文档库 最新最全的文档下载
当前位置:文档库 › Reversible plasticity in amorphous materials

Reversible plasticity in amorphous materials

Reversible plasticity in amorphous materials
Reversible plasticity in amorphous materials

a r X i v :0707.4014v 2 [c o n d -m a t .s o f t ] 13 S e p 2007

Reversible plasticity in amorphous materials

Micah Lundberg 1,Kapilanjan Krishan 1,Ning Xu 2,3,Corey S.O’Hern 4,5and Michael Dennin 1

1Department of Physics and Astronomy,University of California at Irvine,Irvine,CA 92697-45752

Department of Physics and Astronomy,University of Pennsylvania,Philadelphia,PA 19104-6396

3

James Franck Institute,The University of Chicago,Chicago,IL 60637

4

Department of Mechanical Engineering,Yale University,New Haven,CT 06520-8286

5

Department of Physics,Yale University,New Haven,CT 06520-8120

(Dated:February 1,2008)

A fundamental assumption in our understanding of material rheology is that when microscopic deformations are reversible,the material responds elastically to external loads.Plasticity,i.e.dis-sipative and irreversible macroscopic changes in a material,is assumed to be the consequence of irreversible microscopic events.Here we show direct evidence for reversible plastic events at the microscopic scale in both experiments and simulations of two-dimensional foam.In the simula-tions,we demonstrate a link between reversible plastic rearrangement events and pathways in the potential energy landscape of the system.These ?ndings represent a fundamental change in our understanding of materials—microscopic reversibility does not necessarily imply elasticity.

PACS numbers:05.20.Gg,05.70.Ln,83.80.Iz

One of the fundamental questions in materials sci-ence concerns the microscopic origin of plastic behavior.Why do materials display plastic rather than elastic and reversible response and can we predict for what loads this will occur?An improved understanding of plastic deformation is especially important in a wide range of amorphous materials,such as metallic[1,2]and poly-meric glasses[3],viscoplastic solids[4],foams[5],granular materials[6],colloids[7,8],emulsions[9],and even intra-cellular networks[10].In crystalline materials,plastic be-havior is understood in terms of defect nucleation and dynamics[11,12].However,for amorphous materials,a description in terms of topological defects is not possible due to inherent structural disorder.Therefore,identify-ing and characterizing local plastic events in amorphous materials is essential for a complete understanding of their structural and mechanical properties.The conven-tional wisdom is that plastic rearrangement events cause irreversible structural changes in these materials on the microscale.

The macroscopic response of amorphous solids and complex ?uids,such as foams,colloids,and granular matter,to applied stress and strain is very similar:elastic at small strains and plastic at larger strains.In the elastic regime,stress is proportional to applied strain,and deformations are reversible.Above the yield stress or strain,plastic ?ow or anelastic deformation oc-curs.Given these similarities on the macroscopic scale,many models of plasticity have emphasized the impor-tance of microscopic “plastic zones”within amorphous materials[2,13,14,15,16,17,18]in which neighbor switching and other rearrangements events of “particles”occur.(The particles represent molecules in the case of solids,or bubbles or grains in the case of complex ?u-ids.)An important open question concerning plastic-ity is whether or not plastic zones are intrinsically ir-reversible or,instead,is their surrounding environment ultimately responsible for determining whether or not re-arrangement events are reversible?

We perform both experiments and simulations of two-dimensional amorphous foams undergoing oscillatory shear strain to investigate this fundamental question.In both cases,we ?nd a signi?cant fraction of dissipative,plastic rearrangement events that are reversible ,even for strains signi?cantly above the yield strain.In the simula-tions,measurements of the local potential energy allows us to assess the impact of the bubble’s neighborhood on the reversibility of the plastic events.This links reversible plastic rearrangement events to pathways in the poten-tial energy landscape of the system during deformation.We argue that even during plastic ?ow certain micro-scopic rearrangement events are intrinsically reversible and changes in the environment surrounding plastic zones determine whether the zones are reversible or not.

We chose bubble rafts[4,19,20,21]that consist of gas bubbles ?oating on a water surface for our experimen-tal system.For the simulations,we employed the well-characterized bubble model for two-dimensional (2D)foams developed by Durian[22].The bubble model as-sumes massless circular bubbles that interact through a repulsive linear spring force and viscous dissipation.Experimental evidence supports the applicability of the bubble model to explain the ?ow behavior of bubble rafts,as well as three-dimensional foam[21,23,24].Even though other rearrangement events occur in bubble rafts and the bubble model,plastic rearrangement events known as T1events play a central role in the mechanical response of foam[20,21,25,26,27,28,29,30,31].

T1events correspond to a neighbor switching event in which two neighboring bubbles lose contact,and two next-nearest neighbors become neighbors[5].This cor-responds to a transition between two distinct states of the system.For example,referring to Fig.1,State A is when bubbles 1and 2are neighbors,and State B is when

2

bubbles3and4are neighbors.For both the experiment and the simulations,during one cycle the applied shear strain varies from0to A/L y(at phaseψ=π)and back to a strain of0(atψ=2π),where A is the amplitude of the shear displacement and L y is the system size in the shear-gradient direction.If four bubbles experience a T1event that switched the bubbles from state A to B during the?rst half-cycle of the drive,a reversible T1 event occurs if the same foursome of bubbles returns to state A in the second half-cycle of the drive.Otherwise, the T1event is irreversible.

For the experiments,the system contained approxi-mately800bubbles in a planar shear cell with L y=9cm. Half of the bubbles were2mm in diameter and the other half were3.5mm.We report on results using driving am-plitudes A of10and12times the diameter of the small bubbles and driving frequency0.2s?1.The resulting rms strain and strain rate were approximately0.2and 0.04s?1,respectively.This should be compared with the yield strain of0.01for bubble rafts and the

transition to quasi-static behavior on the order of0.07s?1[32].At the yield strain,T1events give rise to permanent plastic deformation[33].Details of the experimental setup for bubble rafts can be found in Ref.[34].

In the bubble model simulations,bidisperse systems composed of N/2large and N/2small circular bubbles with diameter ratio r=1.75were used to match exper-iments.We studied square simulation cells with system sizes in the range N=16to1024and packing fraction φ=0.95,so that the bubbles were always compressed during shear.The bubble model treats foams as mass-less deformable disks with an equation of motion that balances a linear repulsive spring force to model elas-tic repulsion with viscous dissipation proportional to lo-cal velocity di?erences[22].The oscillatory shear strain is applied quasistatically to the system by shifting the x-positions of the bubbles,implementing shear-periodic Lees-Edwards boundary conditions[35]and minimizing the total potential energy.To study the role of the en-ergy landscape,two de?nitions of the local potential en-ergy based on the overlaps between bubbles were used,E and E′.E is computed only considering overlaps among the four bubbles de?ning the T1event,while E′also in-cludes overlaps with the?rst nearest neighbors of the T1 bubbles.Finally,we measured?E′,de?ned by subtract-ing the potential energy E′of the four bubbles partici-pating in the reversible T1event from the original oscil-latory shear strain simulations with E′from simulations in which the four T1bubbles are forced to exactly re-trace their positions as they transition from state B back to state A,but all other particles are allowed to move without constraints.

