文档库 最新最全的文档下载
当前位置:文档库 › 应用Gridgen生成ONERA M6机翼非结构网格

应用Gridgen生成ONERA M6机翼非结构网格

应用Gridgen生成ONERA M6机翼非结构网格
应用Gridgen生成ONERA M6机翼非结构网格

应用Gridgen生成ONERA M6机翼非结构网格

M6机翼网格结构如图1所示,远场边界向上、下、前和右侧距离约为平均气动弦长的10倍,向后的远场范围约为平均气动弦长的15倍。

图1 M6机翼网格

1、Gridgen初始设置

首先,运行Gridgen,将流动分析求解程序设定为3D Fluent;然后设定所生成的点及边的精度数值,所谓精度,以点为例:如果两点间的距离大于所设定的精度值,Gridgen认为这两个点为不同的点,反之,则认为这两点重合,即为同一个点。如果精度设置不当,会出现看似重合的点实际并未重合,造成两个看似相连的边实际并未相连的情况发生。设置精度的方法为:在主菜单中点击Next Page,点击Dflt按钮,再点击Next Page/Tolerances,点击Node,输入0.01,同样分别点击Connector、Grid Point,同样输入0.01,最后返回主菜单。

2、读入DataBase文件

在主菜单中分别点击DataBase/Import,选择相应的M6机翼DataBase文件,会显示如图1所示的图形,该DataBase文件包含机翼表面的曲面信息及远场尺寸,其长度单位为毫米,机翼表面如图2所示。有了M6机翼外形的DataBase文件,我们在下面的工作就只是在其DataBase上生成边(connector)、面(domain)和体(block)了,而不

用再具体关心其尺寸了。

图2 M6机翼表面图形

3、边(connector)的生成

在主菜单中分别点击Connectors/Create/On DB Entities/All/Done,完成在所有的DataBase上建立边。返回主菜单,分别点击DataBase/En/Disable,用鼠标左键在左上角的DataBase明细显示窗口中将所有的DataBase选中,最后按Done,这样所有的DataBase将不再显示,方便我们后续的操作。下面删除多余的connector,并在保留的connector上设置网格点的数量及其分布。参照图1,删除机翼根部下弧线、端部下弧线、BE边、BG边和两个端点重合的EE边、GG边、CC边和DD边。

在保留的边上网格点的数量及其分布如下:

机翼根部上弧线80个节点,前缘处节点间距2,后缘处节点间距4;

机翼端部上弧线80个节点,前缘处节点间距1,后缘处节点间距2;

机翼端部弦平面上的弧线80个节点,前缘处节点间距1,后缘处节点间距2;

机翼前缘线AC上70个节点,在端点C处节点间距8;

机翼后缘线BD上70个节点,在端点D处节点间距8;

弧线EF、FG、EK、KG、KF、IJ和JH皆为10个节点,且均匀分布;

直线EI和GH上分别分布9个节点,且均匀分布;

直线IL和LH上分别分布7个节点,且均匀分布。

4、面(domain)的生成

首先生成机翼上表面结构网格面:在主菜单中分别点击Domains/Create,选中Cell Type中的structured,点击Assemble Edges(注意:此时Auto Next Edge和Auto Complete皆应选中),用鼠标右键在图形窗口中点击构成机翼上表面的AC边,然后按箭头指示方向再点击CD边(机翼端部上弧线),两个边选完后机翼上表面的结构网格面就会自动生成,注意该面颜色为紫色,表示该面是依附在DataBase曲面上的网格面。

生成机翼端部的非结构网格面:在主菜单中分别点击Domains/Create,选中Cell Type中的unstructured,点击Assemble Edges(注意:此时Auto Next Edge和Auto Complete皆不选中),用鼠标右键在图形窗口中分别点击构成机翼端面的机翼端部上弧线和端部弦平面上的弧线,然后点击Save Domain,此时该非结构网格面生成,注意该面颜色也为紫色。在Domains菜单中点击Run Solver中的Unstrctrd,用鼠标左键在窗口左上角关于面的明细窗口中选择刚生成的非结构网格面,按Done按钮,点击Set

