文档库 最新最全的文档下载
当前位置:文档库 › 水化热讲解

水化热讲解

水化热讲解
水化热讲解

第一章设计说明

第二章大体积混凝土承台水化热有限元分析

2.1 概论

2.1.1 大体积混凝土定义

目前国际上对大体积混凝土仍无一个统一的定义。就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。

由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。

2.1.2 大体积混凝土温度裂缝成因

施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多,而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。

因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。

2.1.3 本章研究的主要内容

(一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿

真水化热计算。

(二)对其水化热进行参数分析。

2.2 承台仿真分析

2.2.1 工程基本概况

松柏山水库特大桥位于松柏山水库上游,为贵安新区黔中大道(三期)道路工程的一个控制性桥梁。左、右幅主桥均采用100+180+100m (桥梁中心线对应跨径)变截面预应力混凝土连续刚构桥,墩顶梁高12.0m ,跨中梁高4.2m ,采用挂篮悬浇施工。其主墩承台为C30混凝土,每个承台设置5层冷却管,承台尺寸为17.1m ×17.1m ×5m ,属于典型的大体积混凝土结构,主墩承台构造简图如下。

平面1710

立面

图2.2.1 主墩承台平面、立面示意图(单位:cm )

2.2.2 基本计算数据

2.2.3 模型的建立

由于承台模型具有对称性,取1/4模型进行建模和分析,既可以提高建模速度、缩短分析时间,又方便查看内部温度分布及应力发生状况。为了模拟混凝土的热量传递给地基的情况,将地基模拟成具有一定比热和热传导率的结构;为了更准确的反应结构内部的温度、应力变化,分割单元时适当细分。

建模时在地基基础施加位移约束,在混凝土表面施加对流边界和环境温度条。1/4三维模型共计节点6490个、单元5356个,采用实体单元,如图2.2.2所示。

图2.2.2 1/4承台三维立体模型图(上层为承台,下层为地基基础)

2.2.4 计算工况与计算结果

(1)工况1:一次性浇筑,不布设冷却管。

(2)工况2:按照设计文件布设冷却管。

以下给出代表性温度场、应力场计算结果(图2.2.3~2.2.10),分两种工况给出。

图2.2.3 工况1承台内部中心节点温度时程曲线

图2.2.4 工况2承台内部中心节点温度时程曲线

图2.2.5 工况1承台内部中心节点应力时程曲线

图2.2.6 工况2承台内部中心节点应力时程曲线

图2.2.7 工况1承台内部水化热温度场云图(60h)

图2.2.8 工况2承台内部水化热温度场云图(60h)

图2.2.9 工况1承台内部水化热温度场云图(170h)

图2.2.10 工况2承台内部水化热温度场云图(170h)由上述计算结果简要分析如下:

(1)未布设冷却管时,承台内部最高水化热温度达66.6℃,持续时间长;而布设冷却管后承台内部最高水化热温度为53.1℃,相比之下降低了13.5℃,且持续时间较短。

(2)未布设冷却管时,由于水化热温升较高,导致其温度应力超过混凝土即时的材料强度,如不采取防裂措施,混凝土会产生温度裂缝;而布设冷却管时,相比下温升较低,导致其温度应力小于混凝土即时的材料强度,混凝土不会开裂。

(3)采用预埋冷却管方式施工,可以较好的降低水化热温度,减小混凝土内表面温差,有效的防止温度裂缝的产生,但应做好养护措施。

2.2.5 实测值与理论计算值对比分析

选取松柏山水库特大桥右幅8#主墩承台内部中心点进行分析。现场对右幅8#主墩承台进行了连续14天的观测,承台混凝土内部温度通过预埋温度传感器测试,大气温度、承台表面温度及冷却管进出水口温度采用点式温度计观测。承台中心温度实测值与理论值对比图如下。

图2.2.11 中心测点实测值与计算结果相比

从图2.2.11可看出,计算结果最高温度为53.1℃,出现在混凝土浇筑后60h;现场实测最高温度为53.2℃,出现在混凝土浇筑后64h;由于现场环境突变等因素的影响,两者曲线不可能完全一致,但计算温度曲线与实测温度曲线发展趋势相同,并且绝大部分测点计算结果与实测值相差不超过2℃。因此,承台仿真分析具有一定参考性和可靠性。

2.3 水化热参数分析

除了上述有无冷却管施工对水化热有影响外,还有很多因素与大体积混凝土的水化热密切相关,如内部因素有水泥类型、用量等,外部因素有入模温度、冷却管水温等。以上述承台为分析模型,运用MADIS有限元软件对影响水化热的主要参数进行分析。

2.3.1 水泥类型与用量

水泥是水化热产生的根本原因,分别采用普通硅酸盐水泥、中热硅酸盐水泥、高早强硅酸盐水泥、高炉矿渣水泥、粉煤灰水泥这5种水泥进行定量分析;分别取水泥用量300kg、325kg、350kg、375kg、400kg进行定量分析。取承台内部最大温升进行比较,分析结果见下图。

图2.3.1 水泥类型与水泥用量温升曲线

由图2.3.1可知,在其余因素不变,只改变水泥用量的情况下,混凝土的最大温升与水泥用量成正比。温升最大的高早强硅酸盐水泥在水泥用量300kg时承台中心点温升45.4℃,水泥用量达到400kg时承台中心点温升59.2℃,差别达13.8℃,每增加25kg水泥用量承台中心点温升3.5℃;温升最小的中热硅酸盐水泥在水泥用量300kg时承台中心点温升30℃,水泥用量达到400kg时承台中心点温升

39.5℃,差别达9.5℃,每增加25kg水泥用量承台中心点温升2.5℃。

由图2.3.1可知,在其余因素不变,只改变水泥品种的情况下,使用低热品种水泥比使用高热品种水泥的最大温升要小很多。同样水泥用量为300kg的情况下,使用中热硅酸盐水泥其承台中心点温升30℃,而使用高早强硅酸盐水泥其承台中心点温升45.4℃,两者温升差值较大。

由以上可知,混凝土的绝热温升与水泥的用量成正比,而且不同水泥品种对混凝土水化热影响很大。因此,在满足混凝土设计强度的前提下,水泥应采用低热水泥并尽量减少水泥用量,可适当掺入粉煤灰等活性矿物外加剂,以此来降低水化热,防止温度裂缝的产生。