To fully understand the behavior of the system,it is best to directly compare the reversible and irreversible rearrangement events from both experiments and simu-lation.Panels(a)and(b)of Fig.1(experiment)and FIG.1:(color online)Experimental results for a reversible [(a)and(b)]and an irreversible T1event[(c)and(d)].The images in(a)and(c)are10.5mm×10.5mm with bubbles in-volved in the T1events labeled by numbers.The roman label for each image in(a)and(c)corresponds to the same label on the trajectory in(b)and(d).(a)The images highlight the following stages of the reversible T1event:initial state (i),middle of the T1event(ii),second state(iii),middle of the T1event under reversal of shear(iv),and the return to the initial state(v)[36].(b)Plot of the trajectory of bubble1 in the images in(a).Two consecutive cycles are shown(the ?rst in black squares and the second in red circles).(c)The images highlight the following stages of the irreversible T1 event:initial state(i-iii),middle of the T1event(iv),and the second state(v-vii).(d)Plot of the trajectory of bubble 4in the images in(c).Three consecutive cycles are shown (the?rst in black,the second in red,the third in green). Fig.2(simulation)highlight typical reversible T1events. Panels(c)and(d)of Fig.1(experiment)and Fig.2(sim-ulation)highlight irreversible events.The plots focus on the four bubbles(labeled1-4)that experience a T1 event.Snapshots are used to illustrate bubble motions during a typical T1event(panels(a)and(c)).For the experiments,panel(b)and(d)highlight the trajectory of

a single bubble in real space.For the simulations,panels

(b)and(d)display the potential energy E as a function of the phase of the driving.The simulation results are for N=16,but similar results were obtained with much larger systems with N=1024.

The de?ning feature of reversible T1events is that the initial and?nal states of the bubbles in the T1event are equivalent,despite the occurrence of dissipation.The dissipation is evident in the anharmonic behavior of the local potential energy signal.This is in contrast to the perfectly elastic behavior for small shear strains in the absence of T1events shown in the inset to Fig.2b.The existence of the dissipation leads to a number of asym-metries in the dynamics of the system,despite the overall periodic nature of the response.The spatial trajectory

3

FIG.2:Results taken from a16-particle simulation of the bubble model in two dimensions undergoing oscillatory shear strain with an amplitude of2small bubble diameters for a reversible[(a)and(b)]and an irreversible event[(c)and(d)]. Bubbles involved in the T1events are labeled by numbers. Roman labels in the images correspond to the same labels in the plots.(a)Images(i)-(iii)show the occurrence of a re-versible T1event and(iv)and(v)show the reversal of the T1event.(See the supplementary information for a movie of this event.)(b)The local potential energy E(solid black line)is plotted versus the driving phase(left axis).For com-parison,the periodic strain is plotted with a long dashed blue line(right axis).The elapsed phase for the T1event is sig-ni?cantly di?erent than that for the reversed T1event,and the shape of the local potential energy is not the same for the T1event and its reverse.The inset shows an elastic response in E vsψ/πfor small amplitude oscillations A=10?2times the small bubble diameter,where the response matches the driving.(c)Images(i)-(iii)show the occurrence of an irre-versible T1event,as shown by the absence of the reverse T1 event in images(iv)and(v)[36].(d)The local potential en-ergy E(solid black line)is plotted versus the driving phase (left axis).The periodic strain is plotted with a long dashed blue line(right axis).Note that E for locations(i)and(v) separated by a phase interval of2πare not the same.

is a closed loop with a?nite area(see Fig.1b).This causes the symmetric rearrangements of the four bubbles during the two T1events(images(ii)and(iv)in Fig.1a) to occur at di?erent locations during the corresponding half-cycle.Likewise,Fig.2b illustrates that E is very di?erent for the two half cycles corresponding to labels (i)-(iii)and(iv)-(v).Finally,the durations of the T1 event and its reverse(state A to B vs.state B to A)are not the same.

During irreversible T1events,the de?ning feature is that a foursome of bubbles undergoes a T1event in the ?rst half cycle of the driving but the reverse T1event does not occur during the second half cycle.The exper-imental example in Fig.1c is a case where a single T1 event from state A to B occurred during seven cycles of the driving(three of which are highlighted in Fig.1c). The impact of the T1event on the trajectories in Fig.1d is dramatic.The trajectory of bubble four is shown for

00.20.40.60.81

ψ/π

0.05

0.1

0.15

<

?

E

>

?0.100.10.20.30.4

?E’

10

20

30

40

P

(

?

E

)

00.20.40.60.81

ψ/π

?0.1

0.1

0.2

0.3

?

E

’(a)

(b)

FIG.3:(a)The local potential energy di?erence ?E′ av-eraged over100reversible T1events plotted vs.the driving phase under the same conditions in Fig.2. ?E′ >0con-?rms that exact trajectory reversal is not energetically favor-able.The inset shows?E′for a single reversible T1event.

(b)The probability of?nding a particular?E′.There is a large peak at?E′=0,two slight peaks near0.15and0.30, and no signi?cant weight in the distribution for?E′<0. three cycles:just before the T1event(black),during the T1event(red),and just after the T1event(green).In the absence of a T1event,the local trajectory essentially repeats itself during each half-cycle as the bubbles move along similar paths.The occurrence of the T1event rep-resents a dramatic break in this motion.

The behavior of irreversible T1events in simulations is similar to that found in experiments.Figure2c illustrates a T1event that occurs during frames(i)-(iii)in the?rst half cycle,but the T1event is not reversed during the second half cycle in frames(iii)-(v).The plot of E in Fig.2(d)illustrates that con?gurations(i)and(v),which are separated by2πin phase,do not have the same local potential energy.Note that beyondψ/π~5.5,the local potential energy signal is periodic,which indicates that other T1events or possibly more complex rearrangement events that occur in the system are reversible.

What is the connection between reversible T1events and the path that the system follows through the poten-tial energy landscape?Answering this question provides initial insights into why some T1events are reversible and others are irreversible and how the system returns to the same potential energy minimum even though it follows a di?erent path in the energy landscape during the T1 event and its reverse.The calculation of?E′obtained by comparing the local potential energy E′(including inter-actions of T1bubbles with?rst nearest neighbors)of the four bubbles in the original oscillatory shear strain simu-lations with E′from the constrained simulations directly addresses this question.