Solver Attribs/Grid Control Params/Boundary Decay,输入数字1,按Enter/Next Page/Done Setting Attributes,然后反复点击Refine按钮若干次,注意网格的变化,最后点击Done-Save结束。

由于M6机翼采用对称翼型,所以机翼下表面采用镜像复制的方法生成。分别点击Domain/Copy,选择之前生成的两个网格面,点击Done/Abort-Don't Translate/Mirro/Y=0/Done-Mirro/Save Domains,完成下表面的复制。机翼端部及其附近的网格如图3所示。

图3 机翼端部及其附近的网格

下面生成对称面上的非结构网格。在主菜单中分别点击Domains/Create,选中Cell Type中的unstructured,点击Assemble Edges(注意:此时Auto Next Edge和Auto Complete皆不选中),用鼠标右键在图形窗口中首先选择EI边,然后按箭头方向分别选择IL边、LH边、HG边、GF边、FE边,完成对称面远场边的选择;点击Next Edge,选择机翼根部上下弧线,注意检查边的方向,应与对称面远场边的方向相反。如果相同,应点击Reorient Edge改变其方向。点击Save Domain/Done,并调整网格的疏密分布,方法同机翼端部网格相同,但此时Boundary Decay参数设置为0.95。图4为完成的对称面网格。

图4 对称面网格

下面开始生成远场前部1/4球面上的非结构网格:在主菜单中分别点击Domains/Create,选中Cell Type中的unstructured,点击Assemble Edges(注意:此时Auto Next Edge和Auto Complete皆不选中),用鼠标右键在图形窗口中选择EK 边,然后按箭头方向依次选择KF边和 FE边,点击Save Domain/Done,注意此时生成的非结构网格面的颜色为紫色,说明其依附在DataBase球面上。应用同样的方法生成KFG球面非结构网格。

最后生成远场侧面EKGHJI结构网格面和远场后面IJHL非结构网格面,详细方法不再复述。图5为所生成的远场网格。

图5 远场网格

5、体(block)的生成

在主菜单中依次点击Blocks/Create/Cell Type-unstructured/Assemble Faces/Add 1st Face/All Domains/Save Faces/Done-Save Blocks,然后再依次点击Run Solver-Unstrctrd/All/Done,再设置体的参数:点击Set Solver Attribs/Grid Control Params/Boundary Decay,输入0.8,然后依次点击Enter/Next Page/Done Setting Attributes/Initialize,等待网格的最后生成……,最后点击Done-Save,结束网格体的生成。图6为机翼上下表面附近的网格,其网格类型包括了四面体网格和金字塔网格。

图6 机翼上下表面附近的网格

6、边界条件的设置及网格文件的输出

在主菜单中依次点击Analysis S/W /Set BCs,按图1标识,选择EILHGF面,将其设置为Symmetry边界;分别选择EKF面、KFG面、EIJHGK面和ILHJ面,将其设置为Pressure Far Field边界;最后将机翼表面设为Wall边界。

点击Export Analysis Data输出能被Fluent读入的文件。最后在主菜单中点击Input/Output,点击Export/Export Anaway,选择文件存储位置及文件名,保存Gridgen 类型文件。

