文档库 最新最全的文档下载
当前位置:文档库 › 北京科技大学热处理讲义复试专用

北京科技大学热处理讲义复试专用

北京科技大学热处理讲义复试专用
北京科技大学热处理讲义复试专用

名词解释

沸腾钢:

1 只用一定量的弱脱氧剂锰铁对钢液脱氧,因此钢液含氧量较高。

2 在沸腾钢的凝固过程中,钢液中碳和氧发生反应而产生大量气体,造成钢液沸腾,这种钢由此而得名。

3 沸腾钢钢锭宏观组织的特点是,钢锭内部有大量的气泡,但是没有或很少有缩孔。钢锭的外层比较纯净,这纯净的外层包住了一个富集着杂质的锭心。

4 沸腾钢钢锭的偏析较严重,低温冲击韧性不好,钢板容易时效,钢的力学性能波动性较大。

镇静钢:

1 镇静钢在浇注之前不仅用弱脱氧剂锰铁而且还使用强脱氧剂硅铁和铝对钢液进行脱氧,因而钢液的含氧量很低。

2 强脱氧剂硅和铝的加入,使得在凝固过程中,钢液中的氧优先与强脱氧元素铝和硅结合,从而抑制了碳氧之间的反应,所以镇静钢结晶时没有沸腾现象,由此而得名。

3 在正常操作情况下,镇静钢中没有气泡,但有缩孔和疏松。与沸腾钢相比,这种钢氧化物系夹杂含量较低,纯净度较高。镇静钢的偏析不像沸腾钢那样严重,钢材性能也较均匀。

树枝状偏析:(枝晶偏析)

1 依据相图,钢在结晶时,先结晶的枝干比较纯净,碳浓度较低,而迟结晶的枝间部分碳浓度较高。

2 研究指出,在钢锭心部等轴晶带中枝晶偏析的特点是,在枝干部分成分变化很小,这部分占有相当宽的范围,在枝晶或者两个相邻晶粒之间,富集着碳、合金元素和杂质元素,而且达到很高的浓度。枝干结晶时,在相当宽的范围内造成碳和合金元素、杂质元素的贫化(选择结晶),这种贫化成了枝晶间浓度特高的前提。

3 为减少枝晶偏析的程度,可对铸钢和钢锭进行扩散退火。

区域偏析:在整个钢锭范围内发生的偏析

因为选择结晶,杂质元素和合金元素被富集在晶枝近旁的液相中。在凝固速度不是很高的情况下,枝晶近旁液相中杂质元素能够借扩散和液体的流动而被转移到很远的地方。随着凝固的进展,杂质元素在剩余的钢液中不断富集,各种元素在整个钢锭或铸件的范围内发生了重新分布,即产生了区域偏析。

带状偏析:在钢锭中,有时在某些局部地区,化学成分与周围有差异,形成所谓的带状偏析。

1 在镇静钢钢锭轴心纵剖面的试片的酸侵蚀面上,能观察到成V型和A型分布的偏析条带。称为V偏析或A偏析。

2 A偏析有两种形式,一种是偏析带比较粗,多出现在大钢锭中,尤其是当浇注温度比较高时。另一种形式是一条宏观的偏析带由许多细的条纹构成。

纤维状组织:

钢凝固时所产生的枝晶偏析具有相对稳定性。由枝晶偏析显示的“初生晶粒”随钢坯外形改变而延伸。处于原枝晶间的范性夹杂物也一起形变。随着形变量的加大,“初生晶粒”从最初的柱状或等轴形逐渐变成条带状或者纺锤形。被延伸拉长的枝晶干和枝晶间就构成了形变钢中的“纤维”。

带状组织:

1 热变形钢试样磨片用含CuCl2的试剂浸蚀后放在显微镜下观察,发现原来在肉眼观察时所看到的那些纤维经过放大以后变成黑白交替的条带,称之为原始带状组织,它是由树枝状结晶(偏析)所引起的。其中黑色条带相当于原树枝状晶较纯的枝干,白色条带相当于原富含杂质的枝间区域。

2 在热变形钢中还会出现另外一种形式的带状组织。这种带状组织使用普通硝酸酒精试剂侵蚀的情况下就能显露出来。这里所看到的交替相间的条带是由不同的组织构成,称为“显微组织带状”。这些不同的组织是固态相变的结果,所以也把这种带状组称为二次带状。二次带状组织的形成意味着碳在固态相变中发生了不均匀的重新分布(二次碳偏析)

魏氏组织:

凡新相从母相中脱溶析出,新旧相之间有一定的位向关系,同时新相的中心平面与母相的一定结晶学平面重合时,这样一种具有纹理特征的组织可统称为魏氏组织。

“反常”组织:

1 在原奥氏体晶界分布着粗厚的网状渗碳体,在此粗厚渗碳体的两边有很宽的游离铁素体,这样的组织称为“反常”组织。

2 研究指出,钢在奥氏体相区加热温度越低(特别是在Acm-A1温度区间加热时),奥氏体就越不均匀,其中含有大量未溶的碳化物或氮化物。越是在这种加热条件下,越容易形成“反常”组织。就冷却条件来说,冷却越缓慢,以致Ar1温度非常接近A1温度时,越容易产生“反常”组织。钢的含碳量与共析含碳量相聚越远时,形成“反常”组织的倾向就越大。此外,“反常”组织的出现也与钢中的含氮量和加铝量有关。所有这些条件都是和离异共析体形成的基本原理相一致。

网状碳化物:

1 过共析钢轧后冷却过程中沿奥氏体晶界析出先共析渗碳体。依钢的含碳量、形变终止温度和冷却速度不同,先共析渗碳体呈半连续或连续网状。网状碳化物的厚度随停轧(锻)温度的提高和冷却速度的减小而增大。

2 形变终止温度过高,会使奥氏体晶粒粗化,这种晶粒粗大的奥氏体在随后冷却时沿晶界形成粗厚的渗碳体网,后者在随后的热处理过程中难以得到改正。

钢的热处理:

1 钢的热处理是通过加热、保温和冷却的方法,来改变钢内部组织结构,从而改善其性能上的一种工艺。影响钢的热处理的主要因素是温度和时间。

2 钢的热处理工艺通常分为退火、正火、淬火、回火、表面淬火、化学热处理以及形变热处理。

3 为随后的机械加工或进一步热处理做好组织准备的热处理,称为预备热处理,常采用退火或正火工艺;直接赋予工件所需要的使用性能的热处理,称为最终热处理。

起始晶粒度:

指珠光体刚刚全部转变成奥氏体时的奥氏体晶粒度,一般情况下奥氏体的起始晶粒度总是比较细小。加热前原始组织越弥散,加热速度越快,则起始晶粒越细小。

实际晶粒度:

在某一具体加热或热加工条件下所得到的奥氏体晶粒度。

本质晶粒度:

它表示在临界温度以上加热过程中,奥氏体晶粒长大倾向的强弱。研究指出,随加热温度升高,钢中的奥氏体晶粒长大倾向分两类,一类是随温度升高,奥氏体晶粒迅速长大的钢,称为本质粗晶粒钢;另一类是奥氏体晶粒长大倾向较小,直到超过某一温度后,奥氏体晶粒才会急剧长大的钢,称为本质细晶粒钢。

组织遗传现象:

加热后钢的粗大奥氏体晶粒,经淬火后得到粗大的马氏体,再次快速或慢速加热至稍高于临界温度,奥氏体仍保留了原来的粗大晶粒,甚至保留了原来的位向和原来的晶界,这种现象称为组织遗传。

过冷奥氏体:

奥氏体冷至临界温度以下,处于热力学不稳定状态,称为过冷奥氏体。

马氏体转变的特点:

1 不会引起化学成分的变化,只产生结构类型的改变,但有时会发生有序度的变化。

2 马氏体可能是亚稳平衡相,也可是稳定平衡相。

3 马氏体转变也可划分为形核和长大两个元过程,但与扩散转变不同,马氏体成长速度非常快。

4 马氏体转变不需要原子扩散,原子协同做小范围位移,以类似孪生切变的方式形成新相。新相与母相之间的界面必须保持切变式的共格关系,因此有浮凸现象。

5 应力也可以诱发马氏体发生转变。

6 在一些合金系中,马氏体转变是可逆的。

热稳定化:

1 淬火过程中由于慢冷或中间停留所造成的奥氏体稳定化,称为热稳定化。

2 奥氏体热稳定化的原因是由于慢冷或中间停留,碳或氮原子在位错附近偏聚,形成柯氏气团,强化奥氏体,使切变阻力增加,从而引起奥氏体的稳定化。

机械稳定化:

在Md点以上,对奥氏体进行大量范性形变,使随后的马氏体转变发生困难,Ms点降低,马氏体转变量减少,这种现象称为奥氏体的机械稳定化。

渗碳:

将低碳钢件放入增碳的活性介质中,在900~950℃加热保温,使活性碳原子渗入钢的表面已达到高碳,这种热处理工艺称为渗碳。渗碳后院必须进行淬火和低温回火,使钢件表面具有高硬度和高的耐磨性,而心部具有一定的强度和较高的韧性。渗碳过程是由渗碳剂分解出活性碳原子,被钢表面吸收,并向钢内部扩散三个阶段组成。

热机械处理:

在近于Ac3的温度强烈形变,恒温或慢冷一段使形变奥氏体再结晶,快速冷却阻止再结晶的晶粒长大。

低温韧性:

低温韧性也叫低温脆性,即钢材在低温时韧性的大小或低温时脆化的程度。

红硬性:红硬性是指材料在经过一定温度下保持一定时间后所能保持其硬度的能力。如刀具材料中的高速钢,应在600摄氏度下保持60分钟后空冷,连续地重复进行4次后去表面氧化层,然后得出的硬度。

控轧控冷:

就是在一定合金化的基础上,采用较低的终轧温度(近于A3),在大压下量的情况下,使晶粒已经细化的形变奥氏体再结晶后(或根本不发生再结晶)控制其不再长大,经快冷或控冷得到细小的铁素体晶粒,同时具有高位错及弥散析出的NbC等,由此造成强化和低温韧性的显著增大,这种强韧化手段叫控轧控冷。

粗大奥氏体晶粒的遗传性:

生产中发现,过热后钢的粗大奥氏体晶粒,经淬火后得到粗大的马氏体,再次快速或慢速加热至稍高于临界温度,奥氏体仍然保留了原来的粗大晶粒,甚至保留原来的位向和原来的晶界,这种现象称为组织遗传。其原因是过热后的粗晶粒奥氏体与马氏体之间相互转变维持着严格的晶体学取向关系。

消除方法:中等速度奥氏体化或者加热到Ac3以上100-200℃,由于相变硬化使高温奥氏体产生再结晶,达到细化晶粒,消除组织遗传性的效果。

回火二次硬化现象

某些淬火组织的合金钢(如含钨、钼、钛、钒、铌、铬、锆等元素)经500-600℃回火后,硬度重新升高的现象。

主要原因是某些含有强碳化物形成元素的合金钢,淬火后高温回火形成极细的、高度弥散的特殊化合物。这些特殊化合物是渗碳体溶解在位错区的沉淀,多呈丝状或细针状,而且与α相保持共格关系。这就导致了α相中高密度相变诱生位错的形成,引起碳化物与α相的共格畸变、弥散碳化物对位错的钉扎作用等,使得硬度明显提高。

