分类的时候,我们一般会从三个维度去讨论。 从关注抖动参数的类型,可以分成TIE(Time interval error),Period

音频测试-示波器-使用方法

音频测试-示波器-使用方法

类别音频设备版本R1文件编号C304-OSCILL- 制定部门品保部制定日期2011年11月30日页次2/7 ★目的:介绍示波器的使用方法,使相关人员能正确操作示波器。 ★示波器的概述 示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察和测量电信号。下图1为我厂常用的20MHz的双踪示波器。 ★示波器的操作方法 第一步骤:示波器的连接 图 1 图 2 图 3 探头接在 CH1通道上

类 别 音频设备 版 本 R1 文件编号 C304-OSCILL- 制定部门 品保部 制定日期 2011年11月30日 页 次 3/7 1) 连接电源线 用220V AC 线把示波器连上220V 市电。(如上图2) 2) 连接信号线 将探头插入到示波器左边的CH1接口并顺时针扭动半圈(如上图3)。当探头接在示波器的CH1通道上时,模式开关须打在CH1上(如下图4)。当探头接在示波器的CH2通道上时,模式开关须打在CH2上。(如下图5) 3) 信号耦合开关的选择(AC GND DC ) 信号耦合开关一般紧挨着输入通道,CH1通道和CH2通道各有1个。当只用来观察被测信号中的交流成分时,将开关拔至AC 档(本厂一般选择此档);当信号的直流成份和交流成分都要观察或信号的频率较低时,将开关拔至DC 档;当开关拔至GND 档时,输入端处于接地状态,用以确定输入端为零时光迹所在位置。(如下图6) 第二步骤:开机与光迹调节 上述步骤完成后,接下来需要开机预热和调节光迹。(如下图7和图8) 图 5 电源开关 电源指示灯 亮度调节 聚焦调节 光迹平行度调节 光 迹 正弦波信号光迹 模式开关选择 CH1通道 图 6 图 4 模式开关选 择 探头接在 CH2通道上 信号耦合 选择开关

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

高级抖动溯源分析方法

高级抖动溯源分析方法 安捷伦科技(中国)有限公司孙灯亮 抖动的定义及和相位噪声和频率噪声的关系 抖动是数字系统的信号完整性测试的核心内容之一,是时钟和串行信号的最重要测量参数(注:并行总线的最重要测量参数是建立时间和保持时间)。 一般这样定义抖动:“信号的某特定时刻相对于其理想时间位置上的短期偏离为抖动”(参考:Bell Communications Research,Inc(Bellcore),"Synchrous Optical Network(SONET) Transport Systems:Common Generic Criteria, TR-253-CORE",Issue 2, Rev No.1, December 1997".如图1所示。其中快过10HZ的偏离定义为抖动(Jitter),漫过10Hz的偏离定义为漂 移(Wander)。 图1. 时钟和数据抖动的定义 抖动和相位噪声和频率噪声有什么关系呢? 图2.抖动和相位噪声和频率噪声的关系