2.3.2 入模温度

混凝土入模温度也称浇注温度,是混凝土水化热温升的基础。在其它条件不变的情况,分别改变入模温度10℃、20℃、30℃,运用迈达斯分析运行求得3种入模温度下的承台内部最高温度,结果见下图。

图2.3.2 3种入模温度下的温度峰值变化曲线由图2.3.2可看出,入模温度越高,中心温度值也越高。30℃下的入模温度温升比10℃下的入模温度温升高10.5℃。

由以上可知,混凝土入模温度越高,它的热峰值也必然越高,对结构内表面温差的影响也越大。因此,有效降低入模温度,对控制混凝土最高温升,减小结构内表面温差起着至关重要的作用,但混凝土入模温度最低不宜低于5℃,在5℃下水泥的水化热将停止反应,混凝土强度将不会增加,所以在冬季施工时混凝土应加入防冻剂。结合理论与现场实际观测,入模温度控制在15~20℃较好。

2.3.3 冷却管水温

在布设冷却管施工的情况下,冷却管水温对承台水化热也有一定程度的影响。取冷却管水温18~30℃,在其它因素不变的条件下,运用迈达斯软件分别进行运行分析,其承台内部峰值变化结果见下图。

图2.3.3 不同冷却水温作用下的温度峰值变化曲线由图2.3.3可见,管冷温度在18~30℃下的内部温差可达3℃,每增加2℃冷却管水温,其承台内部峰值增大0.5℃。

因此,冷却水温越低,其承台内部峰值越低,温控效果越好。但水温不宜过底,冷却水温越低其冷却水温与内部混凝土温差也越大,导致水管周围的拉应力也越大,当拉应力超过内部混凝土容许应力时,承台内部将会产生裂缝。通过现场对主墩承台观测的实际情况来看,进水口水温在25℃左右时,承台内部降温速率变得有所缓慢,结合理论与现场实际可以得出,冷却水温保持在15℃左右时温控效果较好。

2.3.4 大气温度

不同季节浇筑混凝土,其大气温度是不同的。分别选取5℃和30℃下的环境温度,运用迈达斯软件进行承台温度分析,分析结果见图2.3.4~2.3.5。

图2.3.4 大气温度为5℃下的中心温度与表面温度变化曲线

图2.3.5 大气温度为30℃下的中心温度与表面温度变化曲线由图2.3.4可看出,大气温度在5℃时,承台内部峰值为53.1℃,承台内表面温差最大达到39℃,远远超过了规范所规定的25℃。

由图2.3.5可看出,大气温度在30℃时,承台内部峰值为53.2℃,承台内表面温差最大为19℃,低于规范所规定的25℃。

由以上可得,大气温度对混凝土水化热峰值影响很小,但对混凝土内外温差有很大的影响。环境温度越低,混凝土表面温度越低,内外温差越大,当内外温差超过规范值时,结构将会产生表面裂缝,其耐久性会受到损害。因此,在寒潮等温度较低的天气,应采取措施保温覆盖。

2.4 结论

本章通过MADIS有限元仿真分析计算和现场实测研究了桥梁大体积混凝土承台的水化热,得到如下结论:

(1)仿真分析计算可以较好的预测水化热的实际发展规律,对指导大体积混凝土的温控和防裂措施具有重要意义。

(2)影响大体积混凝土水化热的因素分为主动因素和被动因素,其中主动因素包括水泥的品种与用量,决定着水化热的变化规律;被动因素包括入模温度、冷却管布置、冷却水温等,在一定程度上影响着水化热的发展。

(3)理论和实践表明选择低水化热的水泥品种,同时采取优化混凝土配合比、掺入粉煤灰等措施减少水泥用量,是从根本上降低水化热温度的措施。

(4)在大体积混凝土内部预埋冷却管,通过管冷作用降低水化热温度;降低混凝土的浇筑温度,选择气温较低的时候浇筑混凝土;混凝土浇筑完毕后,注意对混凝土加以覆盖并保湿养护。

(5)总而言之,合理有效的大体积混凝土温控方案和施工措施,是防止大体积混凝土在水化热过程中产生裂缝的重要保证。

(新)混凝土热工计算

混凝土热工计算: 依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。 砼强度为:C40 砼抗渗等级为:P6 砼供应商提供砼配合比为: 水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂 155: 205 : 110 : 10.63 : 110 : 1141 : 727 一、温度控制计算 1、最大绝热温升计算 T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ 式中: T MAX——混凝土的最大绝热温升; W——每m3混凝土的凝胶材料用量; m c——每m3混凝土的水泥用量,取205Kg/m3; FA——每m3混凝土的粉煤灰用量,取110Kg/m3; SL——每m3混凝土的矿粉用量,取110Kg/m3; UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3; K1——粉煤灰折减系数,取0.3; K2——矿粉折减系数,取0.5; Q——每千克水泥28d 水化热,取375KJ/Kg; C——混凝土比热,取0.97[KJ/(Kg·K)]; ρ——混凝土密度,取2400(Kg/m3);

T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400 T MAX=303.63×375/0.97×2400=48.91(℃) 2、各期龄时绝热温升计算 Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt); Th——混凝土的t期龄时绝热温升(℃); е——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。根据商砼厂家提供浇注温度 为20℃,m值取0.362 Th(t)=48.91(1-e-mt) 计算结果如下表: 3、砼内部中心温度计算 T1(t)=T j+Thξ(t) 式中: T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土 温度最高值; T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃; ξ(t)——t 龄期降温系数,取值如下表

大体积混凝土水化热计算

10.3 球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取0.25~0.30 Q----水泥28d水化热(kJ/kg)见下表 ρ—混凝土密度,取2400(kg/m3) e----为常数,取2.718 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.49计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.362; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃ 代入(2)得: T3=69.3*0.662=45.88℃; T4=69.3*0.765=53.01℃; T5=69.3*0.836=57.93℃; T7=69.3*0.92=63.76℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

水化热讲解

第一章设计说明

第二章大体积混凝土承台水化热有限元分析 2.1 概论 2.1.1 大体积混凝土定义 目前国际上对大体积混凝土仍无一个统一的定义。就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。 由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。 2.1.2 大体积混凝土温度裂缝成因 施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多,而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。 因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。 2.1.3 本章研究的主要内容 (一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿 真水化热计算。 (二)对其水化热进行参数分析。

大体积混凝土水化热计算和混凝土抗裂验算(泰康人寿)