其次,某些合金钢淬火组织高温回火时的二次淬火现象也是引起二次硬化的原因。

二次淬火

对于含有较多合金元素的钢,在珠光体型转变和贝氏体型转变C曲线之间,有一个过冷奥氏体的中间稳定区。与此相似,这类钢的残留奥氏体,在相应的回火温度时,也出现两转变之间的中间稳定区。然而,将这类淬火钢回火加热至该区间的上限温度时,残留奥氏体既不转变成珠光体,也不转变成贝氏体,而是在继续冷却到室温时转变成马氏体。这一效应叫做二次淬火。

高温形变热处理与低温形变热处理

高温形变热处理:在接近A3以上温度进行形变,形变后立即淬火,并回火至所需要的硬度。从工艺过程来看,形变温度较高,形变温度容易进行。但形变温度远高于再结晶温度,形变强化效果容易被再结晶过程所削弱,所以形变温度和形变后至淬火前的间歇时间,对高温形变热处理后钢材的力学性能影响很大。

低温形变热处理:将加热至奥氏体化的钢迅速冷却至C曲线的亚稳定区进行形变,然后淬火获得马氏体,并回火至所需的硬度,这种工艺过程称为低温热变形处理。

钢的热处理:

1 热处理是将钢在固态下加热到预定的温度,保温一定的时间,然后以预定的方式冷却到室温的一种热加工工艺。

2 通过热处理可以改变钢的内部组织结构,从而改善其工艺性能和使用性能,充分挖掘钢材的潜力,延长零件的使用寿命,提高产品质量,节约材料和能源。

3 正确的热处理工艺还可以消除钢材经铸造、锻造、焊接等热加工工艺造成的各种缺陷,细化晶粒,消除偏析,降低内应力,使组织和性能更加均匀。

淬透性:

1 淬透性是钢的固有属性,它是选材和制定热处理工艺的重要依据之一。

2 淬透性是指钢在淬火时获得马氏体的能力。其大小用钢在一定条件下淬火所获得的淬透性深度来表示。

过热:

过热是指工件在淬火加热时,由于温度过高或时间过长,造成奥氏体晶粒粗大的缺陷。过热不仅使淬火后得到的马氏体组织粗大,使工件的强度和韧性降低,易于产生脆断,而且容易引起淬火裂纹。对于过热工件,进行一次细化晶粒的退火或正火,然后再按工艺规程进行淬火,便可以纠正过热组织。

简答题

简述碳对缓冷钢显微组织和性能的影响

1对组织的影响:

碳是决定碳钢在缓冷后组织和性能的主要元素。碳对缓冷后钢显微组织的影响是:在亚共析钢范围内,随含碳量增加,铁素体相对量减少,珠光体的相对量增加;达到共析成分时,全部为珠光体;在过共析钢范围内,随含碳量增加,先共析渗碳体相对量增多,珠光体相对量减少。

2对性能的影响:

随钢种含碳量的增加,碳钢在热轧状态下的硬度呈直线上升,范性和韧性降低。在亚共析范围内,碳对抗拉强度的影响是,随含碳量增加,抗拉强度不断提高。超过共析含碳量以后,抗拉强度提高减缓,以致于最后抗拉强度随含碳量增加而降低。

在亚共析范围内,抗拉强度随珠光体相对量增加而提高;在过共析范围内,抗拉强度的变化是因为先共析渗碳体量增多,并沿原奥氏体晶界析出,形成网状,使钢的脆性增大,容易发生早期断裂,从而降低抗拉强度。

含碳量增加时碳钢的耐腐蚀性降低,同时碳也使碳钢的焊接性能和冷加工(冲压、拉拔)性能变坏。

简述热变形钢的组织形式

1 纤维状组织

钢凝固时所产生的枝晶偏析具有相对稳定性。由枝晶偏析显示的“初生晶粒”随钢坯外形改变而延伸。处于原枝晶间的范性夹杂物也一起形变。随着形变量的加大,“初生晶粒”从最初的柱状或等轴形逐渐变成条带状或者纺锤形。被延伸拉长的枝晶干和枝晶间就构成了形变钢中的“纤维”。

2 带状组织

热变形钢试样磨片用含CuCl2的试剂浸蚀后放在显微镜下观察,发现原来在肉眼观察时所看到的那些纤维经过放大以后变成黑白交替的条带,称之为原始带状组织,它是由树枝状结晶(偏析)所引起的。其中黑色条带相当于原树枝状晶较纯的枝干,白色条带相当于原富含杂质的枝间区域。

在热变形钢中还会出现另外一种形式的带状组织。这种带状组织使用普通硝酸酒精试剂侵蚀的情况下就能显露出来。这里所看到的交替相间的条带是由不同的组织构成,称为“显微组织带状”。这些不同的组织是固态相变的结果,所以也把这种带状组织称为二次带状组织。二次带状组织的形成意味着碳在固态相变中发生了不均匀的重新分布(二次碳偏析)。

只有在一次带状组织的基础上才会出现二次带状组织,二次带状组织有两种情况:①在铁素体条带中含有硅酸盐,同时珠光体条带中含有硫化物。也就是说,铁素体出现在原枝晶干,珠光

体出现在原枝晶间。这种二次带状的碳浓度分布与凝固时碳的枝晶偏析是一致的,称为“顺态”的二次碳偏析。②在铁素体条带中含有硫化物,同时珠光体条带中含有硅酸盐。这种情况表明,在固态相变时发生了碳浓度分布的逆转,碳从枝间处扩散到了枝干。这种二次带状的碳浓度分布称为“逆态”的二次碳偏析。

带状组织使钢的力学性能具有方向性,使钢的横向范性和韧性降低。铁素体珠光体带状组织还使钢的切削加工性变坏。钢材若出现了带状组织,加工时其表面光洁度就差;渗碳时易引起渗层不均匀,热处理时易产生变形且硬度不均匀等缺陷。

3 魏氏组织

凡新相从母相中脱溶析出,新旧相之间有一定的位向关系,同时新相的中心平面与母相的一定结晶学平面重合时,这样一种具有纹理特征的组织可统称为魏氏组织。

在亚共析钢中,当从奥氏体相区缓慢冷却通过Ar

3-Ar

1

温度范围时,铁素体沿奥氏体晶界析出,

呈块状。如果冷却速度加快时,则铁素体不仅沿奥氏体晶界析出生长,而且还形成许多铁素体片插向奥氏体晶粒内部,铁素体片之间的奥氏体最后变为珠光体。这些分布在原奥氏体晶粒内部呈片状的先共析铁素体称为魏氏组织铁素体。

如果奥氏体比较粗大,冷却速度又比较快时,一般来讲,容易产生魏氏组织铁素体。退火可消除魏氏组织。

4 “反常”组织

在原奥氏体晶界分布着粗厚的网状渗碳体,在此粗厚渗碳体的两边有很宽的游离铁素体,这样的组织称为“反常”组织。

研究指出,钢在奥氏体相区加热温度越低(特别是在Acm-A

1

温度区间加热时),奥氏体就越不均匀,其中含有大量未溶的碳化物或氮化物。越是在这种加热条件下,越容易形成“反常”

组织。就冷却条件来说,冷却越缓慢,以致Ar

1温度非常接近A

1

温度时,越容易产生“反常”

组织。钢的含碳量与共析含碳量相距越远时,形成“反常”组织的倾向就越大。此外,“反常”组织的出现也与钢中的含氮量和加铝量有关。所有这些条件都是和离异共析体形成的基本原理相一致。

5 网状碳化物

过共析钢轧后在冷却过程中沿奥氏体晶界析出先共析渗碳体。依钢的含碳量、形变终止温度和冷却速度的不同,先共析渗碳体呈半连续或连续网状。

减轻或者消除亚共析钢中的铁素体珠光体带状组织的措施是什么?

⑴减轻原始带状偏析程度(方法:①钢锭中柱状晶要比等轴晶的枝晶偏析程度轻②枝晶比较细时通过扩散退火能达到更好的均匀化效果③钢锭的偏析随钢锭重量增加而加大,随冷却速度的加快而减轻④扩散退火)

⑵抑制或者减轻原始带状组织对二次带状的影响。

温度(912℃)的元素如硅-锰,锰-硫等要互相搭配,这⑶在设计钢的成分时,升高和降低A

3

温度差别样在发生枝晶偏析以后,由于几种杂质元素的影响互相抵消,枝干和枝间两区域A

3

很小,从而有利于避免铁素体珠光体带状组织产生。

⑷加速热变形钢的冷却速度,借以抑制碳在原始带状基础上的长距离扩散。

⑸将钢材加热后空冷(正火),或者适当提高钢坯或钢材的加热速度,使奥氏体晶粒尺寸超过原始带状的条带宽度。

简述石墨化的温度阶段

第一阶段:从铸铁的液相中结晶出一次石墨(过共晶合金)和通过共晶反应结晶出共晶石墨。或者在铸铁凝固过程中通过渗碳体在共晶温度以上的高温分解形成石墨。

中间阶段:从铸铁的奥氏体相中直接析出二次石墨,或者通过渗碳体在共晶温度或共析温度之间发生分解而形成石墨。

第二阶段:在铸铁的共析转变过程中析出石墨,或者通过渗碳体在共析温度附近及其以下温度发生分解形成石墨。

进行石墨化时,不仅需要碳原子在溶液或固溶体中的扩散集聚,而且还需要铁原子从碳的集聚处扩散掉。温度越低,原子的活动性愈小,石墨化过程也就愈困难。所以,在铸铁的连续冷却过程中,温度较低的第二阶段石墨化往往不能进行到底。

一般来说,凡是能削弱铁原子和碳原子之间的结合力的元素以及能增大铁原子扩散能力的元素大多能促进石墨化,比如:锆、钴、磷、铜、镍、钛、硅、碳、铝等;反之,则阻碍石墨化,比如:钨、锰、钼、硫、铬、钒、镁、铈、硼等。

简述几种常见的铸铁

⑴白口铸铁:其中碳除少量溶于铁素体外,绝大部分以渗碳体的形式存在于铸铁中。白口铸铁断口呈亮白色,组织中都存在共晶莱氏体,性能硬而脆,很难切削加工。白口铸铁除主要用作炼钢原料外,还用来生产可锻铸铁。

⑵麻口铸铁:碳一部分以石墨形式存在,另一部分以自由渗碳体形式存在,断口呈黑白相间的麻点。

⑶灰口铸铁:其中碳全部或大部分以片状石墨形式存在。灰口铸铁断裂时,裂纹沿各个石墨片发展,因而断口呈暗灰色。

⑷可锻铸铁:又称展性铸铁,有白口铸铁经石墨化退火后制成,其中碳以团絮状石墨形式存在。

⑸球磨铸铁:钢液在浇注前经过球化处理,碳主要以球状石墨形式存在。

⑹冷硬铸铁:将钢液注入放有冷铁的模中制成。与冷铁相接触的铸铁表面层由于冷却速度比较快,故铸铁组织在一定厚度内属于白口,因而硬度高,耐磨性好;而远离冷铁的深层部位,由于冷却速度较小,得到的组织为灰口;在白口和灰口之间的过渡区域呈麻口。冷硬铸铁用于制造轧辊、车轮等。