抖动成分的分解及各个抖动成分的特征及产生原因 随着信号速率的不断提高和对精度的越来越高要求,需要进行抖动成分的分离以更深入表征抖动特征和查找问题根源。一般按图3进行抖动成分的分离。 图3.抖动成分分离图 各个英文的中文翻译如下。 Total Jitter(TJ):总体抖动; Random Jitter(RJ):随机抖动; Deterministic Jitter(DJ):确定性抖动; Data Dependent Jitter(DDJ):数据相关抖动; Periodic Jitter(PJ):周期性抖动; Inter-symbol Interference(ISI):码间干扰 Duty Cycle Distortion(DCD):占空比失真; Sub Rate Jitter(SRJ):子速率抖动。 下面分别讨论每种抖动成分的特征和产生原因。 1、随机抖动RJ 随机抖动是不能预测的定时噪声,因为它没有可以识别的模式。典型的随机噪声实例是在无线电接收机调谐到没有活动的载频时听到的声音。尽管在理论上随机过程具有任意概率分布,但我们假设随机抖动呈现高斯分布,以建立抖动模型。这种假设的原因之一是,在许多电路中,随机噪声的主要来源是热噪声(也称为Johnson 噪声或散粒噪声),而热噪声呈现高斯分布。另一个比较基础的原因是,根据中心极限定理,不管各个噪声源采用什么分布,许多不相关的噪声源的合成效应该接近高斯分布。高斯分布也称为正态分布,但它的一个最重要的特点是:对高斯变量,它可以达到的峰值是无穷大。尽管这种随机变量的大多数样本将会聚集在中间值的周围,但在理论上,任何单一的样本,它可以偏离中间值任意大的量。所以,高斯分布都没有峰到峰边界值,从这种分布中的样本数越多,所测得的峰到峰值将越大。所以,我们用stdev或RMS(均方差)值来衡量随机抖动RJ。 2、确定性抖动DJ 确定抖动是可以重复的、可以预测的定时抖动。正因如此,这个抖动的峰到峰值具有上下限,在数量相对较少的观察基础上,通常可以以高置信度观察或预测其边界。DDJ和PJ 根据抖动特点和根本成因进一步细分了这类抖动。确定性抖动和随机抖动在统计图上可以用图4形象化表示。

振动噪声测试过程设置

第一步,开启服务器后,选择signature testing-advanced,打开测试软件 第二步,打开软件后,选择新建工程按钮

第三步,打开空白的工程后的页面如下

第四步,进入channel setup 界面,开始设置通道 一般情况下,tacho1设为转速信号通道,只需点选其前面单选框就可以,其他在后面的tracking setup里面设置。 噪声通道设为1-6,首先要把channelgroup选为acoustic。然后,将每个点的位置用汉语拼音标注出来,如1通道为前面测点,写为qian,如此类推。方向不用设置。Inputmode选择为ICP.其余不用在这里改动,后面calibration过程会更改一写这里的参数。 其余7-16设为振动信号,振动为三向传感器,所以每个传感器有3个通道,三个振动测点共占用9个通道。首先要把channelgroup选为vibration。然后,将每个点的位置用汉语拼音标注出来,如7通道为前面油底壳1测点+x方向,写为油底壳1,direction选择+X,如此类推。振动传感器的灵敏度系数直接通过输入的方式进行标定,单位为mv/g。传感器类型选择ICP. 设置完以上步骤的界面如下图所示。

第五步,进行声压传感器的标定。 具体设置为:单位:pa,频率:1000HZ, LEVEL: 94dB(rms),标定时间:10s。 然后,手持麦克风标定器将传感器夹持住后,点击界面的check,如果正常,点击start按钮开始标定,过程中,左侧窗口会出现信号曲线,稳定状态需要保持10s,方能完成标定,数值稳定后,如果两次标定结果相差小于2%,接受这个通道的标定数据,如果两次结果相差较大,需要重新检查标定。

示波器测试的问题

最近一位工程师来问,说对电路板上的波形进行测试时,一接上示波器就烧板子上的器件,问是怎么回事。初以为是电路板设计问题,看原理图也没发现明显错误,百思不得其解中。后借出差机会面看,方醒悟之。 前几日,一协作单位投诉我公司所提供板卡有问题,说测试起来如何如何,一查与此问题类似,遂深以为有必要在此说明一下,以免出现同案犯。 示波器的探头上有两根线,一根在硬表笔上,一根是软线甩出来,头上接个小夹子,以便夹住接地点。在我们通常的认识中,这两根线在测量的时候,就是测的两点之间的压差,照此理解,此探头其实可以随便接了。其实不然。很多示波器表笔上的那根软线是接地线,而且这根接地线与示波器的大地相接的。如果贸然将此二线接到了两个测试点上,而该二测试点均有对地的电压的话,则被测板上的测试点的电平会通过示波器上的这根测试线接到地上去,而示波器与被测对象的地之间导通的话,则相当于通过示波器的测试地线将被测板上的信号电平短路到了地,出现何样的后果就得看电路的设计思路了。轻则信号不对,重则烧东西也不为过。 示意如图。未测之前,电流I流过A和B,不会超标。但接上测试仪器后,形成如图的电流路径L,B两端都对接地了,A器件则可能电流过载,即使不过载,测量的结果也不会准了。(本图仅为说明道理之用,不代表所有电路均为此结构,实际情况要复杂得多) 若必须做这种测试的话,解决之道有二: 1. 确认测试表笔为差分探头,这种表笔内部电路及测量接线均有考虑,可避免 此类问题; 2. 或者用双踪示波器,将二表笔的地接在一起,接到板子的基准零电平的地上 去,用二表笔的两个测试端分别接被测的两点。