建筑结构模型的四边形网格生成算法

第1期陈沸镔,等:建筑结构模型的四边形网格生成算法2l L1+L2+£3+L4=偶数,所以L3=Ll+N×2(Ⅳ≥0) 根据N=0及N>0这2种情况,分别采用不同模板 进行网格划分.图11~13分别是L3=L。,L3=L,+2 和L。=L,+4这3种情况的网格划分方式. L3L3 £:[]c。≥L2匝唧上。 £1L1 图11狭长四边形单元网格划分(L,=L。) 三3上3 Lz[]£。≥上z压酗c。 LtLi 图12狭长四边形单元网格划分(L,=L,+2) 图13狭长四边形单元网格划分(L,=L。+4) 3算例 将上述算法用VC++.NET及OpenGL在VisualStudio2005编译环境编程实现,实验效果见图14~16.图14为将图2中框架剪力墙墙体模型进行四边形网格生成的结果,图15为某框架剪力墙高层结构模型进行四边形网格生成的结果,图16为某多塔楼高层结构模型进行四边形网格生成的结果. 图16某多塔楼高层结构的四边形网格划分 表2为图14~16这3种结构模型使用模板法生成网格耗费的时间.由表2可知,使用模板法进行模型内部网格生成效率较高.图17为图14网格生成的局部放大图,从该图可见由于建筑结构模型初始单元较为规则,使用模板法生成网格的质量较好.总之,本文的四边形网格生成算法在建筑结构模型方面有较好的适应性. 表2模板法生成网格时间 模型名称区域单元数边界单元数生成网格时间/ms框架剪力墙墙体6661984125 剪力墙高层结构5274139682031 多塔楼高层结构346695551516 图17图14网格划分的局部放大 图14图2框架剪力墙墙体的四边形网格划分5结论 图15某框架剪力墙高层结构的四边形网格划分 阐述用有限元分析建筑结构模型特点、设计快速建立结构模型索引信息的算法,根据四边形网格划分的要求,给出调整单元边界划分节点的算法,在内部网格划分时,采用分区域模板法生成网格,算法理论简单可行、效率较高. 下一步将考虑初始板单元为复杂多边形的情况,以及内部网格的生成优化和网格质量改进等方面一J,以期得到适用性更好、通用性更强的算法. (下转第26页)

CFD网格及其生成方法概述

CFD网格及其生成方法概述 作者:王福军 网格是CFD模型的几何表达形式,也是模拟与分析的载体。网格质量对CFD计算精度和计算效率有重要影响。对于复杂的CFD问题,网格生成极为耗时,且极易出错,生成网格所需时间常常大于实际CFD计算的时间。因此,有必要对网格生成方式给以足够的关注。 1 网格类型 网格(grid)分为结构网格和非结构网格两大类。结构网格即网格中节点排列有序、邻点间的关系明确,如图1所示。对一于复杂的儿何区域,结构网格是分块构造的,这就形成了块结构网格(block-structured grids)。图2是块结构网格实例。 图1 结构网格实例 图2 块结构网格实例 与结构网格不同,在非结构网格(unstructured grid)中,节点的位置无法用一个固定的法则予以有序地命名。图3是非结构网格示例。这种网格虽然生成过程比较复杂,但却有着极好的适应性,尤其对具有复杂边界的流场计算问题特别有效。非结构网格一般通过专门的

程序或软件来生成。 图3 非结构网格实例 2 网格单元的分类 单元(cell)是构成网格的基本元素。在结构网格中,常用的ZD网格单元是四边形单元,3D网格单元是六面体单元。而在非结构网格中,常用的2D网格单元还有三角形单元,3D 网格单元还有四面体单元和五面体单元,其中五面体单元还可分为棱锥形(或楔形)和金字塔形单元等。图4和图5分别示出了常用的2D和3D网格单元。 图4 常用的2D网格单元 图5 常用的3D网格单元

3 单连域与多连域网格 网格区域(cell zone)分为单连域和多连域两类。所谓单连域是指求解区域边界线内不包含有非求解区域的情形。单连域内的任何封闭曲线都能连续地收缩至点而不越过其边界。如果在求解区域内包含有非求解区域,则称该求解区域为多连域。所有的绕流流动,都属于典型的多连域问题,如机翼的绕流,水轮机或水泵内单个叶片或一组叶片的绕流等。图2及图3均是多连域的例子。 对于绕流问题的多连域内的网格,有O型和C型两种。O型网格像一个变形的圆,一圈一圈地包围着翼型,最外层网格线上可以取来流的条件,如图6所示。C型网格则像一个变形的C字,围在翼型的外面,如图7所示。这两种网格部属于结构网格。 图6 O型网格 图7 C型网格 4 生成网格的过程