The results from these studies are shown in Fig.3. First,in Fig.3(a)we?nd that the local potential energy

4 di?erence averaged over many T1events from indepen-

dent runs ?E′ >0.?E′for a single T1event shown

in the inset to Fig.5(a)has large positive spikes but also signi?cant phase intervals where?E′=0.In Fig.3(b), we show that the distribution P(?E′)of energy di?er-ences has a strong peak at zero,but non-negligible peaks at?E′≈0.15and0.3and no signi?cant weight for ?E′<0.Each of these?ndings indicates that the path during the second half cycle that does not exactly retrace the path in con?guration space of the?rst half cycle is energetically favorable.Furthermore,for the case of re-versible T1events,it is likely that there are a number of local low energy pathways that lead from state B back to state A.For the case of irreversible T1events,it is likely that there are many local energy pathways away from state B,but the ones that are energetically favor-able do not lead back to state A.Since our system is athermal,these di?erences in the energy pathways are due to changes in the environment(surrounding bubbles) that occur during the applied shear strain.Thus,we ar-gue that the in?uence of the environment gives rise to the irreversibility of T1events in foams.In equilibrium systems,thermal?uctuations will also play a signi?cant role in determining reversibility.

Our experiments and simulations of model foams un-dergoing oscillatory shear strain identify reversible T1 events,which are two state systems.This observation is the?rst direct experimental con?rmation of a general two-state model of plasticity:shear transformation zones (STZ).The concept of a STZ as a reversible,two-state transition within a material was?rst proposed by Falk and Langer[14].The STZ picture is successful in explain-ing a range of macroscopic behavior of materials based on dynamics of the microstructure.STZ’s represent a natural extension of ideas based on activated transitions and free volume[1,37,38]and it has motivated a num-ber of other models of plasticity[18,39,40].Therefore, our results establish the applicability of two-state STZ models to athermal particulate systems,and the need to include intrinsically reversible plastic events in models of plasticity.Our studies of the local potential energy landscape go beyond the two-state model and establish the importance of the accessible pathways in the energy landscape that ultimately determine the reversibility of the plastic events.Thus,we have learned that plastic-ity does not imply microscopic irreversibility and that microscopic reversibility does not imply elasticity. Financial support from the Department of Energy grant numbers DE-FG02-03ED46071(MD),DE-FG02-05ER46199(NX),and DE-FG02-03ER46088(NX),NSF grant numbers DMR-0448838(CSO,GL)and CBET-0625149(CSO),and the Institute for Complex Adaptive Matter(KK)is gratefully acknowledged.We also thank M.Falk for insightful conversations.

[1]A.S.Argon,Acta Metallurgica27,47(1979).

[2]M.L.Falk,https://www.wendangku.net/doc/0918412780.html,nger,and L.Pechenik,Physical Re-

view E70,011507(2004).

[3]M.D.Ediger,Annual Review Of Physical Chemistry51,

99(2000).

[4]L.Bragg,Journal of Scienti?c Instruments19,148

(1942).

[5]D.Weaire and S.Hutzler,The Physics of Foams(Claren-

don Press,Oxford,1999).

[6]C.H.Liu and S.R.Nagel,Phys.Rev.B48,15646(1993).

[7]E.R.Weeks,J.C.Crocker,A.C.Levitt,A.Scho?eld,

and D.A.Weitz,Science287,627(2000).

[8]E.R.Weeks and D.A.Weitz,Physical Review Letters

89,095704(2002).

[9]T.G.Mason,J.Bibette,and D.A.Weitz,Journal of

Colloid and Interface Science179,439(1996).

[10]D.A.Head,A.J.Levine,and F.C.MacKintosh,Physical

Review E68,061907(2003).

[11]J.R.Rice and R.Thomson,Philosophical Magazine29,

73(1974).

[12]J.R.Rice,Journal Of The Mechanics And Physics Of

Solids40,239(1992).

[13]J.C.Baret,D.Vandembroucq,and S.Roux,Physical

Review Letters89,195506(2002).

[14]M.L.Falk and https://www.wendangku.net/doc/0918412780.html,nger,Physical Review E57,7192

(1998).

[15]M.Heggen,F.Spaepen,and M.Feuerbacher,Journal Of

Applied Physics97,033506(2005).

[16]https://www.wendangku.net/doc/0918412780.html,nger,Physical Review E73,041504(2006).

[17]A.Onuki,Physical Review E68,061502(2003).

[18]G.Picard,A.Ajdari,L.Bocquet,and F.Lequeux,Phys-

ical Review E66,051501(2002).

[19]A.S.Argon and H.Y.Kuo,Materials Science And En-

gineering39,101(1979).

[20]A.Abdel Kader and J.C.Earnshaw,Physical Review

Letters82,2610(1999).

[21]M.Dennin,Physical Review E70,041406(2004).

[22]D.J.Durian,Phys.Rev.Lett.75,4780(1995).

[23]https://www.wendangku.net/doc/0918412780.html,uridsen,M.Twardos,and M.Dennin,Physical Re-

view Letters89,098303(2002).

[24]A.D.Gopal and D.J.Durian,Physical Review Letters

75,2610(1995).

[25]Y.Wang,K.Krishan,and M.Dennin,Philosophical

Magazine Letters87,125(2007).

[26]M.Dennin and C.M.Knobler,Physical Review Letters

78,2485(1997).

[27]B.Dollet,M.Durth,and F.Graner,Physical Review E

73,061404(2006).

[28]D.A.Reinelt and A.M.Kraynik,J.Rheol.(N.Y.)44,

453(2000).

[29]M.F.Vaz and S.J.Cox,Philosophical Magazine Letters

85,415(2005).

[30]D.Weaire,F.Bolton,T.Herdtle,and H.Aref,Phil.Mag.

Lett.66,293(1992).

[31]S.Vincent-Bonnieu,R.H.Hohler,and S.Cohen-Addad,

Europhysics Letters74,533(2006).

[32]E.Pratt and M.Dennin,Physical Review E67,051402

(2003).

[33]S.Hutzler,Ph.D.thesis,Trinity College,Dublin(1997).

[34]M.Lundberg,K.Krishan,,N.Xu,C.S.O’Hern,and

M.Dennin,in preparation(2007).

5 [35]M.P.Allen and D.J.Tildesley,Computer Simulation of

Liquids(Oxford University Press,Oxford,1987).

[36]See EPAPS Document No.[]for movies of the reversible

(ExperimentReversible.mov,SimulationReversible.mov)

and irreversible(ExperimentIrreversible.mov,Simula-

tionIrreversible.mov)events from both the experiments

and simulation.For more information on EPAPS,see

https://www.wendangku.net/doc/0918412780.html,/pubservs/epaps.html.

[37]V. A.Khonik and A.T.Kosilov,Journal Of Non-

Crystalline Solids170,270(1994).

[38]F.Spaepen,Acta Metallurgica25,407(1977).

[39]L.Berthier,Journal Of Physics-Condensed Matter15,

S933(2003).

[40]G.Picard,A.Ajdari,F.Lequeux,and L.Bocquet,Eu-

ropean Physical Journal E15,371(2004).