大体积混凝土水化热计算和混凝土抗裂验算 工程名称:泰康人寿工程 施工单位:中建一局集团建设发展有限公司 砼供应单位:北京铁建永泰新型建材有限公司 混凝土水化热计算 1 热工计算 1.1混凝土入模温度控制计算 (1)混凝土拌合温度宜按下列公式计算: T0=[0.92(m ce T ce+m s T s+m sa T sa+m g T g)+4.2T w(m w-ωsa m sa-ωg m g)+C w(ωsa m sa T sa+ωg m g T g)-C i(ωsa m sa+ωg m g)] ÷[4.2m w+0.92(m ce+m sa+m s+m g)]…………(1.1)式中T0 —混凝土拌合物温度(℃); m w---水用量(Kg); m ce---水泥用量(Kg); m s---掺合料用量(Kg); m sa---砂子用量(Kg); m g---石子用量(Kg); T w---水的温度(℃); T ce---水泥的温度(℃); T s---掺合料的温度(℃); T sa---砂子的温度(℃); T g---石子的温度(℃); ωsa---砂子的含水率(%); ωg---石子的含水率(%); C w---水的比热容(Kj/Kg.K); C i---冰的溶解热(Kj/Kg); 当骨料温度大于0℃时, C w=4.2, C i =0; 当骨料温度小于或等于0℃时,C w=2.1, C i=335。

(2)C40P6混凝土配比如下: 根据我搅拌站的设备及生产、材料情况,取T w =16℃,T ce=40℃,T s=35℃,ωsa=5.0%,ωg=0%, T sa=10℃,T g=10℃,C1=4.2,C i =0 则T0=[0.92(280×40+175×35+723×10+1041×10)+4.2×16(165- 5.0%×723-0%×1041)+4.2(5.0%×723×10+0%×1041×0)-0 (ωsa m sa+ωg m g)]÷[4.2×165+0.92(280+175+723+1041)]=[0.92*(11200+6125+7230+10410)+67.2*(165-36.2-0)+4.2*(361.5+0)-0]/[693+ 0.92*2219] =[0.92*34965+67.2*128.8+4.2*361.5]/2734 =[32167.8+8655.4+1518.3]/2730=42341.5/2734=15.5℃ (3)混凝土拌合物出机温度宜按下列公式计算: T1=T0-0.16(T0-T i) 式中T1—混凝土拌合物出机温度(℃); T i—搅拌机棚内温度(℃)。 取T i =16℃,代入式1.2得 T1=15.5-0.16(15.5-16) =15.4℃ (4)混凝土拌合物经运输到浇筑时温度宜按下列公式计算: T2=T1-(αt1+0.032n)(T1-T a)(1.3) 式中T2—混凝土拌合物运输到浇筑时的温度(℃); t1—混凝土拌合物自运输到浇筑时的时间(h); n—混凝土拌合物运转次数; T a—混凝土拌合物运输时环境温度(℃); α—温度损失系数(h-1) 当用混凝土搅拌车输送时,α=0.25; 取t1=0.3h,n=1,α=0.25 ,T a =15℃,代入式1.3得: T2=15.4-(0.25×0.3+0.032×1)×(15.4-15) =15.4-0.107*(-0.4)≈15.4℃

大体积混凝土水化热计算

球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取~ Q----水泥28d水化热(kJ/kg)见下表 C---混凝土比热,取(kJ/kg·K) ρ—混凝土密度,取2400(kg/m3) e----为常数,取 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 2、混凝土中心温度计算 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(*2400)=℃ 代入(2)得: T3=*=℃; T4=*=℃; T5=*=℃; T7=*=℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+*=℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

水化热参数化分析

一.概要 1. 水化热分析 浇筑混凝土时,水泥在水化过程中产生大量热量会使混凝土的温度升高。虽然随时间的推移混凝土的温度会慢慢冷却,但结构各个位置的温度下降速度不均匀,结构不同位置将发生相对温差,此温差会使混凝土发生温度应力。 温度裂缝发生类型 混凝土浇筑初期,因内部温度升高将发生膨胀,但混凝土表面的温度下降较快,相对应变较小,从而使混凝土表面产生拉应力。 混凝土内部不同的温度分布引起的不同的体积变化而导致的应力称为内部约束应力。此类拉应力裂缝主要发生在构件尺寸比较大的结构。 混凝土在高温状态下温度下降会发生收缩,但受到与其接触的已浇筑混凝土或者地基等的约束而产生的拉力,像这样变形受外部边界约束的状态称为外部约束。此类应力主要发生在像墙这样约束度比较大的结构中。 利用温度裂缝指数预测温度裂缝 韩国混凝土规范中使用温度裂缝指数(抗拉强度与发生的温度应力之比)i 值预测是否发生裂缝。 一般采用下面的值。 FEA 程序的水化热分析 水化热分析主要分为热传导分析和热应力分析。. 热传导分析主要计算水泥的水化过程中发热、传导、对流等引起的随时间变化的节点温度。将得到的节点温度作为荷载加载后,计算随时间变化的应力称为热应力分析。 因此通过查看温度分布可以看出输入数据是否有误,如果温度分布没有问题可说明输出的应力结果也是正确的。 2. 水化热参数化分析 水化热分析必须进行反复计算 大体积混凝土的温度裂缝可以利用温度裂缝指数(Crack Ratio, Icr) 来验 算。温度裂缝指数要满足结构的重要 性、功能、环境条件等因素的要求。 温度裂缝指数受水泥的类型、浇筑温度、养生方法等多因素的影响,所以需要对多种条件进行反复分析以找出最佳的浇筑方法。 参数化分析功能 为比较多种条件的分析结果需要建立 多个模型进行分析,分析结束后需要整理大量的分析结果、还要进行结果保存、对比等工作。 通过FEA 的水化热参数化分析功能,可以实现一个模型多种条件分析。可以大大减少单纯繁琐的反复分析过程,从而提高工作效率。 参数化分析的使用方法 首先建立一个基本模型,在基本模型里使用替换变量的方式定义分析工况。下图是把材料作为变量条件的示例,“Case I ”为将混凝土C24变更为C30的工况,“Case II ”为将混凝土C35变更为C40的工况。 | 参数化分析的构成 | 参数化分析里可以考虑的变量 在水化热参数化分析的功能里可以调整的变量有五个,较常用的调整方法具体如下。 ? 施工阶段: 降低浇筑高度缩小各阶段的温度差。浇筑间距过小的话很难 达到分段浇筑的效果,但如果太大分界面会产生较大的温差。. ? 对流边界:对流系数较低时,热量不容易对外流失,可以减少内外温差。 ? 材料:使用弹性模量大的材料时,抗拉强度也较大,可增大裂缝指数。 ? 发热特性:是变量中最为敏感的因素, 定义水化过程中发生的热量。 ? 是否考虑自重:使混凝土产生压应力的荷载,在一定程度上可以减少拉应力,但效果不明显。 温度裂缝指数与裂缝发生几率 | 裂缝指数(i) = 混凝土抗拉强度 发生的温度应力 ? 防止裂缝发生时:1.5 以上 ? 限制裂缝发生时:1.2 ~ 1.5 ? 限制有害裂缝发生时:0.7 ~ 1.2 | 内部约束产生的裂缝(放热时)| | 外部约束产生的裂缝(冷却时)|