测试有风险,启动需谨慎。不然则会出现本为治聋,聋没治好,却给致哑了。

抖动测试-UI

第六部分抖动测试 6、1 抖动特性 一、抖动的概念 在理想情况下,数字信号在时间域上的位置是确定的,即在预定的时间位置上将会出现数字脉冲(1或0)。然而由于种种非理想的因素会导致数字信号偏离它的理想时间位置。我们将数字信号的特定时刻(例如最佳抽样时刻)相对其理想时间位置的短时间偏离称为定时抖动,简称抖动。这里所谓短时间偏离是指变化频率高于10Hz的相位变化,而将低于10Hz的相位变化称为漂移。事实上,两者的区分不仅在相位变化的频率不同,而且在产生机理、特性和对网络的影响方面也不尽相同。 定时抖动对网络的性能损伤表现在下面几个方面: *对数字编码的模拟信号,解码后数字流的随机相位抖动使恢复后的样值具有不规则的相位,从而造成输出模拟信号的失真,形成所谓抖动噪声,影响业务信号质量,特别是图像信号质量。 *在再生器中,定时的不规则性使有效判决点偏离接收眼图的中心,从而降低了再生器的信噪比余度,直至发生误码。 *对于需要缓存器和相位比较器的数字设备,过大的抖动会造成缓存器的溢出或取空,从而导致不可控滑动损伤。 二、抖动机理

1、PDH与SDH共有的抖动源 (1)、随机性抖动源 * 各类噪声源 * 定时滤波器失谐 * 完全不相关的图案抖动 (2)、系统性抖动源 * 码间干扰 * 有限脉宽作用 * 限幅器的门限漂移 * 激光器的图案效应 2、SDH设备特有的抖动机理 (1)、指针调整抖动 SDH设备的支路信号的同步机理采用所谓的指针调整,即利用指针值的增减调整来补偿低速支路信号的相位变化和频率变化,由于指针调整是按字节为单位进行的,调整时将带来很大的相位跃变。带有这些相位跃变的数字信号通过带限电路时将会产生很长的相位过滤过程。处于正常同步工作的SDH网中的指针调整主要是由于同步分配过程中的随机噪声引起的,因而由之引起的相位跃变的出现时刻是不规律的,整个相位调整的时间可能很长。因此,指针调整与网同步的结合将在SDH/PDH边界产生很低频率的抖动或漂移,这种抖动称为指针调整抖动。 (2)、映射抖动