常用二极管参数

常用整流二极管 型号VRM/Io IFSM/ VF /Ir 封装用途说明1A5 600V/1.0A 25A/1.1V/5uA[T25] D2.6X3.2d0.65 1A6 800V/1.0A 25A/1.1V/5uA[T25] D2.6X3.2d0.65 6A8 800V/6.0A 400A/1.1V/10uA[T60] D9.1X9.1d1.3 1N4002 100V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4004 400V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4006 800V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N4007 1000V/1.0A 30A/1.1V/5uA[T75] D2.7X5.2d0.9 1N5398 800V/1.5A 50A/1.4V/5uA[T70] D3.6X7.6d0.9 1N5399 1000V/1.5A 50A/1.4V/5uA[T70] D3.6X7.6d0.9 1N5402 200V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5406 600V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5407 800V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 1N5408 1000V/3.0A 200A/1.1V/5uA[T105] D5.6X9.5d1.3 RL153 200V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL155 600V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL156 800V/1.5A 60A/1.1V/5uA[T75] D3.6X7.6d0.9 RL203 200V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL205 600V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL206 800V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RL207 1000V/2.0A 70A/1.1V/5uA[T75] D3.6X7.6d0.9 RM11C 1000V/1.2A 100A/0.92V/10uA D4.0X7.2d0.78 MR750 50V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR751 100V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR752 200V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR754 400V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR756 600V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 MR760 1000V/6.0A 400A/1.25V/25uA D8.7x6.3d1.35 常用整流二极管(全桥) 型号VRM/Io IFSM/ VF /Ir 封装用途说明RBV-406 600V/*4A 80A/1.10V/10uA 25X15X3.6 RBV-606 600V/*6A 150A/1.05V/10uA 30X20X3.6 RBV-1306 600V/*13A 80A/1.20V/10uA 30X20X3.6 RBV-1506 600V/*15A 200A/1.05V/50uA 30X20X3.6 RBV-2506 600V/*25A 350A/1.05V/50uA 30X20X3.6 常用肖特基整流二极管SBD 型号VRM/Io IFSM/ VF Trr1/Trr2 封装用途说明EK06 60V/0.7A 10A/0.62V 100nS D2.7X5.0d0.6 SK/高速 EK14 40V/1.5A 40A/0.55V 200nS D4.0X7.2d0.78 SK/低速 D3S6M 60V/3.0A 80A/0.58V 130p SB340 40V/3.0A 80A/0.74V 180p SB360 60V/3.0A 80A/0.74V 180p SR260 60V/2.0A 50A/0.70V 170p MBR1645 45V/16A 150A/0.65V <10nS TO220 超高速

常用二极管参数

常用二极管参数 2008-10-22 11:48 05Z6.2Y 硅稳压二极管 Vz=6~6.35V, Pzm=500mW, 05Z7.5Y 硅稳压二极管 Vz=7.34~7.70V, Pzm=500mW, 05Z13X 硅稳压二极管 Vz=12.4~13.1V, Pzm=500mW, 05Z15Y 硅稳压二极管 Vz=14.4~15.15V, Pzm=500mW, 05Z18Y 硅稳压二极管 Vz=17.55~18.45V, Pzm=500mW, 1N4001 硅整流二极管 50V, 1A,(Ir=5uA, Vf=1V, Ifs=50A) 1N4002 硅整流二极管 100V, 1A, 1N4003 硅整流二极管 200V, 1A, 1N4004 硅整流二极管 400V, 1A, 1N4005 硅整流二极管 600V, 1A, 1N4006 硅整流二极管 800V, 1A, 1N4007 硅整流二极管 1000V, 1A, 1N4148 二极管 75V, 4PF, Ir=25nA, Vf=1V, 1N5391 硅整流二极管 50V, 1.5A,(Ir=10uA, Vf=1.4V, Ifs=50A) 1N5392 硅整流二极管 100V, 1.5A, 1N5393 硅整流二极管 200V, 1.5A, 1N5394 硅整流二极管 300V, 1.5A, 1N5395 硅整流二极管 400V, 1.5A, 1N5396 硅整流二极管 500V, 1.5A, 1N5397 硅整流二极管 600V, 1.5A, 1N5398 硅整流二极管 800V, 1.5A, 1N5399 硅整流二极管 1000V, 1.5A, 1N5400 硅整流二极管 50V, 3A,(Ir=5uA, Vf=1V, Ifs=150A) 1N5401 硅整流二极管 100V, 3A, 1N5402 硅整流二极管 200V, 3A, 1N5403 硅整流二极管 300V, 3A, 1N5404 硅整流二极管 400V, 3A, 1N5405 硅整流二极管 500V, 3A, 1N5406 硅整流二极管 600V, 3A, 1N5407 硅整流二极管 800V, 3A, 1N5408 硅整流二极管 1000V, 3A, 1S1553 硅开关二极管 70V, 100mA, 300mW, 3.5PF, 300ma, 1S1554 硅开关二极管 55V, 100mA, 300mW, 3.5PF, 300ma, 1S1555 硅开关二极管 35V, 100mA, 300mW, 3.5PF, 300ma, 1S2076 硅开关二极管 35V, 150mA, 250mW, 8nS, 3PF, 450ma, Ir≤1uA, Vf≤0.8V,≤1.8PF, 1S2076A 硅开关二极管 70V, 150mA, 250mW, 8nS, 3PF, 450ma, 60V, Ir≤1uA, Vf≤0.8V,≤1.8PF, 1S2471 硅开关二极管80V, Ir≤0.5uA, Vf≤1.2V,≤2PF, 1S2471B 硅开关二极管 90V, 150mA, 250mW, 3nS, 3PF, 450ma, 1S2471V 硅开关二极管 90V, 130mA, 300mW, 4nS, 2PF, 400ma, 1S2472 硅开关二极管50V, Ir≤0.5uA, Vf≤1.2V,≤2PF, 1S2473 硅开关二极管35V, Ir≤0.5uA, Vf≤1.2V,≤3PF,

joinin剑桥小学英语

Join In剑桥小学英语(改编版)入门阶段Unit 1Hello,hello第1单元嗨,嗨 and mime. 1 听,模仿 Stand up Say 'hello' Slap hands Sit down 站起来说"嗨" 拍手坐下来 Good. Let's do up Say 'hello' Slap hands Sit down 好. 我们来再做一遍.站起来说"嗨"拍手坐下来 the pictures. 2 再听一遍给图画编号. up "hello" hands down 1 站起来 2 说"嗨" 3 拍手 4 坐下来说 3. A ,what's yourname 3 一首歌嗨,你叫什么名字 Hello. , what's yourname Hello. Hello. 嗨. 嗨. 嗨, 你叫什么名字嗨,嗨. Hello, what's yourname I'm Toby. I'm Toby. Hello,hello,hello.嗨, 你叫什么名字我叫托比. 我叫托比 . 嗨,嗨,嗨. I'm Toby. I'm Toby. Hello,hello, let's go! 我是托比. 我是托比. 嗨,嗨, 我们一起! Hello. , what's yourname I'm 'm Toby. 嗨.嗨.嗨, 你叫什么名字我叫托比.我叫托比. Hello,hello,hello. I'm 'm Toby. Hello,hello,let's go! 嗨,嗨,嗨.我是托比. 我是托比. 嗨,嗨,我们一起! 4 Listen and stick 4 听和指 What's your name I'm Bob. 你叫什么名字我叫鲍勃. What's your name I'm Rita. What's your name I'm Nick. 你叫什么名字我叫丽塔. 你叫什么名字我叫尼克. What's your name I'm Lisa. 你叫什么名字我叫利萨. 5. A story-Pit'sskateboard. 5 一个故事-彼德的滑板. Pa:Hello,Pit. Pa:好,彼德. Pi:Hello,:What's this Pi:嗨,帕特.Pa:这是什么 Pi:My new :Look!Pi:Goodbye,Pat! Pi:这是我的新滑板.Pi:看!Pi:再见,帕特! Pa:Bye-bye,Pit!Pi:Help!Help!pi:Bye-bye,skateboard! Pa:再见,彼德!Pi:救命!救命!Pi:再见,滑板! Unit 16. Let's learnand act 第1单元6 我们来边学边表演.