大体积混凝土水化热计算公式

九、基础混凝土浇筑专项施工方案 江苏广兴建设集团有限公司 基础混凝土浇筑专项施工方案 工程名称:镇江新区平昌新城配套公建工程 编制: 审核: 批准:

江苏广兴建设集团有限公司 镇江新区平昌新城配套公建工程项目部 2012年3月14日 基础混凝土浇筑专项施工方案 第一节、工程概况 一、工程概况 【本方案针对重要施工技术措施节点的分部分项工程的特点及要求进行编写】镇江新区平昌新城配套公建工程;工程建设地点:镇江新区平昌新城平昌路;属于框剪结构;地上12层;地下1层;建筑高度:44.65m;标准层层高:3.6m ;总建筑面积:25000平方米;总工期:450天。 本工程由镇江瑞城房地产开发有限公司投资建设,常州市规划设计院设计,镇江市勘察设计院地质勘察,镇江兴华工程建设监理有限责任公司监理,江苏广兴集团有限公司组织施工;由胡金祥担任项目经理,周道良担任技术负责人。 本工程地下室基础为带人防核6防6、二级防水等级要求的人防地下室,地下室主体结构混凝土强度等级:基础底板为C35,地下室顶板、梁为C30,地下室墙、柱均为C40,地下车道底板混凝土为C35,侧壁为C40。地下室底板、外墙、地下车道底板及侧板、单层车库顶板、覆土顶板及水池围护结构均需采用P6抗渗混凝土,地下室底板、外墙、顶板采用补偿收缩混凝土,后浇带采用膨胀混凝土,地下室混凝土在混凝土中掺入抗裂纤维。本工程地下室底板厚度600mm/800mm (主楼位置),地下室板墙厚度分别为200mm/250mm/300mm/450mm(详见地下

结施13墙定位及配筋图),板墙浇筑高度3.8m/4.4m(详见顶板施工图)。 【本工程地下室基础混凝土标号众多,抗渗、膨胀、纤维等外加剂的参数以及使用位置,不同型号混凝土浇筑节点处的处理要严格参照图纸结构总说明中4.1.3要求进行施工】 二、施工要求 1、确保混凝土施工在浇筑时期内安全、质量、进度都达到优质工程标准。 2、本工程混凝土浇筑施工质量技术措施控制重点:(1)、大体积混凝土水化热的处理;(2)、地下室后浇带防水措施。 第二节、编制依据 《混凝土结构工程施工质量验收规范》GB50204-2002 《混凝土外加剂应用技术规范》GB50119-2003 《地下工程防水做法》苏J02-2003 及江苏广兴集团有限公司以往类似工程的施工方案和本工程相关施工设计图纸等。 第三节、施工计划 材料与设备计划 本工程基础混凝土按后浇带划分三个区域:(1)以3#楼为主,2-F轴以北后浇带划分;(2)以2#楼为主,2-A轴以北后浇带划分;(3)以1#楼为主,2-A轴以南后浇带划分。 1、混凝土浇筑以商品混凝土泵送浇捣,投入4台振动棒,2台平板振动器,1台混凝土收光机,水泵4台,自吸泵2台等其他小型工具。机修人员必须在机械使用前对所有机械进行检查养护,在浇筑混凝土过程中,安排人员进行定时检修。 2、养护混凝土使用的塑料薄膜以及覆盖用的草袋,水管等养护材料。 3、对预拌混凝土的要求 与预拌混凝土搅拌站签订供应合同,对原材、外加剂、混凝土坍落度、初凝时间、混凝土罐车在路上运输等作出严格要求。 A、对预拌混凝土坍落度的要求 混凝土搅拌站根据气温条件、运输时间、运输道路的距离、混凝土原材料(水泥品种、外加剂品种等)变化、混凝土坍落度损失等情况来适当地调整原配合比,确保混凝土浇筑时的坍落度能够满足施工生产需要,确保混凝土供应质量。 当气候变化时,要求混凝土预拌站提供不同温度下、单位时间内坍落度损失值,以便现场能够掌握混凝土罐车在现场的停置时间。并且可以根据混凝土浇筑情况随时调整混凝土罐车的频率。浇筑混凝土时,搅拌站派一名调度现场调配车辆。同时鉴于现场处的特殊地理位置,项目安排人员协调现场内外的交通问题。 对到场的混凝土实行每车必测坍落度,实验员负责对当天施工的混凝土坍落度实行抽测,混凝土工长组织人员对每车坍落度进行测试,负责检查每车的坍落度是否符合预定预拌混凝土坍落度的要求,并做好坍落度测试记录。如遇不符合要求的,退回搅拌站,严禁使用。 B、对预拌混凝土的添加剂的要求