测试仪器示波器使用技巧经验总结

测试仪器示波器使用技巧经验总结 姓名:施三保部门:BMP开发部 工号:91248 日期:2006-9-5 摘要:通过实际项目模块测试过程,探讨和总结了公司Agilent示波器的一些使用技巧和方法,结合公司的测试规范,介绍了一些常用性能指标的测试。 关键词:示波器;技巧;性能;总结;模块 Abstract: According to the process of practical test of the model, and in order to share my test experience, some skills and methods of how to use the oscillograph well are presented. In term of the test criterion of our company, test way of common performances is introduced as well. Keywords: Oscillograph; Skill;Performance; Conclusion; Module 前言 示波器是电源开发工程师必要的工具,几乎每天都要使用。公司一般使用安捷伦示波器,功能十分强大,许多开发人员都是第一次使用这样的示波器,对于其繁琐的操作和复杂的功能往往不知所措,许多人也只了解其一般的基本功能,这些都会一定程度的影响工作效率和开发进度甚至测试错误的数据。我自入职以来,没有参加很多的调试和设计工作,但做过很多模块的测试,对于安捷伦示波器54624A的使用有了一些自己的心得,鉴于公司没有示波器使用的教程、培训和使用手册等,现写下我的一点体会,希望能对其他同事有一点点帮助。 一,示波器使用注意事项 1,测量时不要超过模拟探头的最高电压: ①类为300Vrms,400Vpk;②类为100Vrms,400Vpk,否则可能损坏示波器。 2,注意测量时的接地,如果需要把接地线连到不能用电源线接地的电路中某一点,就应该使用差分探头。 3,开始测量时,进行探头补偿,使其特性与示波器相匹配。方法是将探头连到Probe Comp 上,按下autoscale(自动定标),然后使用非金属工具调整探头上的电容器,获得较为平坦的脉冲。 4,选择示波器输入阻抗;按Inped软键选择,50欧模式使用50欧配套电缆,用于高频测量,可使得信号通道中反射最小,得到最准确的测量结果;1M欧模式用于普通测量,需要使用探头,阻抗越高,示波器对被测电路的负载影响越小。 5.调节显示亮度;按下Display软键,旋转输入旋钮可以改变显示亮度,可在0到100%之间调节,Grid软键中显示了其亮度级,网络中的每个主格对应于显示屏顶部状态行中示出的扫描速度时间;为了改变显示波形的亮度,可以通过旋转前面板左下角的Intensity(亮度)旋钮。 6.开始和停止数据采集。通过按Run/Stop键来进行波形采集与停止采集的切换,当其为绿色时,为采集信号状态,为红色时为停止采集状态,当触发模式为stop时,可以旋转水平与垂直按钮,对显示的波形进行缩放与测量。

结合抖动测试方法

ANT-20E结合抖动测试方法 (仅供内部使用) 拟制:日期: 审核:日期:yyyy/mm/dd 审核:日期:yyyy/mm/dd 批准:日期:yyyy/mm/dd 华为技术有限公司 版权所有不得复制

目录 1 结合抖动的定义和指标描述 (3) 1 E1信号结合抖动测试方法和步骤 (4) 2 E3信号结合抖动测试方法和步骤 (11) 3 E4信号结合抖动测试方法和步骤 (16)

结合抖动的定义和指标描述 SDH设备的结合抖动是支路映射和指针调整结合作用,在设备解复用侧的PDH支路输出口所产生的抖动。在ITU-T规范的四种特定指针调整序列下的结合抖动指标见下表。 测试用指针序列a、b、c、d分别定义如下: a-极性相反的单指针; b-规则指针加一个双指针; c-漏掉一个指针的规则单指针; d-极性相反的双指针。 下面以2M信号为例,解释各个指针序列的定义: a指针序列:比如说目前的指针值为522相隔T1时间后将指针值减一即为521,再相隔T1时间后将指针值在加一即为522,就这样循环往复就形成了指针序列a。

b指针序列:比如说目前的指针值为522相隔T2时间后将指针值加一即为523,再相隔T2时间后将指针值加一即为524,如此循环4次后再隔T3的时间将指针值加一。就这样按照四个T2加一个T3为一个循环周期,循环往复就形成了指针序列b。 c指针序列:比如说目前的指针值为522相隔T2时间后将指针值加一即为523,再相隔T2时间后将指针值加一即为524,如此循环4次后再隔T2的时间指针值不变。就这样按照五个T2为一个循环周期,循环往复就形成了指针序列c。 d指针序列:比如说目前的指针值为522相隔T3时间后将指针值加一即为523,再相隔T1时间后将指针值减一即为522,再相隔一个T3时间后将指针值加一即为521,再相隔一个T1时间后将指针值加一即为522。就这样以两个T1加T3为周期,循环往复就形成了指针序列d。 1E1信号结合抖动测试方法和步骤 1、按下图接好电路和仪表。 图1 2、选择“Instruments”下拉式菜单,在此菜单中选择“Add&Remove...”选项,见图2。