⑺蠕墨铸铁:钢液在浇注前经过蠕化处理,碳主要以介于片状和球状之间的石墨形式存在,它是近年发展起来的一种新型铸铁。

简述钢加热时奥氏体化的组织转变过程

奥氏体的形成过程:任何成分碳钢加热到Ac

1以上,珠光体就向奥氏体转变;加热到Ac

3

或Accm

以上,将全部变为奥氏体。这种加热转变也称奥氏体化。

⑴形核:将珠光体加热到Ac

1

以上,在铁素体和渗碳体的相界面上奥氏体优先形核。这是因为相界面上原子排列不规则,处于能量较高状态,具备形核所需的结构起伏和能量起伏条件,同时相界面上处于碳浓度过渡,易出现浓度起伏,符合奥氏体所需的碳浓度,所以奥氏体晶核优先在相界面上形成。

⑵长大:当奥氏体在铁素体和渗碳体相界面上形核后,建立起界面浓度平衡,从而在奥氏体和

铁素体内部出现浓度差,碳原子由高浓度向低浓度扩散,使C

2、C

4

浓度降低,而C

1

、C

3

浓度升

高,从而破坏浓度平衡。必须通过渗碳体逐渐溶解,以提高C

2、C

4

,同时产生a→r转变,以

降低C

1、C

3

,维持界面浓度平衡。如此所进行的碳原子扩散,渗碳体溶解,a→r点阵重构的反

复,奥氏体逐渐长大。

⑶残余渗碳体的溶解:奥氏体向铁素体方向推进的速度要大得多,铁素体总是比渗碳体消失得早。铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体,使奥氏体逐步趋近共析成分。

⑷奥氏体的均匀化:残余奥氏体完全溶解后,奥氏体中碳浓度仍是不均匀的,原先是渗碳体的位置碳浓度较高,原先是铁素体的位置碳浓度较低。为此必须继续保温,通过碳原子扩散,获得均匀化奥氏体。

影响奥氏体形成速度的因素

⑴加热温度的影响

一方面,由于珠光体转变为奥氏体的过程是扩散相变的过程,随着加热温度的升高,原子扩散系数增加,特别是碳在奥氏体中的扩散系数增加,加快了奥氏体的形核和长大速度。同时加热温度升高,奥氏体中的碳浓度差增大,浓度梯度加大,故原子扩散速度加快。

另一方面,加热温度升高,奥氏体与珠光体的自由能差增大,相变驱动力增大,所以,随奥氏体形成温度的升高,奥氏体的形核率和长大速度急剧增加,因此,转变的孕育期和转变所需的时间显著缩短,加热温度越高,转变孕育期和完成转变的时间越短

⑵原始组织的影响

在化学成分相同的情况下,随原始组织中碳化物分散度的增大,不仅铁素体和渗碳体相界面增多,加大了奥氏体的形核率;而且由于珠光体片层间距减小,使奥氏体中的碳浓度梯度增大,使碳原子的扩散距离减小,这些都使奥氏体的长大速度增加。因此,钢的原始组织越细,则奥氏体的形成速度越快。

⑶化学成分的影响

①质量分数的影响

钢中含碳质量分数越高,奥氏体的形成速度越快。这是因为随含碳质量分数增加,渗碳体的数量相应地增加,铁素体和渗碳体相界面的面积增加,因此增加了奥氏体形核的部位,增大奥氏体的形核率。同时,碳化物数量增加,又使碳的扩散距离减小,碳浓度梯度增大,以及随奥氏体中含碳量质量分数增加,碳和铁原子的扩散系数将增大,从而增大奥氏体的长大速度。

②合金元素的影响

首先,合金元素影响了碳在奥氏体中的扩散速度,碳化物形成元素大大减小了碳在奥氏体中的扩散速度。故显著减慢了奥氏体的形成速度,非碳化合物形成元素增加碳在奥氏体中的扩散速度,因而加快了奥氏体的形成速度。

其次合金元素改变了钢的临界温度,故改变了奥氏体转变时的过热度,从而改变了奥氏体与珠光体的自由能差,因而改变了奥氏体的形成速度。

第三,合金元素在珠光体中的分布是不均匀的,因此合金钢的奥氏体均匀化过程除了碳在奥氏体中的均匀化外,还包括了合金元素的均匀化。

影响奥氏体晶粒长大的因素

⑴加热温度的影响

奥氏体形成后,随着加热温度升高,晶粒急剧长大。温度对奥氏体晶粒长大的影响最为显著。

⑵保温时间的影响

在相变温度以上任何温度保温时,奥氏体都有一个加速长大期。当经理达到一定尺寸后,长大速度趋于缓慢。

⑶加热速度的影响

加热速度越大,过热度越大,形核率越高,奥氏体的起始晶粒越细。快速加热至高温,短时保温,可获得细晶粒组织。

⑷化学成分的影响

含碳量对钢的奥氏体晶粒长大有明显影响。当钢的含碳量不超过一定限度时,在相同加热条件下,奥氏体晶粒随钢种含碳量增加而急剧长大。这是因为碳的扩散速度和铁的扩散速度都随含碳量的增加而增大。但当含碳量超过一定限度时,随含碳量增大,奥氏体晶粒反而减小。

简述过冷奥氏体冷却时的组织转变

⑴高温珠光体型转变

奥氏体在A

1

-550℃之间,转变产物为珠光体(铁素体和渗碳体的混合物)。再此温度区间内,原子的扩散能力较强,容易在奥氏体晶界上产生高碳的渗碳体晶核和低碳的铁素体晶核,并实现晶格重构,属于扩散型相变,也可称为高温转变。

⑵中温贝氏体型转变

在550℃-M

S

(230℃)温度范围内,过冷度较大,铁原子难以扩散,仅有碳原子扩散,过冷奥氏体转变速度下降,孕育期逐渐延长,这主要通过相变驱动力来改变晶格结构,通过碳原子扩散形成碳化物,属于半扩散型转变,转变产物为贝氏体型组织。

⑶低温马氏体型转变

当钢加热到奥氏体后,奥氏体被迅速过冷至M

S

以下时,铁、碳原子都已失去了扩散能力,但过冷度较大,相变驱动力足以使面心立方的奥氏体转变为体心立方的马氏体,并保持原奥氏体的成分。这种转变属于非扩散型转变,转变产物为马氏体。

简述影响过冷奥氏体等温转变图的因素

⑴含碳量的影响:亚共析钢加热到Ac

3以上,过共析钢加热到Ac

1

以上的正常热处理加热条件

下,随着含碳量的增加,亚共析钢的C曲线向右移;过共析钢的C曲线向左移。故在碳钢中以共析钢的过冷奥氏体最稳定。

⑵合金元素的影响:除钴外所有合金元素的溶入,均增加过冷奥氏体的稳定性,使C曲线向右移。其中,非碳化合物或弱碳化合物形成元素,如硅、镍、铜和锰等不改变C 曲线的形状,仍保持一个“鼻尖”,至改变C曲线位置;中强或强碳化物形成元素,如铬、钼、钨、钒和钛等溶入奥氏体,不仅使C曲线右移,并使珠光体转变和贝氏体转变区分离,出现两个“鼻尖”,即变成双C曲线。上部C曲线是等温转变形成珠光体区域;下部C曲线是等温转变形成贝氏体区域,其间存在着过冷奥氏体的亚稳定区。

必须指出,强碳化合物形成元素只有溶入奥氏体,才能增加过冷奥氏体的稳定性,使C曲线右移。如以不溶的碳化物存在,反而有利于奥氏体的分解,降低过冷奥氏体的稳定性。

⑶加热温度和时间的影响:当原始组织相同时,随加热温度的升高和保温时间的延长,奥氏体成分更加均匀,晶粒长大,晶界面积减小,从而降低冷却时相变的晶核数目,提高过冷奥氏体的稳定性,使C曲线右移。

⑷原始组织的影响:在相同加热条件下,原始组织越细小,越均匀,加热时越容易得到均匀的奥氏体,过冷奥氏体也越稳定。

⑸外加应力和塑性变形的影响:一般来说,因奥氏体比容最小,转变时体积膨胀。三向压应力阻碍过冷奥氏体的转变,使C曲线右移;三向拉应力有利于过冷奥氏体的转变,使C曲线左移。奥氏体塑性变形时会造成晶粒破碎和碳化物的析出,降低奥氏体的稳定性,使C曲线左移。

马氏体具有高强度和高硬度的原因是什么?

⑴过饱和碳引起强烈的正方畸变,形成以碳原子为中心的应力场,这种应力场与位错的交互作用使马氏体显着强化,即固溶强化,这个是主要的。

⑵板条状马氏体内的高密度位错,片状马氏体内精细孪晶,产生亚结构强化。

⑶马氏体形成过程中的自回火现象,使碳原子沿晶体缺陷偏聚或碳化物弥散析出,钉扎位错,从而产生时效强化。

⑷原始奥氏体晶粒大小及板条马氏体束大小对马氏体强度的影响。原始奥氏体晶粒越细小,马氏体板条束越小,则马氏体强度越高。这是由于相界面阻碍位错的运动造成的马氏体强化。

简述淬火钢在回火时的组织变化过程

1马氏体中碳原子的偏聚

⑴含碳量小于0.2%的低碳马氏体中,绝大部分碳原子偏聚到高密度的位错线上,形成柯氏气团。这是由于碳原子和位错的弹性应力场的交互作用,使碳原子被弹性地吸引到位错线上,也称弹性偏聚。马氏体的含碳量为0.2%时,偏聚已达饱和状态。

⑵含碳量大于0.2%的马氏体,超过0.2%的碳原子以不再偏聚到位错附近,而在垂直c轴的(001)m面上偏聚,伴随有化学自由能降低,正方度c/a增加,硬度、强度有所提高,称为化学偏聚。这种偏聚也为析出亚稳定ε碳化物作准备。

2 马氏体的分解

马氏体的分解是自发进行的降低系统自由能的过程,是过饱和碳从固溶体中析出的脱溶过程,可分为两个阶段。

高碳马氏体在100-150℃回火为马氏体分解的第一阶段。碳原子只做短距离迁移,析出的ε

碳化物片从周围取得碳原子长大,从而形成贫碳区,远离ε相的地区仍是高碳区,故称为马氏体的二相式分解。

150℃以上回火为马氏体分解的第二阶段,发生连续式分解、碳原子可以作较长距离的迁移,随ε碳化物的析出,α相碳浓度均匀降低,马氏体分解可延续到350℃,此时c/a趋近于1。实验指出,回火温度越高,马氏体碳浓度越低,析出的ε碳化物越多。

3 残余奥氏体的转变

含碳量超过0.5%的碳钢或低合金钢,淬火后总有少量残余奥氏体存在,在200-300℃范围内回火时,残余奥氏体分解为过饱和α固溶体和薄片状ε碳化物的复相组织,二者保持共格,一般认为是回火马氏体或下贝氏体。研究证明,残余奥氏体的转变与过冷奥氏体转变一样,也是一个形核和长大的过程,转变生成贝氏体后也出现浮凸现象。