midascivil水热化分析

课题背景及任务来源 随着我国交通事业的迅速发展,大跨度桥梁大量出现,在桥梁中大体积混凝土承台、锚碇、塔等亦随之大量出现。目前所生产的水泥放热速度较过去大为提高,这使得大体积混凝土的温度裂缝问题日益突出,已成为普遍性的问题。 大体积混凝土在固化过程中释放的水化热会产生较大的温度变化和约束作用,由此而产生的温差和温度应力是导致混凝土出现裂缝的主要因素,从而影响结构的整体性、防水性和耐久性,成为结构的隐患。因此大体积混凝土在施工中必须考虑裂缝控制。 大体积混凝土温度裂缝问题十分复杂,涉及到结构、建筑材料、施工、环境等多方面因素,工程建设领域目前对桥梁中所使用的大体积混凝土的研究还不够深入、全面,相关的规范条文还不够完善,对很多工程实践中的问题只能依靠经验处理,缺乏适当的理论依据,这会造成许多不必要的人力、物力、财力的浪费,大体积混凝土施工质量控制的结果也不很理想。 在总结大体积混凝土温度裂缝产生的原因的基础上,本文结合邕江四线特大桥,以及对承台试块的模拟试验,研究分析了大体积混凝土内部温度场和温度应力变化的规律和工程中采用的温控措施的实际效果。 本文在大体积混凝土工程中所采用的温度监测和裂缝控制措施,为今后同类工程施工提供了有用信息,也为今后开展深入的理论研究提供了试验和理论参考依据。 组成结构 通过midas 来模拟大体积混凝土在水化热情况下温度与应力应变的变化,并且通过不加冷水管和加冷水管的情况下进行对比分析,并得出相应的结果。 功能与技术能够直观的看到混凝土内部在水化热的情况下温度随时间的变化,并且通过精确的数值进行分析。从而使我们对水化热有进一步的认识,进而通过温度变化趋势分析混凝土可能会产生的裂缝的位置,从而提前做好防护措施,尽可能是裂缝降到最小。 成果的主要特点 通过对大体积混凝土水化热的分析,我们能更加深入的了解混凝土内部温度度的变化情况,从而对混凝土浇筑、养护、防护提前做出应对措施。尤其是咋此过程中温度对其裂缝的影响。 创新点 通过软件对混凝土内部水化热产生的温度进行模拟分析,并且通过不同的情况(有无冷水管)进行对比分析。

混凝土温度计算

作者:曹运周董佳佳王程锋赵永峰 【摘要】大体积混凝土工程由于结构截面大,混凝土浇注后,水泥放出大量水化热,混凝土温度升高,而且混凝土导热不良,相对散热较小。因此,混凝土内部水化热积聚不易散发,外部则散热较快,很容易由于温度的不均衡分布产生应力,故而产生温度裂缝。本文详细地介绍了大体积混凝土产生裂缝的机理,并从材料、设计、施工方面提出控制手段,引用具体实例进行论证。 【关键词】大体积混凝土施工;裂缝;温度应力;测温 1.前言 近几年来,全国各地工程规模日趋扩大,结构形式日益复杂,工业与民用建筑中对大体积混凝土需求越来越多。由于其体积大,表面小,水泥水化热释放比较集中,内部温升比较快,当混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用,所以必须从根本上分析它,来保证施工的质量。 2.裂缝成因分析 大体积混凝土一般是指实体截面最小尺寸大于或等于1m的混凝土构件。它的表面系数比较小,水泥水化热释放比较集中,内部温升比较快。混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用 混凝土裂缝分为以下几种类型:弯距剪力等外力荷载引起的裂缝;干燥收缩引起的裂缝;混凝土自身收缩引起的裂缝;温度裂缝。 大体积混凝土工程,水泥用量多,结构截面大,因此,混凝土浇注后,水泥放出大量水化热,混凝土温度升高。由于混凝土导热不良,体积过大,相对散热较小。因此,混凝土内部水化热积聚不易散发,外部则散热较快,依据热胀冷缩的原理,结构自身约束由伴随温度变化引起的建筑物体积变化产生应力,一但拉伸应力>抗拉强度则混凝土产生裂缝。 故控制大体积混凝土开裂必须从两方面入手。一方面,提高混凝土的抗拉强度,使其足够大,大到各种因素引起的开裂应小于它,另一方面,控制温度应力,使其尽可能小,永远小于混凝土的抗拉强度。 3.裂缝控制手段 要避免混凝土裂缝的产生需从材料、设计、施工上来进行控制。 3.1材料控制 (1)水泥:使用水化热较低的水泥以及尽量降低单位水泥用量;水泥在水化过程中要释放出一定的热量,而大体积混凝土结构断面较厚,表面系数相对较小,所以水泥发生的热量聚集在结构内部不易散失。这样混凝土内部的水化热无法及时散发出去,以至于越积越高,使内外温差增大。单位时间混凝土释放的水泥水化热,与混凝土单位体积中水泥用量和水泥品种有关,并随混凝土的龄期而增长。由于混凝土结构表面可以自然散热,普通混凝土内部的最高温度,多数发生在浇筑后的最初3~7天。 (2)掺合料和外加剂:在混凝土中掺入水泥用量0.25%的减水剂,可同时减少10%的水泥用量,从而降低水化热的产生;在混凝土中掺入粉煤灰,不仅可代替水泥用量,而且可大大改善混凝土的可泵性和工作性,从而降低水化热的产生;在混凝土中掺入膨胀剂,混凝土在硬化过程中产生体积膨胀,可以部分或全部补偿硬化过程中冷缩和干缩,减免混凝土的开裂。 (3)粗细骨料:在钢筋间距和泵车输送管的允许下,尽量选用粒径大的骨料,一般中、粗砂比使用细砂每平方米混凝土减少用水量20~25Kg左右,水泥相应也减少28~35Kg,从而降低混凝土的干缩,条件允许的情况下,可以采用设计毛石大体积混凝土基础。 (4)石子级配:石子级配对节约水泥及保证具有良好的和易性关系很大,大体积混凝土宜采用

大体积混凝土水化热计算及冷凝管布设方案

附件七: 大体积混凝土水化热计算及冷凝管布设方案根据对往年同季节气温进行统计,本地区9月16日~10月15日每天高温一般不超过25℃,10月16日~11月15日每天高温一般不超过15℃。根据本工程施工进度计划,49#和54#两个机位处于9月16日~10月15日期间进行大体积混凝土承台施工,50#~53#机位处于10月16日~11月15日期间进行施工。因此,考虑混凝土水化热环境因素时,49#和54#两个机位按照25℃大气温度进行计算,50#~53#机位按照15℃大气温度进行计算。计算时,考虑海水对流,按照海水温度低于大气温度5℃进行计算。 1、单位系统 质量单位:kg;力的单位:kgf;能量单位:kcal,1kcal=4.186kcal,考虑使用海水降温,使用kcal作为能量单位更利于计算;长度单位:m;温度单位:℃;时间单位:h。 2、混凝土参数 比重:2500kg/m3;导热系数:2.02kcal/(m.h.K);对流系数:19.84kcal/(㎡.h.K);比热容:0.23kcal/(kg.K)。 根据以往施工经验,考虑自拌C45混凝土现场养护条件28天强度等级为 50Mpa,达到70%强度(31.5Ma)所需时间为25℃3天,15℃7天。考虑采用普通硅酸盐水泥,胶凝材料根据发热量全部折合成水泥掺量为450kg/m3。C45混凝土在25℃和15℃天气环境下的强度发展曲线如下图左图和右图所示。(备注:图中强度单位为kgf/㎡。)