示波器的测试波形

示波器的测试波形 摘要:示波器是电子技术基础实验中和电子设备的检修中最常用的仪器之一,而在使用示波器之时,被测信号测试波形的不稳定常常会造成无法读取波形数据或测量不精确。经过在教学中和示波器的使用中不断地摸索和总结,要稳定示波器的测试波形,应注意易困惑使用者的几个问题,如触发及触发源的选择,电源触发的方法,触发电平自动锁定,输入耦合开关使用,常态触发(NOR)和自动触发(AUTO)转换,探头合理使用等。只要合理的使用和调节,选择正确的档位和测量方法就可以使得示波器的测试波形稳定,以达到精确测量。 关键词:示波器?被测信号?触发脉冲?波形稳定 正文: 一、触发及触发源的选择。 在使用示波器时,一个最基本的问题就是如何使得被显示的波形稳定下来。这就涉及到触发操作,触发操作是示波器使用中较难掌握的操作技能。因为它涉及到示波器的触发原理。 示波器中是通过扫描来显示被测信号的,每次扫描都显示被测信号的一部分。要使得被显示的波形是稳定不变的,就必须做到每次所显示的波形是完全一样的,即重叠的。对于周期信号来说,只要每次扫描所显示的波形起始相位是相同的,那么每次所显示的波形就是相同的,从而所显示的波形就是稳定的。为了做到这一点,示波器中除了将被测信号送到示波管去以外,还从中分出一路,用电压比较器来形成触发脉冲,用触发脉冲去控制水平方向的扫描,以保证水平方向的每次扫描起始点都正好对准被测信号的相同相位点。故而,当由于操作不当而无法形成触发脉冲时,所显示的波形就不可能被稳定下来。 例如,图所示正弦波是从被测信号在送往示波管的途中所分出来的一部分,则所形成的触发脉冲及水平方向的扫描锯齿波均如图1所示: 图 触发脉冲是这样形成的:将被测信号取出一部分送到一个电压比较器,而电压比较器的另一端则是其电压被触发电平旋钮(Trigger LEVEL)所调节的直流电压。当被测信号的瞬时电压高于触发电平时电压比较器就输出高电平,而被测信号的瞬时电压低于触发电平时电压比较器就输出低电平。故电压比较器输出矩形波形式的触发脉冲。 扫描锯齿波是这样形成的:当触发脉冲的前沿到来时,锯齿波的正程开始,但是正程的长短则由扫描开关(TIME/DIV)来决定,扫描的逆程时间是固定的。若逆程时期结束后尚未有触发脉冲的前沿到来,则扫描锯齿波维持低电平,一直要到某个触发脉冲的前沿到来则第二个扫描锯波的正程期才开始。 当触发模式开关(Trigger MODE)置于NORM位置时,示波器就按以上的方式来进行扫描。显然,如果没有被测信号,或有被测信号但无法形成触发脉冲时,就没有扫描锯齿波,这时屏幕上就没有扫描线。当触发模式开关置于AUTO位置时,示波器将自动形成扫描,故无