常用二极管型号及参数大全精编版

1.塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD 2.快恢复塑封整流二极管 序号型号IF VRRM VF Trr 外形 A V V μs (1)快恢复塑封整流二极管 1 1F1-1F7 1A 50-1000V 1.3 0.15-0.5 R-1 2 FR10-FR60 1A-6A 50-1000V 1. 3 0.15-0.5 3 1N4933-1N4937 1A 50-600V 1.2 0.2 DO-41 4 1N4942-1N4948 1A 200-1000V 1.3 0.15-0. 5 DO-41 5 BA157-BA159 1A 400-1000V 1.3 0.15-0.25 DO-41 6 MR850-MR858 3A 100-800V 1.3 0.2 DO-201AD

常用稳压二极管大全,

常用稳压管型号对照——(朋友发的) 美标稳压二极管型号 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对 照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9

1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V DZ是稳压管的电器编号,是和1N4148和相近的,其实1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体 上直接标稳压电压,如5V6就是5.6V的稳压管。 1N4728A 3.3 1N4729A 3.6 1N4730A 3.9 1N4731A 4.3 1N4732A 4.7 1N4733A 5.1 1N4734A 5.6 1N4735A 6.2 1N4736A 6.8 1N4737A 7.5 1N4738A 8.2 1N4739A 9.1 1N4740A 10 1N4741A 11 1N4742A 12 1N4743A 13

Join In剑桥小学英语.doc

Join In剑桥小学英语(改编版)入门阶段 Unit 1Hello,hello第1单元嗨,嗨 1.Listen and mime. 1 听,模仿 Stand up Say 'hello' Slap hands Sit down 站起来说"嗨" 拍手坐下来 Good. Let's do itagain.Stand up Say 'hello' Slap hands Sit down 好. 我们来再做一遍.站起来说"嗨"拍手坐下来 2.listen again.Number the pictures. 2 再听一遍给图画编号. 1.Stand up 2.Say "hello" 3.Slap hands 4.Sit down 1 站起来 2 说"嗨" 3 拍手 4 坐下来说 3. A song.Hello,what's yourname? 3 一首歌嗨,你叫什么名字? Hello. Hello.Hello, what's yourname? Hello. Hello. 嗨. 嗨. 嗨, 你叫什么名字? 嗨,嗨. Hello, what's yourname? I'm Toby. I'm Toby. Hello,hello,hello. 嗨, 你叫什么名字? 我叫托比. 我叫托比 . 嗨,嗨,嗨. I'm Toby. I'm Toby. Hello,hello, let's go! 我是托比. 我是托比. 嗨,嗨, 我们一起! Hello. Hello.Hello, what's yourname? I'm Toby.I'm Toby. 嗨.嗨.嗨, 你叫什么名字? 我叫托比.我叫托比. Hello,hello,hello. I'm Toby.I'm Toby. Hello,hello,let's go! 嗨,嗨,嗨.我是托比. 我是托比. 嗨,嗨,我们一起! 4 Listen and stick 4 听和指 What's your name? I'm Bob. 你叫什么名字? 我叫鲍勃. What's your name ? I'm Rita. What's your name ? I'm Nick. 你叫什么名字? 我叫丽塔. 你叫什么名字? 我叫尼克. What's your name ? I'm Lisa. 你叫什么名字? 我叫利萨. 5. A story-Pit'sskateboard. 5 一个故事-彼德的滑板. Pa:Hello,Pit. Pa:好,彼德. Pi:Hello,Pat.Pa:What's this? Pi:嗨,帕特.Pa:这是什么? Pi:My new skateboard.Pi:Look!Pi:Goodbye,Pat! Pi:这是我的新滑板.Pi:看!Pi:再见,帕特! Pa:Bye-bye,Pit!Pi:Help!Help!pi:Bye-bye,skateboard! Pa:再见,彼德!Pi:救命!救命!Pi:再见,滑板! Unit 16. Let's learnand act 第1单元6 我们来边学边表演.

二极管封装大全

二极管封装大全 篇一:贴片二极管型号、参数 贴片二极管型号.参数查询 1、肖特基二极管SMA(DO214AC) 2010-2-2 16:39:35 标准封装: SMA 2010 SMB 2114 SMC 3220 SOD123 1206 SOD323 0805 SOD523 0603 IN4001的封装是1812 IN4148的封装是1206 篇二:常见贴片二极管三极管的封装 常见贴片二极管/三极管的封装 常见贴片二极管/三极管的封装 二极管: 名称尺寸及焊盘间距其他尺寸相近的封装名称 SMC SMB SMA SOD-106 SC-77A SC-76/SC-90A SC-79 三极管: LDPAK

DPAK SC-63 SOT-223 SC-73 TO-243/SC-62/UPAK/MPT3 SC-59A/SOT-346/MPAK/SMT3 SOT-323 SC-70/CMPAK/UMT3 SOT-523 SC-75A/EMT3 SOT-623 SC-89/MFPAK SOT-723 SOT-923 VMT3 篇三:常用二极管的识别及ic封装技术 常用晶体二极管的识别 晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。 1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。 电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。 2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长

1N系列常用整流二极管的主要参数

1N 系列常用整流二极管的主要参数
反向工作 峰值电压 URM/V 额定正向 整流电流 整流电流 IF/A 正向不重 复浪涌峰 值电流 IFSM/A 正向 压降 UF/V 反向 电流 IR/uA 工作 频率 f/KHZ 外形 封装
型 号
1N4000 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N5100 1N5101 1N5102 1N5103 1N5104 1N5105 1N5106 1N5107 1N5108 1N5200 1N5201 1N5202 1N5203 1N5204 1N5205 1N5206 1N5207 1N5208 1N5400 1N5401 1N5402 1N5403 1N5404 1N5405 1N5406 1N5407 1N5408
25 50 100 200 400 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000 50 100 200 300 400 500 600 800 1000
1
30
≤1
<5
3
DO-41
1.5
75
≤1
<5
3
DO-15
2
100
≤1
<10
3
3
150
≤0.8
<10
3
DO-27
常用二极管参数: 05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW,

