文档库 最新最全的文档下载
当前位置:文档库 › (完整版)高二数学不等式练习题及答案(经典)

(完整版)高二数学不等式练习题及答案(经典)

(完整版)高二数学不等式练习题及答案(经典)
(完整版)高二数学不等式练习题及答案(经典)

不等式练习题

一、选择题

1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B )

a b <1 (C )lg(a-b)>0 (D )(21)a <(2

1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B )a

1

+a ≥2 (a ≠0) (C )

a 1<b

1

(a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11

)(1122--b

a 的最小值为 ( )

(A )6 (B ) 7 (C ) 8 (D ) 9

4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R );

(3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) =

12+n -n , ?(n )=

n

21

, g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

6、设x 2+y 2 = 1, 则x +y ( ) (A ) 有最小值1 (B ) 有最小值2 (C )有最小值-1 (D ) 有最小值-2

7、不等式|x +5|>3的解集是 ( ) (A){x|-8<x <8} (B){x|-2<x <2}

(C){x|x <-2或x >2= (D){x|x <-8或x >-2=

8、若a ,b ,c 为任意实数,且a >b ,则下列不等式恒成立的是 ( ) (A)ac >bc (B)|a +c|>|b +c| (C)a 2>b 2 (D)a +c >b +c

9、设集合M={x|13-+x x ≤0},N={x|x 2+2x-3≤0},P={x|3

22)2

1(-+x x ≥1},则有 ( )

(A )M ?N=P (B )M ?N ?P (C )M=P ?N (D )M=N=P

10、设a,b ∈R,且a+b=3,则2a +2b 的最小值是 ( ) (A )6 (B )42 (C )22 (D )26

11、若关于x 的不等式ax 2+bx -2>0的解集是??

?

??+∞??? ??-

∞-,3121,Y ,则ab 等于( ) (A)-24 (B)24 (C)14 (D)-14

12、如果关于x 的不等式(a -2)x 2+2(a -2)x -4<0对一切实数x 恒成立,则实数a 的取值范围是 ( ) (A)]2,(-∞ (B))2,(--∞ (C)]2,2(- (D)(-2,2) 13、设不等式f(x)≥0的解集是[1,2],不等式g(x) ≥0的解集为Φ,则不等式

0)

()

(>x g x f 的解集是 ( ) (A) Φ (B)+∞-∞,2()1,(Y ) (C)[1,2] (D)R

14、

2

2+>+x x

x x 的解集是 ( ) (A ) (-2,0) (B ) (-2,0) (C ) R (D ) (-∞,-2)∪(0,+ ∞) 15、不等式3

3

3

1>

--x

的解集是 ( ) (A ) (-∞,1) (B ) (

43,1 ) (C ) (4

3

,1) (D ) R 二、填空题

1、若x 与实数列a 1,a 2,…,a n 中各数差的平方和最小,则x=________.

2、不等式x

x

x

1

2

1log ?的解集是________. 3、某工厂产量第二年增长率是p 1,第三年增长率是p 2,第四年增长率是p 3且p 1+p 2+p 3=m(定值),那么这三年平均增长率的最大值是________.

4、a ≥0,b ≥0,a 2+2

2b

=1,则a 21b +的最大值是________.

5、若实数x 、y 满足xy >0且x 2y=2,则xy +x 2的最小值是________.

6、x >1时,f(x)=x +

1

1612++x x x 的最小值是________,此时x=________.

7、不等式log 4(8x -2x )≤x 的解集是________.

8、不等式

3

21

141-?-x

x 的解集是________. 9、命题①:关于x 的不等式(a -2)x 2

+2(a -2)x -4<0对x ∈R 恒成立;命题②:f(x)=-(1

-3a -a 2)x

是减函数.若命题①、②至少有一个为真命题,则实数a 的取值范围是________. 10、设A={x|x ≥x

1

,x ∈R},B={x|12+x <3,x ∈R =,则D=A ∩B=________. 三、解答题

1、解不等式:1

211

922+-+-x x x x ≥7.