结构化网格和非结构化网格

1. 什么是结构化网格和非结构化网格 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。 它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。它的主要优点是: 网格生成的速度快。 网格生成的质量好。 数据结构简单。 对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。 它的最典型的缺点是适用的范围比较窄,只适用于形状规则的图形。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的几何形状的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。 1.2非结构化网格 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 2.如果一个几何造型中既有结构化网格,也有非结构化网格,分块完成的,分别生成网格后,也可以直接就调入fluent中计算。 3.在fluent中,对同一个几何造型,如果既可以生成结构化网格,也可生成非结构化网格,当然前者要比后者的生成复杂的多,那么应该选择哪种网格,两者计算结果是否相同,哪个的计算结果更好些呢? 一般来说,结构网格的计算结果比非结构网格更容易收敛,也更准确。但后者容易做。 影响精度主要是网格质量,和你是用那种网格形式关系并不是很大,如果结构话网格的质量很差,结果同样不可靠,相对而言,结构化网格更有利于计算机存储数据和加快计算速度。

结构化网格据说计算速度快一些,但是网格划分需要技巧和耐心。非结构化网格容易生成,但相对来说速度要差一些。 4.在gambit中,只有map和submap生成的是结构化网格,其余均为非结构化网格。 采用分块网格划分的时候,在两个相邻块之间设置了connected,但是这两个块我要用不同尺寸的网格来划分。比如说我用结构化的六面体网格来划分,一遍的尺寸为2,另一边的尺寸为3,这时候公共边界面该怎么处理?如果采用cooper 的格式来划分这个网格,尺寸就是前面所说的,该怎么来做呢? 我用单独的两个块试过,就是在公共边界上采用interface的格式,但是由于与这个公共边界相邻的另一个边界也不得不用interface格式,结果导入fluent 的时候就说can not creat a bound loop,也不清楚这是什么问题。 如果中间面两侧的面网格一致,可以直接在fluent中merge,如果不一致,可以设interface 网格的正交性是指三个方向上的网格边之间互相垂直的程度。一般而言,三维网格单元中,三个方向上的网格边之间的夹角越接近90度则质量越好。这一点在规则区域(例如正方形方腔)很容易实现,但对于流动区域比较复杂的问题则非常困难。但一般情况下,应当保证所有的网格单元内的网格边夹角大于10度,否则网格本身就会引入较大的数值误差。 EquiSize Skew(尺寸扭曲率)和EquiAngle Skew(角度扭曲率)是评判网格质量最主要标准,其值越小,网格质量越高 一般来说,Fluent要求扭曲率3D小于0.85,2D小于0.75。 关于复杂模型和gambit中的实体及虚体 模型比较复杂,是在pro/E中建的模,然后用igs导入gambit,不过这样就产生了很多碎线和碎面并且在一些面交界的地方还存在尖角。我曾经做成功过把它们统统merge成一个虚面,中间设置了一个可以容忍尖角的参数,也可以划分网格,但把生成的msh文件导入fluent就会出错,这是virtual geometry的原因还是因为尖角的原因?还有,virtual geometry和普通的真实的几何体到底有什么区别?好像最大的区别是virtual geometry不能进行布尔操作,布尔操作(boolean operation)又是什么?使用virtual geometry需要注意哪些问题?virtual geometry是很头疼的问题。你把它们统统merge成一个虚面 按理说全是虚的也是可以算的。可能是因为尖角的原因,虚实最大差别:是virtual geometry不能进行布尔操作,boolean operation即是并 对于复杂外形的网格生成,不可避免的会用到virtual geometry,virtual face ,和virtual edge等, 1。作网格的时候,把所有的面全部合成一个虚面的做法不好,特别是对于复杂外形的网格生成,你最好在模型变化剧烈的地方多分几个面,这样会更有效的控制网格能够在模型表面曲率比较大的地方能够生成规则的结构或者非结构网格。