最新公司注册登记(备案)申请书

公司登记(备案)申请书 注:请仔细阅读本申请书《填写说明》,按要求填写。 □基本信息 名称 名称预先核准文号/ 注册号/统一 社会信用代码 住所 省(市/自治区)市(地区/盟/自治州)县(自治县/旗/自治旗/市/区)乡(民族乡/镇/街道)村(路/社区)号 生产经营地 省(市/自治区)市(地区/盟/自治州)县(自治县/旗/自治旗/市/区)乡(民族乡/镇/街道)村(路/社区)号 联系电话邮政编码 □设立 法定代表人 姓名 职务□董事长□执行董事□经理注册资本万元公司类型 设立方式 (股份公司填写) □发起设立□募集设立经营范围 经营期限□年□长期申请执照副本数量个

□变更 变更项目原登记内容申请变更登记内容 □备案 分公司 □增设□注销名称 注册号/统一 社会信用代码登记机关登记日期 清算组 成员 负责人联系电话 其他□董事□监事□经理□章程□章程修正案□财务负责人□联络员 □申请人声明 本公司依照《公司法》、《公司登记管理条例》相关规定申请登记、备案,提交材料真实有效。通过联络员登录企业信用信息公示系统向登记机关报送、向社会公示的企业信息为本企业提供、发布的信息,信息真实、有效。 法定代表人签字:公司盖章(清算组负责人)签字:年月日

附表1 法定代表人信息 姓名固定电话 移动电话电子邮箱 身份证件类型身份证件号码 (身份证件复印件粘贴处) 法定代表人签字:年月日

附表2 董事、监事、经理信息 姓名职务身份证件类型身份证件号码_______________ (身份证件复印件粘贴处) 姓名职务身份证件类型身份证件号码_______________ (身份证件复印件粘贴处) 姓名职务身份证件类型身份证件号码_______________ (身份证件复印件粘贴处)

剑桥小学英语Join_In

《剑桥小学英语Join In ——Book 3 下学期》教材教法分析2012-03-12 18:50:43| 分类:JOIN IN 教案| 标签:|字号大中小订阅. 一、学情分析: 作为毕业班的学生,六年级的孩子在英语学习上具有非常显著的特点: 1、因为教材的编排体系和课时不足,某些知识学生已遗忘,知识回生的现象很突出。 2、有的学生因受学习习惯及学习能力的制约,有些知识掌握较差,学生学习个体的差异性,学习情况参差不齐、两级分化的情况明显,对英语感兴趣的孩子很喜欢英语,不喜欢英语的孩子很难学进去了。 3、六年级的孩子已经进入青春前期,他们跟三、四、五年级的孩子相比已经有了很大的不同。他们自尊心强,好胜心强,集体荣誉感也强,有自己的评判标准和思想,对知识的学习趋于理性化,更有自主学习的欲望和探索的要求。 六年级学生在英语学习上的两极分化已经给教师的教学带来很大的挑战,在教学中教师要注意引导学生调整学习方式: 1、注重培养学生自主学习的态度 如何抓住学习课堂上的学习注意力,吸引他们的视线,保持他们高涨的学习激情,注重过程的趣味化和学习内容的简易化。 2、给予学生独立思考的空间。 3、鼓励学生坚持课前预习、课后复习的好习惯。 六年级教材中的单词、句子量比较多,难点也比较多,学生课前回家预习,不懂的地方查英汉词典或者其它资料,上课可以达到事半功倍的效果,课后复习也可以很好的消化课堂上的内容。 4、注意培养学生合作学习的习惯。 5、重在培养学生探究的能力:学习内容以问题的方式呈现、留给学生更多的发展空间。 二、教材分析: (一).教材特点: 1.以学生为主体,全面提高学生的素质。

常见二极管参数大全

1N系列稳压管

快恢复整流二极管

常用整流二极管型号和参数 05Z6.2Y 硅稳压二极管 Vz=6~6.35V,Pzm=500mW, 05Z7.5Y 硅稳压二极管 Vz=7.34~7.70V,Pzm=500mW, 05Z13X硅稳压二极管 Vz=12.4~13.1V,Pzm=500mW, 05Z15Y硅稳压二极管 Vz=14.4~15.15V,Pzm=500mW, 05Z18Y硅稳压二极管 Vz=17.55~18.45V,Pzm=500mW, 1N4001硅整流二极管 50V, 1A,(Ir=5uA,Vf=1V,Ifs=50A) 1N4002硅整流二极管 100V, 1A, 1N4003硅整流二极管 200V, 1A, 1N4004硅整流二极管 400V, 1A, 1N4005硅整流二极管 600V, 1A, 1N4006硅整流二极管 800V, 1A, 1N4007硅整流二极管 1000V, 1A, 1N4148二极管 75V, 4PF,Ir=25nA,Vf=1V, 1N5391硅整流二极管 50V, 1.5A,(Ir=10uA,Vf=1.4V,Ifs=50A) 1N5392硅整流二极管 100V,1.5A, 1N5393硅整流二极管 200V,1.5A, 1N5394硅整流二极管 300V,1.5A, 1N5395硅整流二极管 400V,1.5A, 1N5396硅整流二极管 500V,1.5A, 1N5397硅整流二极管 600V,1.5A, 1N5398硅整流二极管 800V,1.5A, 1N5399硅整流二极管 1000V,1.5A, 1N5400硅整流二极管 50V, 3A,(Ir=5uA,Vf=1V,Ifs=150A) 1N5401硅整流二极管 100V,3A, 1N5402硅整流二极管 200V,3A, 1N5403硅整流二极管 300V,3A, 1N5404硅整流二极管 400V,3A,

有限合伙企业登记注册操作指南

有限合伙企业登记注册操作指南 风险控制部 20xx年x月xx日

目录 一、合伙企业的概念 (4) 二、有限合伙企业应具备的条件 (4) 三、有限合伙企业设立具备的条件 (4) 四、注册有限合伙企业程序 (5) 五、申请合伙企业登记注册应提交文件、证件 (6) (一)合伙企业设立登记应提交的文件、证件: (6) (二)合伙企业变更登记应提交的文件、证件: (7) (三)合伙企业注销登记应提交的文件、证件: (8) (四)合伙企业申请备案应提交的文件、证件: (9) (五)其他登记应提交的文件、证件: (9) 六、申请合伙企业分支机构登记注册应提交的文件、证件 (9) (一)合伙企业分支机构设立登记应提交的文件、证件 (10) (二)合伙企业分支机构变更登记应提交的文件、证件: (10) (三)合伙企业分支机构注销登记应提交的文件、证件: (11) (四)其他登记应提交的文件、证件: (12) 七、收费标准 (12) 八、办事流程图 (12) (一)有限合伙企业创办总体流程图(不含专业性前置审批) (12) (二)、工商局注册程序 (15)

(三)、工商局具体办理程序(引入网上预审核、电话预约方式) (16) 九、有限合伙企业与有限责任公司的区别 (16) (一)、设立依据 (16) (二)、出资人数 (16) (三)、出资方式 (17) (四)、注册资本 (17) (五)、组织机构 (18) (六)、出资流转 (18) (七)、对外投资 (19) (八)、税收缴纳 (20) (九)、利润分配 (20) (十)、债务承担 (21) 十、常见问题解答与指导 (21)

常用稳压二极管技术参数及老型号代换.