2、解不等式:x 4-2x 3-3x 2<0.

3、解不等式:

6

55

92+--x x x ≥-2.

4、解不等式:2269x x x -+->3.

5、解不等式:232+-x x >x +5.

6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。

7、若x,y >0,求

y

x y x ++的最大值。

8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大, 求参数m 的取值范围。

9、解不等式:log a (x +1-a)>1. 10解不等式38->-x x .

不等式练习答案

一、DADCB DDDAB BCBAB 二、1、

n 1(a 1+a 2+…+a n ) 2、0<x <1或x >2 3、3

m

4、423

5、3

6、8,2+3

7、(0,2

5

1log 2+) 8、0<x <log 23 9、-3<x ≤2 10、-

2

1

≤x <0或1≤x <4 三、1、[-21,1]∪(1,3

4

) 2、(-1,0)∪(0,3) 3、(-∞,2)∪(3,+∞) 4、(0,3)

5、(-∞,-13

23

) 6、1, 43 7、2 8、-2<m <0

9、解:(I)当a>1时,原不等式等价于不等式组:?

??>-+>-+.101a a x a x ,

解得x>2a-1.

(II)当0

?<->-+.101a a x a x +

解得:a-1

综上,当a>1时,不等式的解集为{x|x>2a-1};

当0

10、原不等价于不等式组(1)??

?

??->-≥-≥-2

)3(8030

8x x x x 或(2)???<-≥-0308x x

由(1)得2

21

53+<

≤x , 由(2)得x <3, 故原不等式的解集为?

??

???+<

2215|x x

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

高二数学测试题含答案

高二数学测试题 2014-3-9 一、选择题:(本大题共12小题,每小题5分,共60分,只有一项是符合题目要求的.) 1.命题 “若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题是( ) A.若△ABC 是等腰三角形,则它的任何两个内角相等 B.若△ABC 任何两个内角不相等,则它不是等腰三角形 C.若△ABC 有两个内角相等,则它是等腰三角形 D.若△ABC 任何两个角相等,则它是等腰三角形 2.“三角函数是周期函数,tan y x =,ππ22 x ??∈- ??? ,是三角函数,所以tan y x =, ππ22x ?? ∈- ??? ,是周期函数”.在以上演绎推理中,下列说法正确的是( ) (A)推理完全正确 (B)大前提不正确 (C)小前提不正确 (D)推理 形式不正确 3.以下有四种说法,其中正确说法的个数为:( ) (1)“m 是实数”是“m 是有理数”的充分不必要条件; (2) “a b >”是“22a b >”的充要条件; (3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =I ”是“A φ=”的必要不充分条件. A. 0个 B. 1个 C. 2个 D. 3个 4 .已知动点P (x ,y )满足2)2()2(2222=+--++y x y x ,则动点 P 的轨迹是 A.双曲线 B.双曲线左支 C. 双曲线右支 D. 一条射线

5.用S 表示图中阴影部分的面积,则S 的值是( ) A .dx x f c a ?)( B .|)(|dx x f c a ? C .dx x f dx x f c b b a ??+)()( D .dx x f dx x f b a c b ??-)()( 6 . 已知椭圆 22 1102 x y m m +=--,若其长轴在y 轴上.焦距为4,则m 等于 A.4. B.5. C. 7. D .8. 7.已知斜率为1的直线与曲线1 x y x =+相切于点p ,则点p 的坐标是( ) ( A ) ()2,2- (B) ()0,0 (C) ()0,0或()2,2- (D) 11,2? ? ??? 8.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是 ( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92= 9.设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个直角坐标系中,不可能正确的是 ( ) A B C D . 10.试在抛物线x y 42-=上求一点P ,使其到焦点F 的距离与到()1,2-A 的距离之 和最小,则该点坐标为 ( ) (A )?? ? ??-1,41 (B )?? ? ??1,41 (C )() 22,2-- (D ) ()22,2- 11.已知点F 1、F 2分别是椭圆22 221x y a b +=的左、右焦点,过F 1且垂直于x 轴的直线 与椭圆交于A 、B 两点,若△ABF 2为正三角形,则该椭圆的离心率e 为