结构和非结构网格

CFD网格的分类,如果按照构成形式分,可以分为结构化和非结构化 结构化:只能有六面体一种网格单元,六面体顾名思义,也就是有六个面,但这里要区分一下六 面体和长方体。长方体(也就是所有边都是两两正交的六面体)是最理想完美的六面体网格。但如 果边边不是正交,一般就说网格单元有扭曲(skewed). 但绝大多数情况下,是不可能得到完全没有 扭曲的六面体网格的。一般用skewness来评估网格的质量,sknewness=V/(a*b*c). 这里V是网格 的体积,a,b,c是六面体长,宽和斜边。sknewness越接近1,网格质量就越好。很明显对于长 方体,sknewness=1. 那些扭曲很厉害的网格,sknewness很小。一般说如果所有网格sknewness>0.1也就可以了。结构化网格是有分区的。简单说就是每一个六面体单元是有它的坐标的,这些坐标用,分区号码(B),I,J,K四个数字代表的。区和区之间有数据交换。比如一个单元,它的属性是B=1, I=2,J=3,K=4。其实整个结构化单元的概念就是CFD计算从物理空间到计算空间mapping的概念。I,J,K可以认为是空间x,y,z在结构化网格结构中的变量。 非机构化:可以是多种形状,四面体(也就三角的形状),六面体,棱形。对任何网格,都是希 望网格单元越规则越好,比如六面体希望是长方形,对于四面体,高质量的四面体网格就是正四 面体。sknewness的概念这里同样适用,sknewness越小,网格形状相比正方形或者正四面体就越 扭曲。越接近1就越好。 很明显非结构化网格也可以是六面体,但非结构化六面体网格没有什么B,IJK的概念,他们就是充 满整个空间。 对于复杂形状,结构化网格比较难以生成。主要是生成时候要建立拓扑,拓扑是个外来词,英语 是topology,所以不要试图从字面上来理解它的意思。其实拓扑就是指一种有点和线组成的结构。工人建房子,需要先搭房粱,立房柱子,然后再砌砖头。拓扑其实就是房子的结构。这么理解拓 扑比较容易些,以后认识多了,就能彻底通了。 生成结构化网格的软件gridgen,icem等等都是需要你去建立拓扑,也就是结构,然后软件好根据 你的机构来建立网格,或者砌砖头,呵呵。 非结构化网格的生成相对简单,四面体网格基本就是简单的填充。非结构化六面体网格生成还有 些复杂的。但仍然比结构化的建立拓扑简单多。比如 gambit的非结构化六面体网格是建立在从一 个面到另外一个面扫描(sweep)的基础上的。Numeca公司的hexpress的非结构化六面体网格是用 的一种吸附的方法。反正你还是要花点功夫。 另外一点就是,结构化网格可以直接应与于各种非结构化网格的CFD软件,比如你在gridgen里 面生成了一个结构化网格,用fluent读入就可以了。fluent是非结构化网格CFD软件,它会忽略 那些结构化网格的结构信息(也就是B,I,J,K),当成简单的非结构网格读入。非结构化六面体网格 就不能用在结构化网格的CFD求解器了. 结构化网格仍然是CFD工程师的首选。非结构化六面体网格也还凑合,四面体网格我就不喜欢了。数量多,计算慢,后处理难看。简单说,如果非结构化即快又好,结构化网格早就被淘汰了。总 结一下,

关于结构化网格和非结构网格的适用性问题

? 傲雪论坛 ? 『 Fluent 专版 』 打印话题 寄给朋友 作者 关于结构化网格和非结构网格的适用性问题 [精华] 翱翔蓝天 发帖: 22 积分: 0 雪币: 22 于 2005-07-23 22:58 有些前辈认为,数值计算中应采用结构化网格,如果非结构网格则计算结果将“惨不忍睹”。搞压气机计算的同行也认为,必须用结构化网格。然而, 对复杂的计算域,如果采用结构化网格必然造成网格质量的急剧下降,扭曲加大等问题。我觉得这时,不如采用非结构网格。诸位,请提出自己的意见 waterstone 我为人人,人人为我 发帖: 78 积分: 0 雪币: 78 于 2005-07-24 09:51 我是这样看的:非结构网格使用很方便,外型越复杂就越显示出其优越性;至于计算结果的精度,就要看 非结构网格在单元网格面、体积处理上方法是不是比结构网格要差。就fluent 软件,它是用体积积分法求 解雷诺平均方程的,在单元网格面、体积处理上方法好像是按非结构网格方法处理的。你就是按结构网格方法来生成网格,进入fluent 中,进行数值计算时都是按非结构网格来处理,所以在fluent 中,你用结构化网格方法生网格,和用非结构网格计算没多大区别!我说说我个人看法。 liuhuafei 于 2005-07-25 13:53