常用稳压二极管技术参数及老型号代换 型号最大功耗 (mW) 稳定电压(V) 电流(mA) 代换型号国产稳压管日立稳压管 HZ4B2 500 3.8 4.0 5 2CW102 2CW21 4B2 HZ4C1 500 4.0 4.2 5 2CW102 2CW21 4C1 HZ6 500 5.5 5.8 5 2CW103 2CW21A 6B1 HZ6A 500 5.2 5.7 5 2CW103 2CW21A HZ6C3 500 6 6.4 5 2CW104 2CW21B 6C3 HZ7 500 6.9 7.2 5 2CW105 2CW21C HZ7A 500 6.3 6.9 5 2CW105 2CW21C HZ7B 500 6.7 7.3 5 2CW105 2CW21C HZ9A 500 7.7 8.5 5 2CW106 2CW21D HZ9CTA 500 8.9 9.7 5 2CW107 2CW21E HZ11 500 9.5 11.9 5 2CW109 2CW21G HZ12 500 11.6 14.3 5 2CW111 2CW21H HZ12B 500 12.4 13.4 5 2CW111 2CW21H HZ12B2 500 12.6 13.1 5 2CW111 2CW21H 12B2 HZ18Y 500 16.5 18.5 5 2CW113 2CW21J HZ20-1 500 18.86 19.44 2 2CW114 2CW21K HZ27 500 27.2 28.6 2 2CW117 2CW21L 27-3 HZT33-02 400 31 33.5 5 2CW119 2CW21M RD2.0E(B) 500 1.88 2.12 20 2CW100 2CW21P 2B1 RD2.7E 400 2.5 2.93 20 2CW101 2CW21S RD3.9EL1 500 3.7 4 20 2CW102 2CW21 4B2 RD5.6EN1 500 5.2 5.5 20 2CW103 2CW21A 6A1 RD5.6EN3 500 5.6 5.9 20 2CW104 2CW21B 6B2 RD5.6EL2 500 5.5 5.7 20 2CW103 2CW21A 6B1 RD6.2E(B) 500 5.88 6.6 20 2CW104 2CW21B RD7.5E(B) 500 7.0 7.9 20 2CW105 2CW21C RD10EN3 500 9.7 10.0 20 2CW108 2CW21F 11A2 RD11E(B) 500 10.1 11.8 15 2CW109 2CW21G RD12E 500 11.74 12.35 10 2CW110 2CW21H 12A1 RD12F 1000 11.19 11.77 20 2CW109 2CW21G RD13EN1 500 12 12.7 10 2CW110 2CW21H 12A3 RD15EL2 500 13.8 14.6 15 2CW112 2CW21J 12C3 RD24E 400 22 25 10 2CW116 2CW21H 24-1

剑桥小学英语join in五年级测试卷

五 年 级 英 语 测 试 卷 学校 班级 姓名 听力部分(共20分) 一、Listen and colour . 听数字,涂颜色。(5分) 二、 Listen and tick . 听录音,在相应的格子里打“√”。 (6分) 三、Listen and number.听录音,标序号。(9分) pig fox lion cow snake duck

sheep 笔试部分(共80分) 一、Write the questions.将完整的句子写在下面的横线上。(10分) got it Has eyes on a farm it live sheep a it other animals eat it it Is 二、Look and choose.看看它们是谁,将字母填入括号内。(8分) A. B. C. D.

E. F. G. H. ( ) pig ( ) fox ( ) sheep ( ) cat ( ) snake ( ) lion ( ) mouse ( ) elephant 三、Look at the pictures and write the questions.看图片,根据答语写出相应的问题。(10分) No,it doesn’t. Yes,it is.

Yes,it does. Yes,it has. Yes,it does. 四、Choose the right answer.选择正确的答案。(18分) 1、it live on a farm? 2. it fly?

3. it a cow? 4. it eat chicken? 5. you swim? 6. you all right? 五、Fill in the numbers.对话排序。(6分) Goodbye. Two apples , please. 45P , please. Thank you.

公司注册登记流程(四证)

→客户提供:场所证明租赁协议身份证委托书三张一寸相片 →需准备材料:办理税务登记证时需要会计师资格证与财务人员劳动合同 →提交名称预审通知书→公司法定代表人签署的《公司设立登记申请书》→全体股东签署的《指定代表或者公共委托代理人的证明》(申请人填写股东姓名)→全体股东签署的公司章程(需得到工商局办事人员的认可)→股东身份证复印件→验资报告(需到计师事务所办理:需要材料有名称预审通知书复印件公司章程股东身份证复印件银行开具验资账户进账单原件银行开具询证函租赁合同及场所证明法人身份证原件公司开设临时存款账户的复印件)→任职文件(法人任职文件及股东董事会决议)→住所证明(房屋租赁合同)→工商局(办证大厅)提交所有材料→公司营业执照办理结束 →需带材料→公司营业执照正副本原件及复印件→法人身份证原件→代理人身份证→公章→办理人开具银行收据交款元工本费→填写申请书→组织机构代码证办

理结束 →需带材料→工商营业执照正副本复印件原件→组织机构正副本原件及复印件→公章→公司法定代表人签署的《公司设立登记申请书》→公司章程→股东注册资金情况表→验资报告书复印件→场所证明(租赁合同)→法人身份证复印件原件→会计师资格证(劳动合同)→税务登记证办理结束 →需带材料→工商营业执照正副本复印件原件→组织机构正副本原件及复印件→税务登记证原件及复印件→公章→法人身份证原件及复印件→代理人身份证原件及复印件→法人私章→公司验资账户→注以上复印件需四份→办理时间个工作日→办理结束 →需带材料→工商营业执照正副本复印件原件→组织机构正副本原件及复印件→公章→公司法定代表人签署的《公司设立登记申请书》→公司章程→股东注册资金情况表→验资报告书复印件→场所证明(租赁合同)→法人身份证复印件原件→会计师资格证(劳动合同)→会计制度→银行办理的开户许可证复印件→税务登记证备案办理结束

常用稳压管型号参数对照

常用稳压管型号参数对照 3V到51V 1W稳压管型号对照表1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5

1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V

1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 摩托罗拉IN47系列1W稳压管IN4728 3.3v IN4729 3.6v IN4730 3.9v IN4731 4.3 IN4732 4.7 IN4733 5.1

IN4735 6.2 IN4736 6.8 IN4737 7.5 IN4738 8.2 IN4739 9.1 IN4740 10 IN4741 11 IN4742 12 IN4743 13 IN4744 15 IN4745 16 IN4746 18 IN4747 20