4 碳化物的转变

在250-400℃回火时,碳钢马氏体中过饱和碳原子几乎全部脱溶,析出比ε碳化物更稳定的碳化物。一种是χ碳化物,具有单斜晶系;另一种是θ碳化物,也就是渗碳体。

研究证明,条状马氏体在上述温度范围回火时,会直接析出θ相(渗碳体)。这种相以薄片或短杆状形成于马氏体的位错线或界面上。

高碳钢中的淬火马氏体和残余奥氏体在低温回火时,分解成α相和ε相,两相之间保持共格联系。

5 碳化物的聚集长大和α相回复、再结晶

当回火温度高于400℃时,渗碳体明显聚集长大并球化,无论片状渗碳体的球化或粒状渗碳体的长大,都通过小颗粒溶解,大颗粒长大的机理进行。由于碳原子的扩散能力近一步增强,铁原子的扩散能力开始恢复,α相中过饱和固溶碳原子全部脱溶,其本身正方度消失,逐渐回复与再结晶,组织中的碳化物也将聚集和球化。

对于条状马氏体来说,回火温度超过400℃时,马氏体的位错密度逐渐降低,剩下的位错又形成二维位错网络,排列成“墙”,构成α相中的亚晶界,从而将其分割成许多亚晶粒。同时,α相中的点阵畸变逐渐消失,称为α相的回复阶段。但是仍保持条形形态。只有回火温度超过600℃时,α相发生再结晶由位错密度降低的等轴晶粒代替回复时的条状组织,条状马氏体形态才消失。

对于高碳钢中的片状马氏体来说,当回火温度超过250℃时,孪晶开始消失,出现位错胞和位错线,显微裂纹逐渐被填合。回火温度达400℃时,孪晶全部消失,α相回复,逐渐形成多边化亚晶粒,仍保持片状特征。当温度高于600℃时,片状马氏体形态消失,等轴状α相代替片状α相。

钢回火转变后的组织有哪些?

1 回火马氏体

高碳钢在150-250℃低温回火,得到回火马氏体组织。回火马氏体光学显微镜下呈暗黑色片状组织,比淬火马氏体易受腐蚀。在电子显微镜下可以观察到片状α相内分布着薄片状ε碳化

物,两者保持共格关系。低碳板条状马氏体低温回火后,只是碳原子的偏聚,与淬火马氏体没有显着差别。

2 回火屈氏体

在350-500℃进行中温回火后,得到回火屈氏体组织。其组织特征是:α相仍保持板条状或者片状形态,其上分布着微细粒状渗碳体,在光学显微镜下难以分辨,在电子显微镜下才能辨清两相。

3 回火索氏体

在500——650℃进行高温回火,得到回火索氏体组织。其组织是由细粒状渗碳体和等轴状铁素体所构成的复相组织。

4 粒状珠光体

在650-A1之间回火时,粒状渗碳体明显粗化。此种粒状珠光体与球化退火所得到的组织相同。范性很好,强度较低。

简述淬火钢回火时力学性能与回火温度之间的关系

⑴ 硬度与回火温度之间的关系

中、低碳钢在250℃一下回火时,机械性能无明显变化。这是因为只有碳的偏聚,而无其他组织变化。高碳钢则不同,由于ε相共格析出,引起弥散强化,硬度略有升高。

250-400℃回火时,一方面由于马氏体分解、正方度减小以及碳化物转变和聚集长大,硬度趋于降低;另一方面,由于残余奥氏体转变为下贝氏体,硬度则有所升高。二者综合影响,使得中、低碳钢硬度下降,而高碳钢硬度升高。

回火温度在400℃以上升高时,产生α相的回复与再结晶及碳化物聚集并球化,均使硬度下降。

⑵强度和塑性与回火温度的关系

高、中、低碳钢回火时,弹性极限随回火温度上升而增加,大约在350℃左右出现峰值。这与回火过程中碳的偏聚、ε碳化物的析出、α相中碳过饱和度下降以及渗碳体析出α相回复等组织结构变化相联系。

钢的塑性一般随回火温度的升高而加大。

⑶冲击韧性与回火温度之间的关系

随着回火温度的升高,碳钢冲击值(αk)变化的总趋势是增加的。但是,高碳钢经扭转冲击试验,可测出250℃左右回火后冲击值下降的脆化现象。

⑷断裂韧性与回火温度之间的关系

在400℃以下,随回火温度增高,断裂韧性和冲击韧性均降低。400℃以上回火时,断裂韧性增大。

解释碳钢回火脆性的定义、原因及消除或改善方法

在250-400℃和450-650℃区域存在着冲击韧显著下降的现象,这种脆化现象称为回火脆性。

⑴其中在250-400℃范围内回火时出现的脆性称为第一类回火脆性,存在于一切钢种之中。此后若重新加热至第一类回火脆化温区,也不再出现脆性。故又称不可逆回火脆性。因其出现与低温回火温度范围,故又称低温回火脆性。发生第一类回火脆性的钢件,断口呈晶间断裂;无第一次回火脆性的钢件,呈穿晶断裂。

消除或改善的方法:

①以极快的速度加热和冷却以及高温形变热处理。

②以非碳化合物形成元素(Si)来合金化,一起有效地推迟马氏体脱溶的作用,使低温回火脆性温度区上移,从而使钢获得高强韧性。

导致第一类回火脆性的原因是ε相转变θ相或χ相,沿板条马氏体的条间、束界或片状马氏的孪晶带和晶界上析出,引起钢的韧性明显降低。

⑵淬火的合金钢在450-650℃范围内回火后,进行慢冷所出现的脆性,称为高温回火脆性。已产生脆性的工件,重新加热到600℃以上保温,然后快冷,则可消除此类脆性。如在600℃以上再次加热慢冷,脆性又将出现,故也称为可逆回火脆性。

产生第二类回火脆性的原因是:锑、锡、砷、磷等杂质元素在原奥氏体晶界上偏聚或以化合物方式析出,是导致第二类回火脆性的主要原因。

为了防止高温回火脆性,可在钢中加入0.5%钼或1%钨,抑制杂质元素向晶界偏聚,这种方法适用于大工件。对于中小工件,可采用高温回火后快冷,抑制杂质元素偏聚。

介绍几种常见的退火工艺、目的及应用

1 完全退火

将亚共析钢加热至Ac

以上20-30℃,保温足够时间奥氏体化后,随炉缓慢冷却,从而接近平

3

衡的组织,这种热处理工艺称为完全退火。

经浇注并模冷后的钢锭和铸钢件,或终轧终止温度过高的热锻轧件,晶粒粗大,易得魏氏组织,并存在着内应力。可通过完全退火来细化晶粒、均匀组织、消除内应力、降低硬度,便于切削加工,并为加工后零件的淬火做好组织准备。

完全退火只适用于亚共析钢,不宜用于过共析钢。过共析钢若加热至Acm以上单相奥氏体区,缓冷后会析出网状二次渗碳体,使钢的强度、范性和韧性大大降低。

2 不完全退火

亚共析钢在Ac

1- Ac

3

之间或过共析钢在Ac

1

-Accm之间两相区加热,保温足够时间,进行缓慢

冷却的热处理工艺,称为不完全退火。

如果亚共析钢的终轧终止温度适当,并未引起晶粒粗化,铁素体和珠光体的分布又无异常现象,采用不完全退火,可以进行部分重结晶,起到细化晶粒,改善组织,降低硬度和消除内应力的作用。亚共析钢的不完全退火温度一般为740-780℃,其优点是加热温度低,操作条件好,节省燃料和时间。

过共析钢退火是为了细化和均匀组织,降低硬度和消除内应力。

3 等温退火

等温退火是将钢件加热到临界温度(过共析钢Ac

1或亚共析钢Ac

3

)以上奥氏体化,然后将钢

件移入另一温度稍低于Ar

1

的炉中等温停留,不可太高也不宜过低。太高则等温时间过长,且

硬度偏低;过低则硬度偏高。原则是在保证硬度合格的条件下,尽量选用较低的等温温度,以缩短等温时间,提高劳动生产率。当转变完成后,出炉空冷至室温。

等温退火时转变易于控制,更适用于过冷奥氏体稳定性高的合金钢,可以节省钢件在炉内的时间,提高退火炉的周转率。

4 球化退火

球化退火是使钢中的碳化物球化,获得粒状珠光体的热处理工艺,主要用于过共析钢,如碳素工具钢、低合金工具钢和滚珠轴承钢。

球化退火的目的是降低硬度,改善切削加工性能,以及获得均匀的组织,并为最后的淬火处理

做组织准备。其加热温度范围一般取Ac

1

以上20-30℃

经球化退火后组织的优点:

⑴由片状变成粒状珠光体,降低硬度,改善切削加工性能。

⑵粒状珠光体加热时奥氏体晶粒不易长大,允许有较宽的淬火温度范围,淬火时变形开裂倾向小,即淬火的工艺性能好。

⑶能获得最佳的淬火组织,即马氏体片细小,残余奥氏体量少,并保留一定量均匀分布的粒状碳化物。

另外具有明显网状碳化物结构的钢材,必须先进行正火消除碳化物网,再进行球化退火。

5 扩散退火

扩散退火也称均匀化退火,主要用于合金钢钢锭或铸件,它们在浇注后凝固过程中总会产生合金元素的枝晶偏析,即化学成分不均匀性。扩散退火是通过高温长时间加热奥氏体化,使分布不均匀的元素通过扩散,以消除或者减弱枝晶偏析。

常用扩散退火温度是1100℃-1200℃,保温时间为10-15小时。钢中合金元素含量越高,所采用的加热温度越高。经高温长时间加热扩散退火后,奥氏体晶粒已经过度长大,如不再进行热加工,必须进行一次完全退火或正火以细化晶粒。

6 低温退火

低温退火是把钢件加热到低于Ac

温度退火,又叫消应力退火,主要用于消除铸件、锻件、焊

1

接件、冷冲压件和机加工件中的残余应力,提高稳定性,防止淬火变形开裂。它包括软化退火和再结晶退火。

常用的软化退火温度为650-720℃,保温后出炉空冷。钢锭经软化退火后,消除了内应力,避免钢锭开裂,并降低硬度便于钢锭表面清理。合金结构钢的锻轧钢材,经软化退火后能消除内应力和降低硬度,对于过冷奥氏体稳定性高的合金钢,降低硬度效果更为显著。

之间进行,通常为650-700℃。其目的是再结晶退火是将冷加工硬化的钢材,加热至T再-Ac

1

通过再结晶使变形晶粒恢复成等轴状晶粒,从而消除加工硬化。

简述热处理工艺中的正火、退火、淬火、回火的定义、目的及应用

或Acm以上约30-50℃,或者更高的温度,保温足够时间,然后在静止1正火是将钢加热到Ac

3

空气中冷却的热处理工艺,得到的显微组织为珠光体。

正火的目的:

⑴对于大锻件、截面较大的钢材、铸件,用正火来细化晶粒,均匀组织。如消除魏氏组织或带状组织,为下一步淬火处理做好组织准备,它相当于退火的效果。

⑵低碳钢退火后硬度太低,切削加工中易粘刀,光洁度较差。改用正火,可提高硬度,改善切削加工性。

⑶可作为某些中碳钢或中碳低合金钢工件的最终热处理,以代替调质处理,具有一定的综合力学性能。

⑷用于过共析钢,可以消除网状碳化物,便于球化退火

正火的用途:

正火操作方便、成本较低、生产周期短、生产效率高,主要用于改善低碳非合金钢(低碳钢)的切削加工性能,消除中碳非合金钢的热加工缺陷,消除过共析钢的网状碳化物,也可用于某些低温化学热处理件的预处理及某些结构钢的最终热处理。

2退火:将钢加热到临界点Ac

1

以上或以下的一定温度,保温一定时间,然后缓慢冷却,以获得接近平衡状态的组织,这种热处理工艺称为退火。

退火的目的是:

⑴消除钢锭的成分偏析,使成分均匀化。

⑵消除铸、锻件存在的魏氏组织或带状组织,细化晶粒和均匀组织。

⑶降低硬度,提高塑性,改善组织,以便于切削加工和冷变形加工。

⑷改善高碳钢中碳化物形态和分布,为淬火做好准备

⑸消除组织遗传,淬火过热组织。

⑹消除零件的加工应力,稳定零件尺寸。

⑺脱除氢气,消除白点。

3 淬火:将钢加热到临界点Ac

1或Ac

3

以上的一定温度,保温一段时间,然后在水或油等冷却

介质中快速冷却,这种热处理工艺称为淬火。

淬火的主要目的,是把奥氏体化工件淬成马氏体,以便在适当温度回火,获得所需要的力学性能。

4 回火是将淬火后的钢在A

1

温度下加热,使之转变成稳定的回火组织的工艺过程。此过程不仅保证组织转变,而且要消除内应力,故应有足够的保温时间

回火的目的就是消除应力、稳定组织、调整性能。

介绍几种常见的回火工艺,目的及应用

1 低温回火

在150-250℃之间进行,回火后组织为回火马氏体。其目的是降低淬火内应力,使其具有一定韧性,并保持高的硬度。

低温回火一般用来处理要求高硬度、高耐磨性工件,如模具、刀具、滚动轴承和渗碳件等。低碳合金钢淬火后,经低温回火具有高的综合力学性能。

2 中温回火

在350-500℃之间进行,回火后组织为回火屈氏体。中温回火后具有高的弹性极限,并具有足够的韧性,中温回火主要用来处理各种弹簧,也可用于处理要求高强度的工件,如刀杆、轴套等。

3 高温回火

在500-650℃之间进行,回火后组织为回火索氏体。习惯上把这种淬火加高温回火的双重处理称为调质处理。调质处理后钢件具有高的范性和韧性,强度也较高,即具有高的综合力学性能。调质处理广泛用于要求高强度并受冲击或交变负荷的重要工件,如连杆、轴等。

合金元素对铁碳相图的影响

1扩大γ相区的元素:就是指在铁与合金元素组成的二元相图中,是A3点温度降低,A4点温度升高,并在相当宽的温度范围内与γ-Fe可以无限固溶或有相当大的溶解度。

⑴开启γ相区元素:在这类元素与铁组成的二元相图中,γ相区存在的温度范围变宽,相应的α和δ相区缩小,并在一定范围内铁与该元素可以无限固溶。Mn、Co、Ni和Fe组成的二元相图属于此类。

⑵扩大γ相区的元素:与⑴相似,但是不能无限固溶。C、N、Cu等元素属于这类。

2缩小γ相区的元素:就是指这类元素在二元相图中,可以使A3温度升高,A4点温度降低;合金元素在γ-Fe中的溶解度较小。

⑴封闭γ相区的元素:这类元素使A3升高,A4降低,γ相区被α相区所封闭,在相图上形成γ圈。V、Cr、Ti、W、Mo、Al、Si、P、Sn、Sb、As等属于这类元素,其中V和Cr与α-Fe 在一定温度范围可无限互溶,其余元素与α-Fe都是有限互溶。

⑵缩小γ相区的元素:这类元素与封闭γ相区的元素相似,但由于在一定浓度范围出现了金属化合物,破坏了γ圈,使γ相可以在相当大的浓度范围内与化合物共存。B、Zr、Nb、Ta、S、Ce等属于这类元素。

综述合金元素(包括碳)在各种钢的作用(结合钢种详细说明要具体到某一型号的钢)

一结构钢:

1 调质钢 30CrMo C(0.26-0.34) Mn Cr Mo

合金元素的作用:

碳:保证形成足够的碳化物,其中一部分碳化物在加热至高温时溶入奥氏体中,使固溶体中含碳量达到饱和,从而保证淬火后马氏体的硬度;另一部分碳化物起细化晶粒的作用,并提高钢的耐磨性。

锰:可显著增大钢的淬透性和强度,与碳配合可以增大钢的加工硬化率,提高钢的耐磨性。

铬:增大钢的淬透性,并使过剩碳化物增多和变细,以增大钢的耐磨性。铬还可以提高钢的回火稳定性、抗氧化和抗气体腐蚀能力。

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

北京科技大学考研复试资料整理分析

08北科钢冶复试资料 1.铁水预处理:铁水预处理是指铁水兑入炼钢炉之前进行的各种处理。有脱 硫预处理和三脱(脱硅、磷、硫)预处理。分为普通铁水预处理和特殊铁水预处理两大类。普通铁水预处理包括:铁水脱硫、铁水脱硅和铁水脱P。特殊铁水预处理一般是针对铁水中含有的特殊元素进行提纯精炼或资源综合利用,如铁水提钒、提铌、脱铬等预处理工艺。 铁水预处理容器的选择:根据铁水预处理容器的选择,脱硫工艺可分为:混铁车喷吹法、铁水罐法、铁水包法。发展趋势:采用铁水包作为铁水脱硫预处理的容器。 铁水预处理(脱硫)的优越性:(1)满足用户对超低硫、磷钢的需求,发展高附加值钢种(2) 减轻高炉脱硫负担,放宽对硫的限制,提高产量,降低焦比;(3)炼钢采用低硫铁水冶炼,可获得巨大的经济效益。铁水脱硫工艺方法:投掷法,将脱硫剂投入铁水中脱硫;喷吹法,将脱硫剂喷入铁水中脱硫;搅拌法(KR法),通过中空机械搅拌器向铁水内加入脱硫剂,搅拌脱硫。铁水预处理(脱硫)是提高钢材质量的最经济手段 2.RH精炼法:也称钢液循环脱气法,将钢液提升到一容器内处理。 主要冶炼高质量产品,如轴承钢、LF钢、硅钢、不锈钢、齿轮钢等。国内RH 设备主要依靠进口。RH工艺特点:①反应速度快、处理周期短,生产效率高,常与转炉配套使用。②反应效率高,钢水直接在真空室内进行反应。③可进行吹氧脱碳和二次燃烧进行热补偿,减少处理温降;④可进行喷粉脱硫,生产超低硫钢。 3.LF精炼法(Ladle Furnace):钢包炉精炼法是最常用的精炼方法;取代 电炉还原期;解决了转炉冶炼优钢问题;具有加热及搅拌功能;脱氧、脱硫、合金化。工艺优点:①精炼功能强,适宜生产超低硫、超低氧钢②具备电弧加热功能,热效率高,升温幅度大,温度控制精度高③具备搅拌和合金化功能,易于实现窄成分控制,提高产品的稳定性④采用渣钢精炼工艺,精炼成本较低;⑤设备简单,投资较少 LF炉精炼非常适合于低硫、超低硫钢生产:高碱度还原渣,渣量可达25Kg/t;电弧加热,炉渣温度高;可以较强烈搅拌钢水;过程稳定,易于控制。 4.炉外精炼:内容:脱氧、脱硫;去气、去除夹杂;调整钢液成分及温度。 手段:①渣洗最简单的精炼手段;②真空目前应用的高质量钢的精炼手段; ③搅拌最基本的精炼手段;④喷吹将反应剂直接加入熔体的手段;⑤调温加热是调节温度的一项常用手段。主要的精炼工艺:LF(Ladle Furnace process);AOD(Argon-oxygen decaburizition process );VOD (Vacuum oxygen decrease process);RH(Ruhrstahl Heraeus process);CAS-OB( Composition adjustments by sealed argon -oxygen blowing process) ;喂线 (Insert thread) ;钢包吹氩搅拌(Ladle argon stirring);喷粉( powder injection )。

传热学复习资料汇总

传热学复习资料汇总 一、名词汇总 1.热流量:单位时间内所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。 6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。 ] 7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。 11.温度场:某一瞬间物体内各点温度分布的总称。一般来说,它是空间坐标和时间坐标的函数。 12.等温面(线):由物体内温度相同的点所连成的面(或线)。 13.温度梯度:在等温面法线方向上最大温度变化率。 14.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于 1 K/m 的温度梯度作用下产生的热流密度。热导率是材料固有的热物理性质,表示物质导热能力的大小。 { 15.导温系数:材料传播温度变化能力大小的指标。 16.稳态导热:物体中各点温度不随时间而改变的导热过程。 17.非稳态导热:物体中各点温度随时间而改变的导热过程。 18.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。 19.保温(隔热)材料:λ≤ W/(m·K)(平均温度不高于350℃时)的材料。20.肋效率:肋片实际散热量与肋片最大可能散热量之比。 21.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。 22.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。位传热面积在单位时间内的传热量。 &

高等传热学课件对流换热-第2章-3

2-3 管槽内层流对流换热特征 工程上存在大量的管槽内对流换热问题。本节对管槽内层流强制对流换热的流动与换热特征进行分析。 一、流动特征 当流体以截面均匀的流速0u 进入管道 后,由于粘性,会在 管壁上形成边界层。 边界层内相同r 处的轴向流速随δ的增加 而降低,导致对管中心势流区的排挤作用,使势流区流速增加。当边界层厚度δ达到管内半径时,势流区消失,边界层汇合于管轴线处,同时截面内速度分布不再变化。 u o

将管入口截面至边界层汇合截面间的流动区域称为入口段,或称为未充分发展流、正在发展流。该区域内,速度分布不断变化, (,)u u x r =,同时存在径向速度(,)v x r 。 边界层汇合截面以后的流动速度不再变化,()u u r =,而径向速度 0v =,这段流动区域称为充发展段或充分发展流。 所以,管内流动存在特征不同的两个区域:入口段,充分发展段。充分发展流动又分为:简单充分发展流、复杂充分发展流两种。 1). 简单充分发展流 是指只存在轴向速度分量,而其它方向速度分量为零的充分发展流动。 对圆管: ()u u r =,0v w ==; 对矩形管道:(,)u u x y =,0v w ==。 简单充分发展流任意横截面上压力均匀,沿轴向线性变化,即

dp const dx = 证明:对简单充分发展流,径向速度0v =,根据径向动量方程: 222211()v v p v v v u v x r r r r x r νρ??????+=?+++?????? ? 0p r ?=?, 即任意横截面上压力均匀,压力仅沿轴向变化。于是,轴向动量方程为: 222211(u u dp u u u u v x r dx r r x r νρ?????+=?+++????? 又发展流0u x ?=?(速度分布不变,或由连续方程得出)?