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

高二数学期中考试试题及答案

精心整理 高二数学期中考试试题及答案 注意事项:1.本试卷全卷150分,考试时间120分钟。 2.本试卷分为、II 卷,共4页,答题纸4页。 3.I 4.II 第I 1. 或002.等于 3.已知ABC 中,三内角A 、B 、C 成等差数列,则sinB=A.1B.C.D.2 2

2 3 4.在等差数列an中,已知a521,则a4a5a6等于 A. 5. A. 7. 是 或 8.数列{an}的前n项和为Sn,若an1,则S5等于n(n1) C.A.1B.5611 D.630 9.在△ABC中,AB=3,BC=,AC=4,则边AC上的高为 A.322 B.333 C. D.3322

10.已知x>0,y>0,且x+y=1,求41的最小值是xy A.4 B.6 C.7 D.9 x211.若y2则目标函数zx2y的取值范围是 A.[2 12.、sinC A.II卷 13.,则 14.在△ABC中,若a2b2bcc2,则A_________。 15.小明在玩投石子游戏,第一次走1米放2颗石子,第二次走2米放4颗石子…第n次走n米放2颗石子,当小明一共走了36米时,他投放石子的总数是______.

16.若不等式mx+4mx-4<0对任意实数x恒成立,则实数m的取值范围为. 三、解答题(共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17. ,求a5. (2)若 和公比q. 18. 在a、b、c (1 (2 数学试题第3页,共4页 第3/7页 19.(本小题满分12分)已知数列{an}的前n项和Snn248n。

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

含绝对值的不等式解法典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.?? ?123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m .

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

高二数学选修测试题及答案

高二数学选修测试题及 答案 Last revised by LE LE in 2021

2008学年高二数学(选修1-2)测试题 (全卷满分150分,考试时间120分钟)命题人:陈秋梅增城市中 新中学 一、选择题(本大题共10小题,每小题5分,共50分,将答案直接填在下表中) 1.下列各数中,纯虚数的个数有()个 .2 2 7 i,0i,58 i+ , (1i-,0.618 个个个个 2.用反证法证明:“a b >”,应假设为(). A.a b > B.a b < C.a b = D.a b ≤ 3.设有一个回归方程?2 2.5 y x =-,变量x增加一个单位时,变量?y平均 () A.增加2.5 个单位 B.增加2个单位 C.减少2.5个单位 D.减少2个单位 4.下面几种推理是类比推理的是() A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=1800 B.由平面三角形的性质,推测空间四边形的性质 C.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员. D.一切偶数都能被2整除,100 2是偶数,所以100 2能被2整除. 5.黑白两种颜色的正六形地面砖块按如图 的规律拼成若干个图案,则第五 个图案中有白色地面砖()块. .22 C 6.复数 5 34 +i 的共轭复数是:() A. 3 5 4 5 +i B. 3 5 4 5 -i C.34 +i D.34 -i 7.复数() 1cos sin23 z i θθπθπ = -+<<的模为() A.2cos 2 θ B.2cos 2 θ - C.2sin 2 θ D.- 8.在如右图的程序图中,输出结果是() A. 5 B. 10 C. 20 D .15 9.设 11 5 11 4 11 3 11 2 log 1 log 1 log 1 log 1 + + + = P,则

解不等式典型例题答案

解不等式典型例题答案 例1 解:(1)原不等式可化为 0)3)(52(>-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5 ,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ???>-<-≠????>-+≠+?>-++2 450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x