3、温度要求 (1)混凝土表里温差不得超过25℃,表层温度取混凝土面以内5cm位置,内部温度取混凝土内部最高温度;混凝土表层温度和环境温度差不得超过20℃。降温速度不宜超过2℃/d。 使用midas软件建立模型计算模型。为更加直观的观察混凝土部的温度应力,建模时采用只建立1/2模型,但进行整体对称计算的方式。为简化计算,直接将承台模型简化成圆柱结构。建立的模型如下图所示。 使用软件进行计算,混凝土在25℃、15℃环境下内外温度发展曲线如下图所示。 25℃

MIDAS考虑管冷的水化热分析

考虑管冷的水化热分析 北京迈达斯技术有限公司

目录 概要 1 模型的基本数据 3 材料和热特性数据 5 建立模型 6 设定操作环境 6 定义材料特性 7 定义时间依存特性 8 时间依存材料连接 9 结构建模 10 输入水化热分析数据 26 水化热分析控制数据 26 输入环境温度 27 输入对流系数 28 定义热源函数 31 输入管冷数据 33 定义施工阶段 36 运行结构分析 38 查看分析结果 38 查看温度变化 39 查看应力变化 43 查看时程图形 47 动画查看结果 51 2

概要 对于建筑物的基础以及桥梁的基础、桥墩等大体积混凝土需要考虑水化热引起的温度应力。温度应力引起的裂缝具有裂缝宽、上下贯通等特点,因此对结构的承 载力、防水性能、耐久性等都会产生很大影响。 大体积混凝土的温度应力是由于浇注混凝土后,水泥的水化反应(放热反应)导致的混凝土体积的膨胀或收缩,在受到内部或外部的约束时而产生的。 混凝土水化热引起的应力可以分为内部约束应力和外部约束应力两大类。 内部约束应力是指由于混凝土内部不同的温度分布引起的不同的体积变化而导致的应力。即,水化反应初期由于中心部分温度比表面温度高,会导致表面产生拉 应力;而温度开始下降时中心部分的收缩会比表面部多,此时中心部会产生拉应 力。内部约束应力的大小与内外温差成比例。 外部约束应力是指新浇筑的混凝土,由于水化热而发生的体积变化,受到与其接触的已浇筑混凝土或者地基等的约束而产生的应力。外部约束的作用与接触面积 的大小和外部约束的刚度等因素相关。 水化热分析包括热传导分析(Heat Transfer Analysis)和热应力分析(Thermal Stress Analysis)两个过程。 热传导分析是通过考虑水泥水化反应时产生的热量、对流、传导等因素计算随时间变化的各节点的温度的过程。 热应力分析是利用计算得到的各节点的不同时间的温度,考虑随时间和温度变化的材料特性、干缩、随时间和应力变化的徐变等,来计算大体积混凝土各施工阶 段的应力的过程。 降低水化热的方法可分为使用低热水泥、分段浇筑、骨料预冷、管冷、Sheet 养护等。这份资料介绍使用管冷方法来防止温度应力时如何进行水化热分析。 1

水泥水化热测定原理分析

水泥水化热测定方法(溶解热法) 标准名称:水泥水化热测定方法(溶解热法) 标准类型:中华人民共和国国家标准 标准号:GB/T 12959-91 发布单位:国家技术监督局 标准名称(英) Test method for heat of hydration of cement-The heat of solution method 标准发布日期 1992-06-04批准 标准实施日期 1993-03-01实施 标准正文 1 主题内容与适用范围 本标准规定了用溶解热法测定水泥水化热试验的方法原理、仪器设备、试验步骤及结果计算等。 本标准适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥和其他指定采用本方法的水泥品种。 2 方法原理 本方法是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。 3 仪器设备 3.1 热量计:如下图所示。由保温水槽、内筒、广口保温瓶、贝克曼差示温度计、搅拌装置等主要部件组成。另配一个曲颈玻璃漏斗和一个直颈装酸漏斗。 3.1.1 保温水槽:水槽内外壳之间装有隔热层,内壳横断面为椭圆形的金属筒,横断面长长轴450mm,短轴300mm,深310mm,容积约30L。并装有控制水位的溢流管。溢流管高度距底部约270mm,水槽上装有二个搅拌器,分别用于搅拌水槽中的水和保温瓶中的酸液。 3.1.2 内筒:筒口为带法兰的不锈钢圆筒,内径150mm,深210mm筒内衬有软木层或泡沫塑料。筒盖内镶嵌有橡胶圈以防漏水,盖上有三个孔,中孔安装酸液搅拌器,两侧的孔分别安装加料漏斗和贝克曼差示温度计。 3.1.3 广口保温瓶:容积约为600mL,当盛满比室温高5℃的水,静置30min时,其冷却速度不得超过0.001℃/min·℃。 3.1.4 贝克曼差示温度计(以下简称贝氏温度计):精度为0.01℃,最大差示温度为5 ̄6℃,插

水化热公式

以厚度为1m的工程底板为例。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.36计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p)+mf/50 (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.318; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量; c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3; 代入(1)得混凝土最终绝热温升: Tn=57.5℃; 代入(2)得: T3=57.5*0.615=35.4℃; T4=57.5*0.72=41.4℃; T5=57.5*0.796=45.77℃; T7=57.5*0.892=51.3℃; 底板按1m厚度计算: Tmax=Tj+Tt*δ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为10℃; Tt:t龄期时的绝热温升; δ:降温系数,取0.36; 按照混凝土最终绝热温升57.5℃代入: Tmax=10+57.5*0.36=30.7℃ 4、实测混凝土表面温度Tb 混凝土的内部最高温度为30.7℃,根据现场实测表面温度Tb,计算内外温差,当温差超过25℃时,需进行表面覆盖保温材料,以提高混凝土的表面温度,降低内外温差。 5、混凝土表面保温层厚度计算 δi=K*0.5hλi(Tb-Tq)/ λ(Tmax-Tb)