发帖: 872 积分: 6 雪币: 158 来自: 上海 waterstone wrote: 我是这样看的:非结构网格使用很方便,外型越复杂就越显示出其优越性;至于计算结果的 精度,就要看非结构网格在单元网格面、体积处理上方法是不是比结构网格要差。就fluent 软件,它是用体积积分法求解雷诺平均方程的,在单元网格面、体积处理上方法好像是按非 结构网格方法处理的。你就是按结构网格方法来生成网格,进入fluent 中,进行数值计算时都是按非结构网格来处理,所以在fluent 中,你用结构化网格方法生网格,和用非结构网格计算没多大区别!我说说我个人看法。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。 例如同样的2d 的10×10的正交网格,fluent 采用非结构化方式对网格编号,另一种软件按结构化网格处理,如果其它条件相同,二者的精度应该是一样的。 我们通常所说的非结构化网格,第一映象就是网格质量差,不正交的,编排无规律的网格的三角形网格或四面体网格,实际上一个二维区域的三角形网格,如果控制得好(如相邻控制 体中心的连线与公共边基本接近正交的话),其不结构化网格(网格正交性好)的精度是一致的 翱翔蓝天 发帖: 22 积分: 雪币: 22 于 2005-07-25 23:00 谢了,有收获,受益匪浅 edwardzhu 发帖: 60 积分: 1 于 2005-08-05 11:08 听楼上一席话,胜读一年书。

Fluent 结构化网格与非结构化网格

简单地说:结构化网格只包含四边形或者六面体,非结构化网格是三角形和四面体。 结构网格再拓扑结构上相当于矩形域内的均匀网格,器节点定义在每一层的网格线上,且每一层上节点数都是相等的,这样使复杂外形的贴体网格生成比较困难。非结构网格没有规则的拓扑结构,也没有层的概念,网格节点的分布是随意的,因此具有灵活性。不过非结构网格计算的时候需要较大的内存。 在计算流体动力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成对CFD至关重要,直接关系到CFD计算问题的成败。 非结构三角形网格方法 复杂外形网格生成的第二方向是最近应用比较广泛的非结构三角形网格方法,它利用三角形(二维)或四面体(三维)在定义复杂外形时的灵活性,以Delaunay法或推进波阵面法为基础,全部采用三角形(四面体)来填充二维(三维)空间,它消除了结构网格中节点的结构性限制,节点和单元的分可控性好,因而能较好地处理边界,适用于模拟真实复杂外型。非结构网格生成方法在其生成过程中采用一定的准则进行优化判断,因而能生成高质量的网格,很容易控制网格的大小和节点的密度,它采用随机的数据结构有利于进行网格自适应。一旦在边界上指定网格的分布,在边界之间可以自动生成网格,无需分块或用户的干预,而且不需要在子域之间传递信息。因而,近年来非结构网格方法受到了高度的重视,有了很大发展。 非结构网格方法的一个不利之处就是不能很好地处理粘性问题,在附面层内只采用三角形或四面体网格,其网格数量将极其巨大。现在比较好的方法就是采用混合网格技术,即先贴体生成能用于粘性计算的四边型或三棱柱网格,然后以此为物面边界,生成三角形非结构网格,但是生成复杂外型的四边形或三棱柱网格难度很大。 非结构网格方法的另一个不利之处就是对于相同的物理空间,网格填充效率不高,在满足同样流场计算条件的情况下,它产生的网格数量要比结构网格的数量大得多(一个长方体要划分为5个四面体)。随机的数据结构也增加了流场参数交换的时间,因此此方法要求较大的计算机内存,计算时间长。在物面附近,非结构网格方法,特别是对于复杂外形如凹槽、细缝等处比较难以处理。 非结构网格与结构网格一样都属于贴体网格,模型表面网格的好坏直接关系到空间网格的质量,因而它们的模型表面网格必须同时与网格拓扑结构和当地的几何外形特性相适应,为了更好地适应其中一方面,有时不得不在另一方面作出让步,因而往往顾此失彼。因此,在生成非结构网格和结构网格时,处理模型表面又成为一个关键而费时的工作。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。个人感觉采用结构化网格还是非结构化网格,主要看解决什么问题,如果是无粘欧拉方程的话,只要合理布局,结构和非结构都能得到较为理想的结果。但如果涉及到粘性影响的话,尤其在壁面处,结构网格有一定优势,并且其对外形适应性差的缺点,也可以通过多块拼接网格解决。事实上,目前有的非结构网格软件,也开始借鉴结构网格的优点,在壁面处进行了类似结构网格的处理,如cfx的壁面加密功能。 一般来说,网格节点走向(这里假设计算过程中物理量定义在网格节点上)贴近流动方向,那么计算的结果就要好一些。对于不是非常复杂的流动。例如气体的喷管流动,使用四边形(二维)网格就比较三角形网格要好。不过即便是四边形网格,fluent也是按照无结构网格进行处理的。 非结构和结构网格的计算结果如何取决于算法,除非网格实在惨不忍睹。我觉得现在已发展到了基于结构网格与非结构网格上的计算,各自的优势相差越来越不是很明显了。