2 12 1 310 2730132027301320 )273)(132(222222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或 ∴原不等式解集为),2()1,2 1 ()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法” ∴原不等式解集为),2()1,2 1()31,(+∞??-∞ 例3解法一:原不等式?? ???+<-<-?????+<-≥-?240 424042 222x x x x x x 或 即?? ?>-<<<-?? ?<<--≤≥1 22 2222x x x x x x x 或或或[来源学科网Z|X|X|K] ∴32<≤x 或21<-+<-) 2(42422 x x x x ∴312132<<<-x x x x 故或. 例4解法一:原不等式等价下面两个不等式级的并集: ?????>-+<+-0412,05622x x x x 或?????<-+>+-0 412, 0562 2x x x x ?? ?<-+<--?;0)6)(2(,0)5)(1(x x x x 或? ??>-+>--;0)6)(2(, 0)5)(1(x x x x ; ???<<-<-<><6 ,2, 5,1x x x x 或或 ,51<x .

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高二数学排列练习题及答案

解答题 1.求和()() 2!1!2!4!3!24!3!2!13+++++++++++n n n n . 2.5名男生、2名女生站成一排照像: (1)两名女生要在两端,有多少种不同的站法? (2)两名女生都不站在两端,有多少不同的站法? (3)两名女生要相邻,有多少种不同的站法? (4)两名女生不相邻,有多少种不同的站法? (5)女生甲要在女生乙的右方,有多少种不同的站法? (6)女生甲不在左端,女生乙不在右端,有多少种不同的站法? 3.从6名运动员中选出4人参加4×400m 接力赛,如果甲、乙两人都不能跑第一棒,那么共有多少种不同的参赛方案? 4.由2,3,5,7组成没有重复数字的4位数. (1)求这些数字的和;(2)按从小到大顺序排列,5372是第几个数? 5.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的数共有多少个? 6.7个人按下列要求站成一排,分别有多少种不同的站法? (1)甲不站在左端; (2)甲、乙都不能站在两端; (3)甲、乙不相邻; (4)甲、乙之间相隔二人. 7.8个人站成一排,其中甲不站在中间两个位置,乙不站在两端两个位置,有多少种不同的站法? 8.从8名运动员中选出4人参加4×100m 接力比赛,分别求满足下列条件的安排方法的种数:(1)甲、乙二人都不跑中间两棒;(2)甲、乙二人不都跑中间两棒。 9.在一块并排10垄的田地中,选择2垄分别种值A ,B 两种作物,每种作物种植一垄,为有利于作物生长,要求A ,B 两种作物间隔不小于6垄,则不同的选垄方法共有多少种? 10.某城市马路呈棋盘形,南北向马路6条,东西向马路5条,一辆汽车要从西南角行驶到东北角不绕道的走法有多少种? 参考答案: 1.∵()()()22!2!2!1!2++=+++++k k k k k k k ,()()()! 21!11!21+-+=++=k k k k . ∴()()()!2121!21!11!41!31!31!21+-=?? ????+-+++??? ??-+??? ??-=n n n 原式 2.(1)两端的两个位置,女生任意排,中间的五个位置男生任意排;2405522=?A A (种); (2)中间的五个位置任选两个排女生,其余五个位置任意排男生;2400 5525=?A A

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

不等式的解法·典型例题及详细答案

不等式的解法·典型例题 【例1】?(x+4)(x+5)2(2-x)3<0. 【例2】?解下列不等式: 【例3】?解下列不等式 【例4】?解下列不等式: 【例5】?|x 2-4|<x+2. 【例6】?解不等式1)123(log 2122<-+-x x x . 不等式·典型例题参考答案 【例1】?(x+4)(x+5)2(2-x)3<0. 【分析】?如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】?用“穿针引线法”解不等式时应注意: ①各一次项中x 的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】?解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). (2) 【例3】?解下列不等式 解:(1)原不等式等价于 ∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】?解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】?解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】?|x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3). 这是解含绝对值不等式常用方法. 【例6】?解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于 (1)当a >1时,①式等价于 ② (2)当0<a <1时,②等价于 ③