水泥水化热研究与分析

水泥水化热研究与分析 摘要: 在水泥较长的散热过程中,水泥浆会逐渐凝结和硬化。水泥内部物质处于高能状态,随着时间推移,水泥浆体性质将会趋向于稳定。针对于水泥水化热的研究,不仅可以保证结构物的施工质量,还能适当降低工程成本造价,本文首先介绍了影响水泥水化热大小的影响因素以及计算法方法,然后根据笔者经验讲述了几种降低水泥水化热的措施。 关键词:水泥水化热、措施、配合比、增加、热量 引言 随着国家经济的快速发展,越来越多的工程建筑拔地而起,市场对于水泥需求量也是越来越大。水泥在水化过程中产生的热量将会聚集在结构物内部不易散失出去,将会导致混凝土温度提高,随着混凝土龄期增加,绝热升温将会在2至4天内达到最高状态,在未受地基约束的部位,如果混凝土的内外温差过大,内部温度较高的混凝土约束外强度远大于其抗拉强度,将在混凝土的表层产生拉应力,若此时混凝土的抗拉强度不足以抵抗这种拉应力时就会产生表层温度裂缝。若养护不当,表面裂缝将会进一步发展成深层裂缝。在受地基约束的部位,将会产生较小的压应力。因混凝土的散热系数较小,它从最高温度降至稳定温度需要较长时间,在此期间,混凝土的变形模量有了很大的增长,较小的变形就能产生较大的应力。由于混凝土的早期体积变形,主要来自于水泥的水化热温升,并且降低水化热是防止混凝土早期开裂的有效途径,因此,我们有必要对水泥混凝土的水化热进行研究,以尽量避免温度裂缝的出现。 一、水化热的计算与分析 1、水泥水化热分析 水泥在水化时会发生温度变化,这主要源于几种无水化合物组分的溶解热和几种水化物在溶液中的沉淀热。这些热值的代数和就是水泥在任何龄期下的水化热。国家标准GB T 12959-2008规定了水泥水化热的测定方法,但是水泥水化热的测定较复杂,一般水泥厂都不会配备有这方面的仪器,有些水泥厂曾经添置过水泥水化热的测试仪器,但也没能很好地使用,关键是水化热测试对仪器和操作技术的要求较高,一般的工人难以熟练掌握该技术。水泥水化热大小与水泥内部矿物质成分有一定的关系,在同等量的水泥情况下,具有C3A的水泥水化热最大,其次是C3S,最后是C4AF。水化热越大,水泥浆体单位时间内放出热量也将会越多。工程实践中一般是通过增加三氧化二铁与氧化铁含量之比作为降低C3A的指标,为了达到更好的效果,可以在上述基础上,对C3S含量进一步降低。 2、我国水泥水化热情况分析 我国在很多水泥里面都会添加不同数量的材料,如何对水泥水化热过程中释

箱梁水化热分析

箱梁水化热分析

计算步骤: 此计算算例为现浇箱梁的水化热分析,主要步骤如下: 1,单位体系设置:(力:kgf,长度:m,温度:摄氏度,热量:kcal) 2,输入一般构件的材料特性值:弹性模量、比热、热传导系数 3,建立结构模型:建立单元和边界条件 4,水化热分析控制:定义积分常数、初始温度 5,定义“环境温度函数、对流系数函数、单元对流边界” 6,定义热源函数,并分配热源 7,定义施工阶段 8,运行结构分析 9,查看分析结果

计算资料: 箱梁为C50混凝土,截面尺寸如下图,考虑1号段施工时对1号段和0号段的水化热分析。梁段长3米。 考虑此截面为对称截面,故取截面1/2进行计算。 一,单位体系设置: 如右图: 二,定义材料特性: 选用C50混凝土, 比热0.25 热传导率:2.3

定义时间依存材料特性: 规范:韩国标准 91天抗压强度:5e7 系数:a: 4.5;b: 0.95 连接一般材料与时间依存材料 将强度发展函数连接到C50的材料特性上:时间依存材料类型>强度进展>强度发展 材料:C50>选择的材料 添加/编辑 确定

建立结构模型 1,首先建立节点:(节点号为1,2,3,4),然后通过建立单元将此4点连接成线单元,如下图 2,选择新建立的线单元扩展成板单元,如下图: 扩展类型:线单元——板单元 方向:y 任意间距:5@0.4,4@0.2,5@0.4 此即为箱梁顶板的截面。 3,在节点40至24之间建立如下线单元:为了下一步扩展出箱梁腹板截面部分板单元。

4,选择新建立的线单元扩展成板单元,如下图:扩展类型:线单元——板单元 方向:z 任意间距:6@(-0.4),5@(-0.2) 此即为箱梁腹板的截面。 5,在节点91至111之间, 建立新的线单元,为了下 一步扩展出箱梁底板截面 部分板单元。如下图: 6, 选择新建立的线单元扩 展成板单元,如下图: 扩展类型:线单元—板单元 等间距:0.4, dx,dy,dz:(0,0.4,0) 复制次数:5 此即为箱梁底板的截面。

大体积混凝土水化热及温度计算

大体积混凝土水化热及温度计算 水泥:334kg/m3; 水:190kg/m3;大气温度在30℃,水温在27℃ 粗骨料:1010 kg/m3; 细骨料:731kg/m3; 粉煤灰:78kg/m3; 缓凝型减水剂:1%。 3) 混凝土温度计算 a 搅拌温度计算和浇筑温度 混凝土拌和温度计算: T c=∑T i*W*c/∑W*c=89405.4/3426.1=26.1℃。 考虑到混凝土运输过程中受日晒等因素,入模温度比搅拌温度约高4℃。混凝土入模温度约T j =30.1℃。 b 混凝土中心最高温度 Tmax=T j+T h*ξ