网格生成技术

I 目录 1 概述 (1) 2 结构网格 (3) 2.1 贴体坐标法 (3) 2.2 块结构化网格 (11) 3 非结构网格 (16) 3.1 概述 (16) 3.2 阵面推进法 (16) 3.3 Delaunay三角划分 (19) 3.4 四叉树(2D)/八叉树(3D)方法 (21) 3.5 阵面推进法和Delaunay三角划分结合算法 (22) 4 其他网格生成技术 (23) 4.1 自适应网格 (23) 4.2 混合网格 (25) 4.3 动网格 (26) 4.4 曲面网格 (27) 4.5 重叠网格 (28) 5 网格生成软件 (29) 5.3 Gambit (29) 5.2 ICEM CFD (30) 5.1 TrueGrid (32) 5.2 Gridgen (34)

1 概述 计算流体力学作为计算机科学、流体力学、偏微分方程数学理论、计算几何、数值分析等学科的交叉融合,它的发展除依赖于这些学科的发展外,更直接表现于对网格生成技术、数值计算方法发展的依赖。 在计算流体力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成是连接几何模型和数值算法的纽带,几何模型只有被划分成一定标准的网格才能对其进行数值求解,所以网格生成对CFD至关重要,直接关系到CFD计算问题的成败。一般而言,网格划分越密,得到的结果就越精确,但耗时也越多。1974年Thompson等提出采用求解椭圆型方程方法生成贴体网格,在网格生成技术的发展中起到了先河作用。随后Steger等又提出采用求解双曲型方程方法生成贴体网格。但直到20世纪80年代中期,相比于计算格式和方法的飞跃发展,网格生成技术未能与之保持同步。从这个时期开始,各国计算流体和工业界都十分重视网格生成技术的研究。上个世纪90年代以来迅速发展的非结构网格和自适应笛卡尔网格等方法,使复杂外形的网格生成技术呈现出了更加繁荣发展的局面。现在网格生成技术已经发展成为CFD的一个重要分支,它也是计算流体动力学近20年来一个取得较大进展的领域。也正是网格生成技术的迅速发展,才实现了流场解的高质量,使工业界能够将CFD的研究成果——求解Euler/NS方程方法应用于型号设计中。 随着CFD在实际工程设计中的深入应用,所面临的几何外形和流场变得越来越复杂,网格生成作为整个计算分析过程中的首要部分,也变得越来越困难,它所需的人力时间已达到一个计算任务全部人力时间的60%左右。在网格生成这一“瓶颈”没有消除之前,快速地对新外形进行流体力学分析,和对新模型的实验结果进行比较分析还无法实现。尽管现在已有一些比较先进的网格生成软件,如ICEM CFD、Gridgen、Gambit等,但是对一个复杂的新外形要生成一套比较合适的网格,需要的时间还是比较长,而对于设计新外形的工程人员来说,一两天是他们可以接受的对新外形进行一次分析的最大周期。要将CFD从专业的研究团体中脱离出来,并且能让工程设计人员应用到实际的设计中去,就必须首先解决网格生成的自动化和即时性问题,R.Consner等人在他们的一篇文章中,详细地讨论了这些方面的问题,并提出:CFD研究人员的关键问题是“你能把整个设计周期缩短多少天?”。而缩短设计周期的主要途径就是缩短网格生成时间和流场计算时间。因此,生成复杂外形网格的