北科1995-2012材料科学基础考研试题及答案

北京科技大学 1995年硕士学位研究生入学考试试题 考试科目: 金属学 适用专业: 金属塑性加工 说明:统考生做1~10题,单考生做1~7题和在8~13题中任选3题。每题10分。 1、什么是固溶体?固溶体可以分为几种?并说明其各自的结晶特点。 2、计算含0.45%C的亚共析钢在共析温度时铁素体和奥氏体两相的相对数量,在这一温度下铁素体和珠光体的相对数量又是多少? 3、用扩散理论来说明高温条件下钢的氧化过程。 4、画出铁碳平衡相图中的包晶反应部分的相图,并给出包晶反应表达式。 5、说明钢中非金属夹杂物的来源及其种类。 6、说明钢的完全退火、不完全退火、等温退火、球化退火、和低温退火的工艺特点及它们的作用。 7、说明轴承钢的碳化物类型及形成原因。 8、画图说明钢的高温和低温形变热处理的工艺特点。 9、从下列元素中指出哪些元素是扩大奥氏体区域的?哪些元素是缩小奥氏体区域的?C Si Ti Cr Mo Ni Cu N 10、冷变形金属加热发生低温、中温和高温回复时晶体内部发生什么变化? 11、绘出立方系中{110}晶面族所包括的晶面,以及(112)、(123)、(120)晶面。 12、说明共析钢加热时奥氏体形成的过程,并画图表示。 13、合金钢中主要的合金相有几种类型?

北京科技大学 1999年硕士学位研究生入学考试试题 考试科目: 金属学 适用专业: 金属塑性加工 1、名词解释:(10分) (1)点阵畸变(2)组成过冷(3)再结晶温度(4)滑移和孪生(5)惯习现象 2、说明面心立方、体心立方、密排六方(c/a≥1.633)三种晶体结构形成的最密排面,最密排方向和致密度。(10分) 3、在形变过程中,位错增殖的机理是什么?(10分) 4、简述低碳钢热加工后形成带状组织的原因,以及相变时增大冷却度速度可避免带状组织产生的原因。(10分) 5、简要描述含碳量0.25%的钢从液态缓慢冷却至室温的相变过程(包括相变转换和成分转换)。(10分) 6、选答题(二选一,10分) (1)铸锭中区域偏析有哪几种?试分析其原因,并提出消除区域偏析的措施。 (2)固溶体结晶的一般特点是什么?简要描述固溶体非平衡态结晶时产生显微偏析的原因,说明消除显微偏析的方法。 7、简述金属或合金冷塑性变形后,其结构、组织和性能的变化。(10分) 8、简述经冷变形的金属或合金在退火时其显微组织,储存能和性能的变化规律。(10分) 9、选答题(二选一,10分) (1)为了提高Al-4.5%Cu合金的综合力学性能,采用了如下热处理工艺制度,在熔盐浴中505℃保温30分钟后,在水中淬火,然后在190℃下保温24小时,试分析其原因以及整个过程中显微组织的变化过程。 (2)什么叫固溶体的脱溶?说明连续脱溶和不连续脱溶在脱溶过程中母相成分变化的特点。 10、简述固溶强化,形变强化,细晶强化和弥散强化的强化机理。(10分) 11、简述影响再结晶晶粒大小的因素有哪些?并说明其影响的基本规律。(10分) 12、画出铁碳相图,并写出其中包晶反应,共晶反应和共析反应的反应式。(10分) 13、选做题(二选一,10分) (1)如果其他条件相同,试比较下列铸造条件下,铸件中晶粒大小,并分析原因。 a.水冷模浇铸和砂模浇铸 b.低过热度浇铸和高过热浇铸

北科大考研复试班-北京科技大学电子与通信工程考研复试经验分享

北科大考研复试班-北京科技大学电子与通信工程考研复试经验分享北京科技大学于1952年由天津大学(原北洋大学)、清华大学等6所国内著名大学的矿冶系科组建而成,现已发展成为以工为主,工、理、管、文、经、法等多学科协调发展的教育部直属全国重点大学,是全国首批正式成立研究生院的高等学校之一。1997年5月,学校首批进入国家“211工程”建设高校行列。2006年,学校成为首批“985工程”优势学科创新平台建设项目试点高校。2014年,学校牵头的,以北京科技大学、东北大学为核心高校的“钢铁共性技术协同创新中心”成功入选国家“2011计划”。2017年,学校入选国家“双一流”建设高校。2018年,学校获批国防科工局、教育部共建高校。 学校由土木与资源工程学院、冶金与生态工程学院、材料科学与工程学院、机械工程学院、能源与环境工程学院、自动化学院、计算机与通信工程学院、数理学院、化学与生物工程学院、东凌经济管理学院、文法学院、马克思主义学院、外国语学院、高等工程师学院,以及研究生院、体育部、管庄校区、天津学院、延庆分校组成。现有20个一级学科博士学位授权点,30个一级学科硕士学位授权点,79个二级学科博士学位授权点,137个二级学科硕士学位授权点,另有MBA(含EMBA)、MPA、法律硕士、会计硕士、翻译硕士、社会工作、文物与博物馆和工程硕士等8个专业学位授权点,16个博士后科研流动站,50个本科专业。学校冶金工程、材料科学与工程、矿业工程、科学技术史4个全国一级重点学科学术水平蜚声中外(2017年进入国家世界一流学科建设行列;在第四轮学科评估,冶金工程、科学技术史获评A+,材料科学与工程获评A),安全科学与工程、环境科学与工程、控制科学与工程、动力工程与工程热物理、机械工程、计算机科学与技术、土木工程、化学、外国语言文学、管理科学与工程、工商管理、马克思主义理论等一批学科具有雄厚实力,力学、物理学、数学、信息与通信工程、仪器科学与技术、纳米材料器件、光电信息材料与器件等基础学科与交叉学科焕发出勃勃生机。 启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 电子通信工程英文名为Electronics and Communication Engineering,是电子科学与技术和信息技术相结合,构建现代信息社会的工程领域,利用电子科学与技术和信息技术的基本理论解决电子元器件、集成电路、电子控制、仪器仪表、计算机设计与制造及与电子和

2020年北京科技大学材料专业考研经验全分享

XX年北京科技大学材料专业考研经验全分享转眼间,已经尘埃落定。回首这一年,有努力,也有回报,有汗水,也有欢笑。这一年,个人的付出固然重要,但诚然,我也从论坛收益良多,现在我小小的总结一下自己的观点,希望能对学弟学哥妹们有所帮助。 先来说说自己的情况:我报考的是北京科技大学材料学院,所考的分数分别为政治58,英语57,数学二115,专业课(材料科学基础)108,总分338。这样一个分数,对于一个工科生而言,算是中规中矩,但是对于今年的北科材料,可算是一个不折不扣的擦线党(初试线337)。即便如此,我想我还是很有必要介绍一下自己的经验。 如今,考研是一个热门的话题。同时,也是大学本科生的一个未来规划中的热门选项。很多人很轻率的就决定考研,对此我是不发表任何评论的。但是,我觉得,一旦决定考研,就要对全局有一个清醒的认识,而不是在模模糊糊的状态下就开始看书,鄙人鱼见,这样只是浪费了自己的时间和经历。 看书前要做好万全准备。大家可能会问要做好哪些准备。且听我慢慢道来。

做好了以上的各种准备,接下来就需要开始各科的复习了。不需要过多的解释,数学和英语都是要从大三下开始的,而政治和专业课是从九月份开始。细节我慢慢道来。 因为本人是工科生,所以只介绍工科生相关经验。我们考的是数学二,也就是只有高数和线性代数。而关于考研复xí,论坛里很多人都会分为三轮,说实话,我自己到目前为止也没好好划分过,所以只按自己的经验一点点介绍。 先插播一下我的学习理念。我觉得作为一个工科生,在学习这一块,理应有些自己的方法。我觉得不管是学什么,首先我们得对这一科有一个全局的把握,其次,我们还要有能力从众多信息中抽象出重点,然后循着重点对症下药。简单来讲,我觉得就是个盖房子的过程,先打地基,再出骨架,最后各种装饰。 频道调回到数学,关于数学的学习,我觉得首先得从书本下手,高数用同济5或者6版的两本书,线代无所谓,大同小异。依据往年的大纲,先把书本过个一遍,对各种概念,各种公式有个初步印象,我觉得这一步很重要:对于基础好的同学,可以作为回顾,对于基础差的同学,可以作为启蒙用。然而这样还不够,书本还要用第二遍,这一遍,最好边看边把你自己认为是重点的句子,定义,概念等抄下来(后期还有大作用),基础好的同学可以随意练练课后习题,基础

高等传热学课件对流换热-第5章-1

第五章自然对流换热 当流体内部的温度分布或浓度分布不均匀时,会造成密度分布的不均匀,在体积力场的作用下,形成浮升力,而引起流体的流动与换热,这种现象称为自然对流。 在自然界与工程技术中,自然对流现象很多,譬如:地面与大气间温度差引起的复杂大气环流,工业排烟在大气中的混合与蔓延,工业废水在水域中的混合与扩散,各种电子器件的散热冷却,建筑物内的采暖,炉中的火焰与烟气的蔓延等。 在铸造、温控等涉及固/液相变的技术过程中,自然对流也是重要的物理过程。 与强制对流换热一样,自然对流也有层流与湍流,内部流动与外部流动的区别。

5-1 自然对流边界层分析 一、自然对流边界层的特点 以放置于静止流体中的竖壁为例。流体温度为T ∞,壁面温度为w T ,当w T T ∞>时,壁面附近的流体被加热,温度升高,密度变小,在重力场作用下产生浮力,使流体向上运动,如图。 (a) Pr 1=, ()T δδ= (b)Pr >>1, ()T δδ>

一般来说,不均匀的温度场仅出现在离壁面较近的流体层内,表现出边界层的特性。与强制对流不同,离壁面较远的流体静止不动。 对不同类的流体,其边界层内的速度分布、温度分布及控制机理有所不同。 (a) 当Pr 1=时,T δδ=,温度分布单调,速度分布在离壁面一定距离 处取得较大值,从壁面到速度极大值处,浮升力克服粘性力产生惯性力(速度)。随着离开壁面的距离的增加,浮升力减小,但粘性力以更快的速度减小,直至为零,即在此处取得极大值。从该点向边界层外缘,由于浮升力进一步减小,不足以维持如此大的惯性,所以速度又逐渐降低。 (b)Pr >>1时,T δδ>。在T y δ<区域,浮升力克服粘性力产生惯性;在T y δ>区域浮升力为零,流体靠消耗惯性力来克服粘性力。此时,温度分布与速度分布的宽度不同。 (c) Pr <<1时,T δδ<,热扩散能力大于粘性扩散能力。在y δ<区域,