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高二数学测试题 含答案解析

高二暑假班数学测试题 一、选择题(本大题共6小题,每小题5分,共30分) 1.若a 1b >1 c 【解析】选C.选项A 中c =0时不成立;选项B 中a ≤0时不成立;选项D 中取a =-2,b =-1,c =1验证,不成立,故选C. 2.等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24 【解析】选A.由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24. 3.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3] 【解析】选D.因为当x >1时,x +1x -1=1+(x -1)+1 x -1≥3, 所以x +1 x -1 ≥a 恒成立,只需a ≤3. 4.等差数列{a n }满足a 24+a 2 7+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±15 【解析】选D.由已知(a 4+a 7)2=9,所以a 4+a 7=±3,从而a 1+a 10=±3. 所以S 10=a 1+a 102 ×10=±15. 5.函数y =x 2+2 x -1(x >1)的最小值是( ) A .23+2 B .23-2 C .2 3 D .2 【解析】选 A.因为x >1,所以x -1>0.所以y =x 2+2x -1=x 2-2x +2x +2 x -1= x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3 x -1 +2≥23+2. 6.不等式组? ??? ? x ≥2x -y +3≤0表示的平面区域是下列图中的( D )

高中基本不等式经典例题教案

全方位教学辅导教案

例1:(2)1 2,33 y x x x =+>-。 变式:已知5 4x < ,求函数14245 y x x =-+-的最大值 。 技巧二:凑系数 例1.当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此 题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将 (82)y x x =-凑上一个系数即可。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:1、设2 3 0< -+的值域。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 当 ,即t= 时,4 259y t t ≥? +=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)() A y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 变式 (1)231 ,(0)x x y x x ++= > 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函 数()a f x x x =+的单调性。 例:求函数22 5 4 x y x +=+的值域。 解:令24(2)x t t +=≥,则2 254 x y x +=+221 1 4(2)4 x t t t x =++ =+≥+ 因10,1t t t >?=,但1 t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调 性。 因为1 y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数, 故52 y ≥。

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

高二下期期末数学测试题及答案解析

高二下期期末数学测试题 第I卷(选择题) 一、选择题(本题共12道小题,每小题5分,共60分) 1.过函数图象上一个动点作函数的切线,则切线倾斜角的范围为(B ) A. B. C. D. 2.曲线y=ln(2x﹣1)上的点到直线2x﹣y+3=0的最短距离是(A) A.B.2 C.3 D.0 3.曲线y=e﹣2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为( A )A.B.C.D.1 4.已知函数与的图象如图所示,则(C) A.在区间(0,1)上是减函数B.在区间(1,4)上是减函数 C.在区间上是减函数D.在区间上是减函数 5.设是虚数单位,若复数,则的共轭复数为(D ) A.B.C.D. 6.某高三学生进行考试心理素质测试,场景相同的条件下每次通过测试的概率为,则连续测试4次,至少有3次通过的概率为(A )

A.B. C.D. 7.将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以表示,则5个剩余分数的方差为(C ) A.B. C. 6 D.30 8.在的展开式中,常数项是(D) A.B.C.D. 9.由数字0,1,2,3组成的无重复数字的4位数,比2018大的有( B )个 A.10 B.11 C.12 D.13 10.已知,在的图象上存在一点,使得在处作图象的切线, 满足的斜率为,则的取值范围为(A ) A.B. C.D. 11.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示: 电视台每周安排的甲、乙连续剧的总播放时长不多于600min,广告的总播放时长不少于 30min,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,表示每周计划播出的甲、乙两套连续剧的次数,要使总收视人次最多,则电视台每周播出甲、乙两套连续剧的次数分别为(A ) A.6,3 B.5,2 C. 4,5 D.2,7

相关文档
相关文档 最新文档