T j=33.04℃(入模温度),ξ散热系数取0.70 混凝土最高绝热温升T h=W*Q/c/r=350*377/0.973/2321=50.43℃ 其中350 Kg为水泥用量;377KJ/Kg为单位水泥水化热;0.973KJ/Kg.℃为水泥比热;2321Kg/m3为混凝土密度。 则Tmax=T j+T h*ξ=33.04+50.43*0.70=70.94℃。 c 混凝土内外温差 混凝土表面温度(未考虑覆盖): T b=T q+4h’(H-h’)△T/H2。 H=h+2h’=3+2*0.07=3.14m, h’=k*λ/β=0.666*2.33/22=0.07m 式中T bmax--混凝土表面最高温度(℃); T q--大气的平均温度(℃); H-一混凝土的计算厚度; h’--混凝土的虚厚度; h--混凝土的实际厚度; ΔT--混凝土中心温度与外界气温之差的最大值; λ--混凝土的导热系数,此处可取2.33W/m·K; K--计算折减系数,根据试验资料可取0.666; β--混凝土模板及保温层的传热系数(W/m*m·K),取22 T q为大气环境温度,取30℃,△T= Tmax-T q=40.94℃ 故T b=33.73℃。 混凝土内表温度差:△T c=Tmax-T b=70.94-33.73=37.21℃>20℃ 2.温度应力计算 计算温度应力的假定: ①混凝土等级为C30,水泥用量较大311 kg/m3;

水化热参数化分析报告

一.概要 1. 水化热分析 浇筑混凝土时,水泥在水化过程中产生大量热量会使混凝土的温度升高。虽然随时间的推移混凝土的温度会慢慢冷却,但结构各个位置的温度下降速度不均匀,结构不同位置将发生相对温差,此温差会使混凝土发生温度应力。 温度裂缝发生类型 混凝土浇筑初期,因部温度升高将发生膨胀,但混凝土表面的温度下降较快,相对应变较小,从而使混凝土表面产生拉应力。 混凝土部不同的温度分布引起的不同的体积变化而导致的应力称为部约束应力。此类拉应力裂缝主要发生在构件尺寸比较大的结构。 混凝土在高温状态下温度下降会发生收缩,但受到与其接触的已浇筑混凝土或者地基等的约束而产生的拉力,像这样变形受外部边界约束的状态称为外部约束。此类应力主要发生在像墙这样约束度比较大的结构中。 利用温度裂缝指数预测温度裂缝 韩国混凝土规中使用温度裂缝指数(抗拉强度与发生的温度应力之比)i 值预测是否发生裂缝。 一般采用下面的值。 FEA程序的水化热分析 水化热分析主要分为热传导分析和热应力分析。. 热传导分析主要计算水泥的水化过程中发热、传导、对流等引起的随时间变化的节点温度。将得到的节点温度作为荷载加载后,计算随时间变化的应力 称为热应力分析。 因此通过查看温度分布可以看出输入数据是否有误,如果温度分布没有问题 可说明输出的应力结果也是正确的。 2. 水化热参数化分析 水化热分析必须进行反复计算 大体积混凝土的温度裂缝可以利用温 度裂缝指数(Crack Ratio, Icr) 来 验算。温度裂缝指数要满足结构的重 要性、功能、环境条件等因素的要 求。 温度裂缝指数受水泥的类型、浇筑温 度、养生方法等多因素的影响,所以 需要对多种条件进行反复分析以找出 最佳的浇筑方法。 参数化分析功能 为比较多种条件的分析结果需要建立多个模型进行分析,分析结束后需要整 理大量的分析结果、还要进行结果保存、对比等工作。 通过FEA的水化热参数化分析功能,可以实现一个模型多种条件分析。可以 大大减少单纯繁琐的反复分析过程,从而提高工作效率。 参数化分析的使用方法 首先建立一个基本模型,在基本模型里使用替换变量的方式定义分析工况。 下图是把材料作为变量条件的示例,“Case I”为将混凝土C24变更为C30的 工况,“Case II”为将混凝土C35变更为C40的工况。 | 参数化分析的构成 | 参数化分析里可以考虑的变量 在水化热参数化分析的功能里可以调整的变量有五个,较常用的调整方法具 体如下。 ?施工阶段:降低浇筑高度缩小各阶段的温度差。浇筑间距过小的话很难 达到分段浇筑的效果,但如果太大分界面会产生较大的温差。. ?对流边界:对流系数较低时,热量不容易对外流失,可以减少外温差。 ?材料:使用弹性模量大的材料时,抗拉强度也较大,可增大裂缝指数。 ?发热特性:是变量中最为敏感的因素, 定义水化过程中发生的热量。 ?是否考虑自重:使混凝土产生压应力的荷载,在一定程度上可以减少拉 应力,但效果不明显。 |温度裂缝指数与裂缝发生几率| 裂缝指数(i) = 混凝土抗拉强度 发生的温度应力 ?防止裂缝发生时:1.5 以上 ?限制裂缝发生时:1.2 ~ 1.5 ?限制有害裂缝发生时:0.7 ~ 1.2 输入混凝土的散热特性 及浇筑条件等 混凝土的温度 应力 裂缝指数 END Yes No | 内部约束产生的裂缝(放热时)| | 外部约束产生的裂缝(冷却时)|

混凝土计算时的常用公式

混凝土计算时的常用公式 混凝土温度计算公式 1.最大绝热温升(二式取其一) (1)Th=(mc+k·F)Q/c·ρ (2)Th=mc·Q/c·ρ(1-e-mt) 式中Th——混凝土最大绝热温升(℃); mc——混凝土中水泥(包括膨胀剂)用量(kg/m3);F——混凝土活性掺合料用量(kg/m3); K——掺合料折减系数。粉煤灰取0.25~0.30;Q——水泥28d水化热(kJ/kg)查表; c——混凝土比热、取0.97[kJ/(kg·K)]; ρ——混凝土密度、取2400(kg/m3); e——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。 T1(t)=Tj+Th·ξ(t) 式中T1(t)——t龄期混凝土中心计算温度(℃);Tj——混凝土浇筑温度(℃); ξ(t)——t龄期降温系数 3.混凝土表层(表面下50~100mm处)温度 1)保温材料厚度(或蓄水养护深度)

δ=0.5h·λx(T2-Tq)Kb/λ(Tmax-T2) 式中δ——保温材料厚度(m); λx——所选保温材料导热系数[W/(m·K)] T2——混凝土表面温度(℃); Tq——施工期大气平均温度(℃); λ——混凝土导热系数,取2.33W/(m·K); Tmax——计算得混凝土最高温度(℃); 计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb——传热系数修正值,取1.3~2.0 T2——混凝土表面温度(℃); Tq——施工期大气平均温度(℃); λ——混凝土导热系数,取2.33W/(m?K); Tmax——计算得混凝土最高温度(℃); 计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb——传热系数修正值,取1.3~2.0 传热系数修正值 保温层种类K1K2 1纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子)2.63.0 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料2.02.3

相关文档
相关文档 最新文档