【北京科技大学2012年考研专业课真题】材料科学与基础2012

北京科技大学 2012年硕士学位研究生入学考试试题 ============================================================================================================= 试题编号: 814 试题名称:材料科学基础(共 3 页) 适用专业:材料科学与工程材料工程(专业学位) 说明:所有答案必须写在答题纸上,做在试题或草稿纸上无效。 ============================================================================================================= 一、简答题(8分/题,共40分) 1. 写出七种晶系的名称及点阵参数之间的关系; 2. 简述临界分切应力的概念; 3. 给出一级相变和二级相变的分类原则和相变特征; 4. 分析金属或合金的结晶形态; 5. 给出再结晶温度的定义。 二、纯Cu晶体在常温下的点阵常数为a=0.3615nm: 1. 指出其晶体结构类型和配位数(3分); 2. 简略计算Cu原子半径、原子致密度和两类间隙半径(6分); 3. 画出Cu原子在(111)晶面的分布情况,并计算其晶面间距和原子在 晶面上的致密度(6分)。(共15分) 三、分别画出下列离子晶体的布拉菲点阵(下图中的点阵参数均为a=b=c, α=β=γ=90o)。(10分) NaCl CaF2CaTiO3

四、示意画出下面的Ti-Zr体系中bcc和hcp相在1155、1139、1000和878K 时 的Gibbs自由焓-成分曲线。(15分) 五、根据下面的Al-Zn相图, 1. 写出其中的三相反应式(4分); 2. 画出x(Zn)=0.80合金的缓慢冷却曲线,并写出各阶段相对应的组织(8分); 3. 画出上述合金缓慢冷却到室温时的组织示意图,并计算各组织组成物的 相对含量(8分)。(共20分)

北科大行管考研真题笔记参考书

1 2015年行政管理考研指导 《张国庆公共行政学考研解析》,团结出版社,2013年版 (考点精编·习题答案·真题解析·热点解读) 《公共行政学》、《人力资源开发与管理(第二版)》、《公共政策》三门占的分值达到了75%以上。其他的三门的总分大约在80分左右。其中《公共行政学》这本书内容比较多,知识点繁杂,这个可以参考育明教育2013年出版的《张国庆公共行政学考研解析》,涵盖了考点精编·习题答案·真题解析。 《比较政治经济学》每年会有变动。不过,这门课,分值不是很高。这本书大家参考育明教育内部题库就可以了。 《行政法与社会科学》的两本参考书很难复习,但是历年考察的题目基本么有超出育明教育内部题库和复习范围。 行管每年的参考书都有所变动,但是基本的步调还是一致的。现在的一个趋势是要考查数理统计部分,每年都有二三十分的题目。这个的话,育明也有一个内部题库,基本涵盖了所有的考试范围。 此外,考生在复习的时候,还应该多关注一些当前行政管理学界的热点问题,比如“大部制改革”、“公共危机管理”、“政府信息公开”、“政府与媒体的关系”、“李连杰壹基金所引发的对第三部门的思考”、“拆迁引发的对行政执行能力问题的思考”、“交通拥堵等带来的交通管制等问题的思考”、“把权力关进制度的笼子里”、“改革是中国最大的红利”等等方面的问题。 2011年北大行管第一名、育明学员周武良:考研,就是要有方法! 2010年北大行管第一名、育明学员葛连高: 北大行管辅导,首选育明教育! 2012年北大行管第二名、育明学员李强:选择育明,选择成功! 西方国家行政改革的理论背景 20.1 考点、难点、热点归纳 【考点1】新自由主义★★★★★ (一)主体理论 一般认为,新自由主义是亚当·斯密古典自由主义思想基础上建立起来的强调市场导向、主张贸易自由化、价格市场化、产权私有化以及以此为基础的全球化的理论和思想体系。哈耶克1944年的《通往奴役之路》,被认为是标志新自由主义创立的宪章。

传热学重点知识复习资料合集

传热学重点知识复习资料合集 一、名词汇总概述 1.热流量:单位时间内所传递的热量 2.热流密度:单位传热面上的热流量 3.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 4.导热原理:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。 6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。 7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。

9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。 11.温度场:某一瞬间物体内各点温度分布的总称。一般来说,它是空间坐标和时间坐标的函数。 12.等温面(线):由物体内温度相同的点所连成的面(或线)。13.温度梯度:在等温面法线方向上最大温度变化率。 14.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。热导率是材料固有的热物理性质,表示物质导热能力的大小。 15.导温系数:材料传播温度变化能力大小的指标。 16.稳态导热:物体中各点温度不随时间而改变的导热过程。17.非稳态导热:物体中各点温度随时间而改变的导热过程。18.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。 19.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。 20.肋效率:肋片实际散热量与肋片最大可能散热量之比。 21.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。

北科大考研复试班-北京科技大学管理科学与工程考研复试经验分享

北科大考研复试班-北京科技大学管理科学与工程考研复试经验分享北京科技大学于1952年由天津大学(原北洋大学)、清华大学等6所国内著名大学的矿冶系科组建而成,现已发展成为以工为主,工、理、管、文、经、法等多学科协调发展的教育部直属全国重点大学,是全国首批正式成立研究生院的高等学校之一。1997年5月,学校首批进入国家“211工程”建设高校行列。2006年,学校成为首批“985工程”优势学科创新平台建设项目试点高校。2014年,学校牵头的,以北京科技大学、东北大学为核心高校的“钢铁共性技术协同创新中心”成功入选国家“2011计划”。2017年,学校入选国家“双一流”建设高校。2018年,学校获批国防科工局、教育部共建高校。 学校由土木与资源工程学院、冶金与生态工程学院、材料科学与工程学院、机械工程学院、能源与环境工程学院、自动化学院、计算机与通信工程学院、数理学院、化学与生物工程学院、东凌经济管理学院、文法学院、马克思主义学院、外国语学院、高等工程师学院,以及研究生院、体育部、管庄校区、天津学院、延庆分校组成。现有20个一级学科博士学位授权点,30个一级学科硕士学位授权点,79个二级学科博士学位授权点,137个二级学科硕士学位授权点,另有MBA(含EMBA)、MPA、法律硕士、会计硕士、翻译硕士、社会工作、文物与博物馆和工程硕士等8个专业学位授权点,16个博士后科研流动站,50个本科专业。学校冶金工程、材料科学与工程、矿业工程、科学技术史4个全国一级重点学科学术水平蜚声中外(2017年进入国家世界一流学科建设行列;在第四轮学科评估,冶金工程、科学技术史获评A+,材料科学与工程获评A),安全科学与工程、环境科学与工程、控制科学与工程、动力工程与工程热物理、机械工程、计算机科学与技术、土木工程、化学、外国语言文学、管理科学与工程、工商管理、马克思主义理论等一批学科具有雄厚实力,力学、物理学、数学、信息与通信工程、仪器科学与技术、纳米材料器件、光电信息材料与器件等基础学科与交叉学科焕发出勃勃生机。 启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 管理科学与工程是综合运用系统科学、管理科学、数学、经济和行为科学及工程方法,结合信息技术研究解决社会、经济、工程等方面的管理问题的一门学科。这一学科是我国管

北科大考研复试班-北京科技大学化学考研复试经验分享

北科大考研复试班-北京科技大学化学考研复试经验分享北京科技大学于1952年由天津大学(原北洋大学)、清华大学等6所国内著名大学的矿冶系科组建而成,现已发展成为以工为主,工、理、管、文、经、法等多学科协调发展的教育部直属全国重点大学,是全国首批正式成立研究生院的高等学校之一。1997年5月,学校首批进入国家“211工程”建设高校行列。2006年,学校成为首批“985工程”优势学科创新平台建设项目试点高校。2014年,学校牵头的,以北京科技大学、东北大学为核心高校的“钢铁共性技术协同创新中心”成功入选国家“2011计划”。2017年,学校入选国家“双一流”建设高校。2018年,学校获批国防科工局、教育部共建高校。 学校由土木与资源工程学院、冶金与生态工程学院、材料科学与工程学院、机械工程学院、能源与环境工程学院、自动化学院、计算机与通信工程学院、数理学院、化学与生物工程学院、东凌经济管理学院、文法学院、马克思主义学院、外国语学院、高等工程师学院,以及研究生院、体育部、管庄校区、天津学院、延庆分校组成。现有20个一级学科博士学位授权点,30个一级学科硕士学位授权点,79个二级学科博士学位授权点,137个二级学科硕士学位授权点,另有MBA(含EMBA)、MPA、法律硕士、会计硕士、翻译硕士、社会工作、文物与博物馆和工程硕士等8个专业学位授权点,16个博士后科研流动站,50个本科专业。学校冶金工程、材料科学与工程、矿业工程、科学技术史4个全国一级重点学科学术水平蜚声中外(2017年进入国家世界一流学科建设行列;在第四轮学科评估,冶金工程、科学技术史获评A+,材料科学与工程获评A),安全科学与工程、环境科学与工程、控制科学与工程、动力工程与工程热物理、机械工程、计算机科学与技术、土木工程、化学、外国语言文学、管理科学与工程、工商管理、马克思主义理论等一批学科具有雄厚实力,力学、物理学、数学、信息与通信工程、仪器科学与技术、纳米材料器件、光电信息材料与器件等基础学科与交叉学科焕发出勃勃生机。 启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 化学专业是一种大学专业。化学专业培养具备化学的基础知识、基本理论和基本技能,能在化学及与化学相关的科学技术和其它领域从事科研、教学技术及相关管理工作的高级专门人才。

传热学讲义设计—第二章

第二章 稳态导热 本章重点:具备利用导热微分方程式建立不同边界条件下稳态导热问题的数学模型的能力 第一节 通过平壁的导热 1-1 第一类边界条件 研究的问题: (1)几何条件:设有一单层平壁,厚度为δ,其宽度、高度远大于其厚度(宽度、高度是厚度的10倍以上)。这时可认为沿高度与宽度两个方向的温度变化率很小,温度只沿厚度方向发生变化。(属一维导热问题) (2)物理条件:无内热源,材料的导热系数λ为常数。 (3) 边界条件:假设平壁两侧表面分别保持均匀稳定的温度 1w t 和2w t ,21w w t t >。(为第一类边界条件,同时说明过程是稳态的) 求:平壁的温度分布及通过平壁的热流密度值。 方法1 导热微分方程: 采用直角坐标系,这是一个常物性、无内热源、一维稳态导热问题(温度只在 x 方向变化)。 导热微分方程式为:022=dx t d (2-1) 边界条件为:10w x t t == , 2w x t t ==δ (2-2) 对式(2-1)连续积分两次,得其通解: 21c x c t += (2-3) 这里1c 、2c 为常数,由边界条件确定 ,解得:?? ???=-= 11221w w w t c t t c δ (2-4) 最后得单层平壁内的温度分布为: x t t t t w w w δ 2 11-- = (2-5) 由于δ 、1w t 、2w t 均为定值。所以温度分布成线性关系,即温度分布曲线的斜率是常数(温度梯度), const t t dx dt w w =-=δ 1 2 (2-6)