如何稳定示波器的测试波形

如何稳定示波器的测试波形 如何稳定示波器的测试波形广东华立高级技工学校? 作者:陈伏华摘要:示波器是电子技术基础实验中和电子设备的检修中最常用的仪器之一,而在使用示波器之时,被测信号测试波形的不稳定常常会造成无法读取波形数据或测量不精确。经过在教学中和示波器的使用中不断地摸索和总结,要稳定示波器的测试波形,应注意易困惑使用者的几个问题,如触发及触发源的选择,电源触发的方法,触发电平自动锁定,输入耦合开关使用,常态触发(NOR )和自动触发(AUTO )转换,探头合理使用等。只要合理的使用和调节,选择正确的档位和测量方法就可以使得示波器的测试波形稳定,以达到精确测量。关键词:示波器? 被测信号? 触发脉冲? 波形稳定正文:一、触发及触发源的选择。在使用示波器时,一个最基本的问题就是如何使得被显示的波形稳定下来。这就涉及到触发操作,触发操作是示波器使用中较难掌握的操作技能。因为它涉及到示波器的触发原理。示波器中是通过扫描来显示被测信号的,每次扫描都显示被测信号的一部分。要使得被显示的波形是稳定不变的,就必须做到每次所显示的波形是完全一样的,即重叠的。对于周期信号来说,只要每次扫描所显示的波形起始相位是相同的,那么每次所显示的波形就是相同的,从而所显示的波形就是稳定的。为了做到这一点,示波器中除了将被测信号送到示波管去以外,还从中分出一路,用电压比较器来形成触发脉冲,用触发脉冲去控制水平方向的扫描,以保证水平方向的每次扫描起始点都正好对准被测信号的相同相位点。故而,当由于操作不当而无法形成触发脉冲时,所显示的波形就不可能被稳定下来。例如,图所示正弦波是从被测信号在送往示波管的途中所分出来的一部分,则所形成的触发脉冲及水平方向的扫描锯齿波均如图 1 所示:图触发脉冲是这样形成的:将被测信号取出一部分送到一个电压比较器,而电压比较器的另一端则是其电压被触发电平旋钮(Trigger LEVEL )所调节的直流电压。当被测信号的瞬时电压高于触发电平时电压比较器就输出高电平,而被测信号的瞬时电压低于触发电平时电压比较器就输出低电平。故电压比较器输出矩形波形式的触发脉冲。扫描锯齿波是这样形成的:当触发脉冲的前沿到来时,锯齿波的正程开始,但是正程的长短则由扫描开关(TIME/DIV) 来决定,扫描的逆程时间是固定的。若逆程时期结束后尚未有触发脉冲的前沿到来,则扫描锯齿波维持低电平,一直要到某个触发脉冲的前沿到来则第二个扫描锯波的正程期才开始。当触发模式开关(Trigger MODE) 置于NORM 位置时,示波器就按以上的方式来进行扫描。显然,如果没有被测信号,或有被测信号但无法形成触发脉冲时,就没有扫描锯齿波,这时屏幕上就没有扫描线。当触发模式开关置于AUTO 位置时,示波器将自动形成扫描,故无论有无被测信号,扫描线总是会出现。但是,当有被测信号时,示波器就立刻转换到上面所说的工作方式上来。有没有触发脉冲的形成是示波器能否稳定波形的关键。那么,如果触发电平自动锁定开关(AUTO LEVEL) 没有按下,在下面几种情况下将不会形成触发脉冲,因而就不可能稳定所显示波形:第一,触发电平旋钮(Trigger LEVEL) 调节不当。当触发电平调节得高于被测信号的正峰值或低于被测信号的负峰值时,从上面的图中可以看到,此时就不可能形成触发脉冲。第二,触发源开关(Trigger SOURCE) 设置错误。例如被测信号从CH1 馈入,而触发源开关置于CH2 或EXT 等,此时被测信号就不可能送到用于形成触发脉冲的电压比较器上,从而就不可能形成触发脉冲。第三,Y 轴偏转因数开关(VOLTS/DIV) 设置不当。如果原来所显示的波形是稳定的,又将Y 轴偏转因数开关向左旋动了,此时,由于将被测信号的幅度衰减得更小了,就可能使得触发电平高于被测信号的正峰值或低于被测信号的负峰值,也就不能形成触发脉冲。第四,触发耦合开关(Trigger CPLG) 设置不当。该键被按下时,被测信号将被经过用于从被测的电视信号中取出同步信号的同步分离电路,如果被测信号不是电视信号,遇不可能通过该同步分离电路,、

相关文档
相关文档 最新文档