IN4749 24 IN4750 27 IN4751 30 IN4752 33 IN4753 34 IN4754 35 IN4755 36 IN4756 47 IN4757 51 摩托罗拉IN52系列 0.5w精密稳压管IN5226 3.3v IN5227 3.6v

(完整版)剑桥小学英语Joinin六年级复习题(二)2-3单元.doc

2011-2012 学年度上学期六年级复习题(Unit2-Unit3 ) 一、听力部分 1、听录音排序 ( ) () ()() () 2、听录音,找出与你所听到的单词属同一类的单词 () 1. A. spaceman B. pond C . tiger () 2. A.mascots B. potato C . jeans () 3. A. door B. behind C . golden () 4. A. sometimes B. shop C . prince () 5. A. chair B. who C . sell 3、听录音,将下面人物与他的梦连线 Sarah Tim Juliet Jenny Peter 4、听短文,请在属于Mr. Brown的物品下面打√ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5、听问句选答句 () 1. A. Yes, I am B. Yes, I have C . Yes, you do () 2. A.Pink B. A friendship band C . Yes. () 3. A. OK B. Bye-bye. C . Thanks, too. () 4. A. Monday. B. Some juice. C . Kitty. () 5. A. I ’ve got a shookbag. B. I ’m a student. C . It has got a round face. 6、听短文,选择正确答案 () 1. Where is Xiaoqing from? She is from . A.Hebei B. Hubei C . Hunan () 2. She goes to school at . A.7:00 B.7:30 C . 7:15 () 3. How many classes in the afternoon? classes. A. four B. three C . two () 4. Where is Xiaoqing at twelve o ’clock? She is . A. at home B. at school C .in the park () 5. What does she do from seven to half past eight? She . A.watches TV B. reads the book C. does homework

很全的二极管参数

G ENERAL PURPOSE RECTIFIERS – P LASTIC P ASSIVATED J UNCTION 1.0 M1 M2 M3 M4 M5 M6 M7 SMA/DO-214AC G ENERAL PURPOSE RECTIFIERS – G LASS P ASSIVATED J UNCTION S M 1.0 GS1A GS1B GS1D GS1G GS1J GS1K GS1M SMA/DO-214AC 1.0 S1A S1B S1D S1G S1J S1K S1M SMB/DO-214AA 2.0 S2A S2B S2D S2G S2J S2K S2M SMB/DO-214AA 3.0 S3A S3B S3D S3G S3J S3K S3M SMC/DO-214AB F AST RECOVERY RECTIFIERS – P LASTIC P ASSIVATED J UNCTION MERITEK ELECTRONICS CORPORATION

U LTRA FAST RECOVERY RECTIFIERS – G LASS P ASSIVATED J UNCTION

S CHOTTKY B ARRIER R ECTIFIERS

S WITCHING D IODES Power Dissipation Max Avg Rectified Current Peak Reverse Voltage Continuous Reverse Current Forward Voltage Reverse Recovery Time Package Part Number P a (mW) I o (mA) V RRM (V) I R @ V R (V) V F @ I F (mA) t rr (ns) Bulk Reel Outline 200mW 1N4148WS 200 150 100 2500 @ 75 1.0 @ 50 4 5000 SOD-323 1N4448WS 200 150 100 2500 @ 7 5 0.72/1.0 @ 5.0/100 4 5000 SOD-323 BAV16WS 200 250 100 1000 @ 7 5 0.8 6 @ 10 6 5000 SOD-323 BAV19WS 200 250 120 100 @ 100 1.0 @ 100 50 5000 SOD-323 BAV20WS 200 250 200 100 @ 150 1.0 @ 100 50 5000 SOD-323 BAV21WS 200 250 250 100 @ 200 1.0 @ 100 50 5000 SOD-323 MMBD4148W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323-1 MMBD4448W 200 150 100 2500 @ 7 5 0.72/1.0 @ 5.0/100 4 3000 SOT-323-1 BAS16W 200 250 100 1000 @ 7 5 0.8 6 @ 10 6 3000 SOT-323-1 BAS19W 200 250 120 100 @ 100 1.0 @ 100 50 3000 SOT-323-1 BAS20W 200 250 200 100 @ 150 1.0 @ 100 50 3000 SOT-323-1 BAS21W 200 250 250 100 @ 200 1.0 @ 100 50 3000 SOT-323-1 BAW56W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323-2 BAV70W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323-3 BAV99W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323-4 BAL99W 200 150 100 2500 @ 75 1.0 @ 50 4 3000 SOT-323- 5 350mW MMBD4148 350 200 100 5000 @ 75 1.0 @ 10 4 3000 SOT-23-1 MMBD4448 350 200 100 5000 @ 75 1.0 @ 10 4 3000 SOT-23-1 BAS16 350 200 100 1000 @ 75 1.0 @ 50 6 3000 SOT-23-1 BAS19 350 200 120 100 @ 120 1.0 @ 100 50 3000 SOT-23-1 BAS20 350 200 200 100 @ 150 1.0 @ 100 50 3000 SOT-23-1 BAS21 350 200 250 100 @ 200 1.0 @ 100 50 3000 SOT-23-1 BAW56 350 200 100 2500 @ 70 1.0 @ 50 4 3000 SOT-23-2 BAV70 350 200 100 5000 @ 70 1.0 @ 50 4 3000 SOT-23-3 BAV99 350 200 100 2500 @ 70 1.0 @ 50 4 3000 SOT-23-4 BAL99 350 200 100 2500 @ 70 1.0 @ 50 4 3000 SOT-23-5 BAV16W 350 200 100 1000 @ 75 0.86 @ 10 6 3000 SOD-123 410-500mW BAV19W 410 200 120 100 @ 100 1.0 @ 100 50 3000 SOD-123 BAV20W 410 200 200 100 @ 150 1.0 @ 100 50 3000 SOD-123 BAV21W 410 200 250 100 @ 200 1.0 @ 100 50 3000 SOD-123 1N4148W 410 150 100 2500 @ 75 1.0 @ 50 4 3000 SOD-123 1N4150W 410 200 50 100 @ 50 0.72/1.0 @ 5.0/100 4 3000 SOD-123 1N4448W 500 150 100 2500 @ 7 5 1.0 @ 200 4 3000 SOD-123 1N4151W 500 150 75 50 @ 50 1.0 @ 10 2 3000 SOD-123 1N914 500 200 100 25 @ 20 1.0 @ 10 4 1000 10000 DO-35 1N4148 500 200 100 25 @ 20 1.0 @ 10 4 1000 10000 DO-35 LL4148 500 150 100 25 @ 20 1.0 @ 10 4 2500 Mini-Melf SOT23-1 SOT23-2 SOT23-3 SOT23-4 SOT23-5 SOT323-1 SOT323-2 SOT323-3 SOT323-4 SOT323-5

相关文档
相关文档 最新文档