热流密度为:)(21w w t t dx dt q -=-=δ λ λ 2/m W (2-7) 若表面积为 A, 在此条件下 , 通过平壁的导热热流量则为 : t A qA ?==Φδ λ W (2-8) 考虑导热系数随温度变化的情况: 对于导热系数随温度线形变化,即)1(0bt +=λλ,此时导热微分方程为:0=?? ? ??dx dt dx d λ 解这个方程,最后得: ?? ? ???++-+?? ? ?? +=+)(211212121121 122w w w w w w t t b x t t bt t bt t δ 或 x t t t t b b t b t w w w w w δ 12211)(2112 2-??????+++??? ??+=??? ??+ 说明:壁内温度不再是直线规律,而是按曲线变化。 对上式求导得:??? ?????+??? ??-=)1/(222bt dx dt b dx t d 因为 01>+bt ,02 >?? ? ??dx dt 所以 0>b ? 02 2dx t d ? 曲线是向上凹的。 通过平壁的导热热流密度为: () ?? ????++-=+-=-=2121211)1(00w w w w t t b t t dx dt bt dx dt q λδλλ 式中,()m w w t t b λλλλ=+=?? ????++22112 1 021 则 )(2 1 w w m t t q -= δ λ 从上式可以看出,如果以平壁的平均温度2 2 1w w m t t t +=来计算导热系数,则平壁的热流密 度仍可用导热系数为常数时的热流密度计算式:

高等传热学课件对流换热-第6章-1

第六章 高速流动对流换热
在前面几章介绍的强制对流换热中, 我们假设速度和速度梯度充 分小,以致动能和粘性耗散的影响可以忽略不计。现在考虑高速和粘 性耗散的影响。我们主要介绍有更多重要应用的外部边界层。
6.1 高速流对流换热基本概念
高速对流主要涉及以下两类现象: z 从机械能向热能的转换,导致流体中的温度发生变化; z 由于温度变化使流体的物性发生变化。 空气一类气体若具有极高的速度,将会导致超高温离解、质量浓 度梯度,并因此发生质量扩散,使问题变得更加复杂。这里仅限于关 注未发生化学反应的边界层;对空气来说,这意味着我们将不考虑温

度超过 2000K 或者马赫数高于 5 的情况。对液体,如果普朗特数足 够高的话,粘性耗散实际上在中等速度时就具有很可观的作用。 我们的讨论仅限于普朗特数接近于 1 的气体。 有关高速对流的研究大都涉及对机械能转换和流体物性随温度 变化两个因素的总体考虑,很难看到它们单独的影响。这里,我们暂 不考虑变物性的影响,首先讨论能量转换问题。 能量转换过程能可逆地发生,也能不可逆地发生。比如,在边界 层内,激波与粘性的相互作用使得机械能与热能间的不可逆转换增 大,无粘性的速度变化(比如在接近亚音速滞止点附近流体的减速) 则产生可逆的,或者非常接近可逆的能量转换。高速边界层滞止点的 比较能很好地说明这两种情况的明显区别。 z 在滞止点(图 6-1)处速度降低,边界层以外的压力和温度提高。 对于亚音速流动, 该过程几乎是等熵的, 流体粘度不起什么作用。 无论减速可逆还是不可

逆,滞止区边界层以外的流体 温度等于滞止温度, 也就是说, 流体温升来自于绝热减速:
? T∞
V2 = T∞ + 2c
(6.1.1)
V
若不考虑变物性影响,并
* 用 T∞ 代替 T∞ , 低速滞止点的解
也能适用于高速滞止点问题:
? qw = h (Tw ? T∞ )
图 6-1 滞止点的流动
(6.1.2)
z 但高速边界层问题有所不同。 如果自由速度很高, 边界层以内速 度梯度很大, 边界层内因粘性切应力产生粘性耗散。 如果物体是 绝热的,那么耗散产生的热量可以靠分子或者涡漩传导的机理, 从靠近表面的向边界层外传递出去, 如图 6-2 所示。 稳态条件下, 在粘性耗散和热传导之间存在一种平衡状态, 导致图 6-2 所示的 温度分布。此条件下的表面温度就等于绝热壁面温度 Taw 。

北科大考研复试班-北京科技大学信息与通信工程考研复试经验分享

北科大考研复试班-北京科技大学信息与通信工程考研复试经验分享北京科技大学于1952年由天津大学(原北洋大学)、清华大学等6所国内著名大学的矿冶系科组建而成,现已发展成为以工为主,工、理、管、文、经、法等多学科协调发展的教育部直属全国重点大学,是全国首批正式成立研究生院的高等学校之一。1997年5月,学校首批进入国家“211工程”建设高校行列。2006年,学校成为首批“985工程”优势学科创新平台建设项目试点高校。2014年,学校牵头的,以北京科技大学、东北大学为核心高校的“钢铁共性技术协同创新中心”成功入选国家“2011计划”。2017年,学校入选国家“双一流”建设高校。2018年,学校获批国防科工局、教育部共建高校。 学校由土木与资源工程学院、冶金与生态工程学院、材料科学与工程学院、机械工程学院、能源与环境工程学院、自动化学院、计算机与通信工程学院、数理学院、化学与生物工程学院、东凌经济管理学院、文法学院、马克思主义学院、外国语学院、高等工程师学院,以及研究生院、体育部、管庄校区、天津学院、延庆分校组成。现有20个一级学科博士学位授权点,30个一级学科硕士学位授权点,79个二级学科博士学位授权点,137个二级学科硕士学位授权点,另有MBA(含EMBA)、MPA、法律硕士、会计硕士、翻译硕士、社会工作、文物与博物馆和工程硕士等8个专业学位授权点,16个博士后科研流动站,50个本科专业。学校冶金工程、材料科学与工程、矿业工程、科学技术史4个全国一级重点学科学术水平蜚声中外(2017年进入国家世界一流学科建设行列;在第四轮学科评估,冶金工程、科学技术史获评A+,材料科学与工程获评A),安全科学与工程、环境科学与工程、控制科学与工程、动力工程与工程热物理、机械工程、计算机科学与技术、土木工程、化学、外国语言文学、管理科学与工程、工商管理、马克思主义理论等一批学科具有雄厚实力,力学、物理学、数学、信息与通信工程、仪器科学与技术、纳米材料器件、光电信息材料与器件等基础学科与交叉学科焕发出勃勃生机。 启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 信息与通信工程是一级学科,下设通信与信息系统、信号与信息处理两个二级学科。该专业是一个基础知识面宽、应用领域广阔的综合性专业,涉及无线通信、多媒体和图像处理、电磁场与微波、医用X线数字成像、阵列信号处理和相空间波传播与成像以及卫星移动视频

北科大考研复试班-北京科技大学自动化学院控制科学与工程考研复试经验分享

北科大考研复试班-北京科技大学自动化学院控制科学与工程考研复 试经验分享 北京科技大学于1952年由天津大学(原北洋大学)、清华大学等6所国内著名大学的矿冶系科组建而成,现已发展成为以工为主,工、理、管、文、经、法等多学科协调发展的教育部直属全国重点大学,是全国首批正式成立研究生院的高等学校之一。1997年5月,学校首批进入国家“211工程”建设高校行列。2006年,学校成为首批“985工程”优势学科创新平台建设项目试点高校。2014年,学校牵头的,以北京科技大学、东北大学为核心高校的“钢铁共性技术协同创新中心”成功入选国家“2011计划”。2017年,学校入选国家“双一流”建设高校。2018年,学校获批国防科工局、教育部共建高校。 学校由土木与资源工程学院、冶金与生态工程学院、材料科学与工程学院、机械工程学院、能源与环境工程学院、自动化学院、计算机与通信工程学院、数理学院、化学与生物工程学院、东凌经济管理学院、文法学院、马克思主义学院、外国语学院、高等工程师学院,以及研究生院、体育部、管庄校区、天津学院、延庆分校组成。现有20个一级学科博士学位授权点,30个一级学科硕士学位授权点,79个二级学科博士学位授权点,137个二级学科硕士学位授权点,另有MBA(含EMBA)、MPA、法律硕士、会计硕士、翻译硕士、社会工作、文物与博物馆和工程硕士等8个专业学位授权点,16个博士后科研流动站,50个本科专业。学校冶金工程、材料科学与工程、矿业工程、科学技术史4个全国一级重点学科学术水平蜚声中外(2017年进入国家世界一流学科建设行列;在第四轮学科评估,冶金工程、科学技术史获评A+,材料科学与工程获评A),安全科学与工程、环境科学与工程、控制科学与工程、动力工程与工程热物理、机械工程、计算机科学与技术、土木工程、化学、外国语言文学、管理科学与工程、工商管理、马克思主义理论等一批学科具有雄厚实力,力学、物理学、数学、信息与通信工程、仪器科学与技术、纳米材料器件、光电信息材料与器件等基础学科与交叉学科焕发出勃勃生机。 启道考研复试班根据历年辅导经验,编辑整理以下关于考研复试相关内容,希望能对广大复试学子有所帮助,提前预祝大家复试金榜题名! 专业介绍 控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。控制科学以控制论、系统论、信息论为基础,研究各应用领域内的共性问题,即为了实现控制目标,应如何

传热学基础复习资料

传热学基础 一、填空题 1、传热的基本方式有热传导、热对流和热辐射三种。 热传导、热对流、热辐射 2、传热过程可分为不随时间变化的和随时间变化的。 稳态传热、非稳态传热 3、对流换热实质是和两种传热机理共同作用的结果。 热对流、导热 4、某瞬时物体内部各点温度的集合称为该物体的,其同温度各点连成的面称为,其法线方向上温度的变化率用表示。 温度场、等温面、温度梯度 5、当物质的种类一定时,影响导热系数大小的外因主要是和。 6、表示物体的蓄热量与界面上换热量的比值称为。 时间常数 7、在湍流传热时,热阻主要集中在,因此,减薄该层的厚度是强化的重要途径。 层流内层、对流传热 8、对流传热系数的主要影响因素有(1)(2)(3)(4)(5)。 流体的种类和相变化的情况;流体的性质;流体流动的状态;流体流动的原因;

穿热面的形状、分布和大小 9、无相变时流体在圆形直管中作强制湍流传热,在α=λ/ 公式中,n 是为校正 的影响。当流体被加热时,n 取 ,被冷却时n 取 。 热流方向、、 10、努塞尔特准数Nu 表示 的准数,其表达式为 ,普兰特准数Pr 表示 的准数,其表达式为 。 对流传热系数、λαl Nu =、物性影响、λ μP C =Pr 11、蒸汽冷凝有 和 两种方式。 膜状冷凝、滴状冷凝 12、双层平壁定态热传导,两层壁厚面积均相等,各层的导热系数分别为1λ和2λ,其对应的温度差为1t ?和2t ?,若1t ?>2t ?,则1λ和2λ的关系为 。 1λ<2λ 二、简答题 1、何谓热对流何谓对流传热对流换热又可分为哪两大类 答:热对流是指流体中质点发生相对位移而引起的热量传递。通常,对流传热是指流体与固体壁面间的传热过程,它是热对流和热传导的结合。它又可分为强制对流和自然对流两类。 2、请简述辐射换热区别于导热和热对流方式最主要的特征。 它是唯一一种非接触的传热方式;它不仅产生能量转移,而且还伴随着能量形式

相关文档
相关文档 最新文档