结构化网格与非结构化网格

对于连续的物理系统的数学描述,如航天飞机周围的空气的流动,水坝的应力集中等等,通常是用偏微分方程来完成的。为了在计算机上实现对这些物理系统的行为或状态的模拟,连续的方程必须离散化,在方程的求解域上(时间和空间)仅仅需要有限个点,通过计算这些点上的未知变量既而得到整个区域上的物理量的分布。有限差分,有限体积和有限元等数值方法都是通过这种方法来实现的。这些数值方法的非常重要的一个部分就是实现对求解区域的网格剖分。 网格剖分技术已经有几十年的发展历史了。到目前为止,结构化网格技术发展得相对比较成熟,而非结构化网格技术由于起步较晚,实现比较困难等方面的原因,现在正在处于逐渐走向成熟的阶段。下面就简要介绍一些这方面的情况。 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。结构化网格生成技术有大量的文献资料[1,2,3,4]。结构化网格有很多优点: 1.它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。 2.网格生成的速度快。 3.网格生成的质量好 4.数据结构简单 5.对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。 它的最典型的缺点是适用的范围比较窄。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。 结构化网格的生成技术只要有: 代数网格生成方法。主要应用参数化和插值的方法,对处理简单的求解区域十分有效。PDE网格生成方法。主要用于空间曲面网格的生成。 1.2非结构化网格 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 非结构化网格技术从六十年代开始得到了发展,主要是弥补结构化网格不能够解决任意形状和任意连通区域的网格剖分的缺欠.到90年代时,非结构化网格的文献达到了它的高峰时期.由于非结构化网格的生成技术比较复杂,随着人们对求解区域的复杂性的不断提高,对非结构化网格生成技术的要求越来越高.从现在的文献调查的情况来看,非结构化网格生成技术中只有平面三角形的自动生成技术比较成熟(边界的恢复问题仍然是一个难题,现在正在广泛讨论),平面四边形网格的生成技术正在走向成熟。而空间任意曲面的三角形、四边形网格的生成,三维任意几何形状实体的四面体网格和六面体网格的生成技术还远远没有达到成熟。需要解决的问题还非常多。主要的困难是从二维到三维以后,待剖分网格的空间区非常复杂,除四面体单元以外,很难生成同一种类型的网格。需要各种网格形式之间的过度,如金字塔形,五面体形等等。 非结构化网格技术的分类,可以根据应用的领域分为应用于差分法的网格生成技术(常常成为grid generation technology)和应用于有限元方法中的网格生成技术(常常成为mesh generation technology),应用于差分计算领域的网格要除了要满足区域的几何形状要求以外,还要满足某些特殊的性质(如垂直正交,与流线平行正交等),因而从技术实现上来说就更困难一些。基于有限元方法的网格生成技术相对非常自由,对生成的网格只要满足一些形状

结构化网格和非结构化网格

结构化网格只包含四边形或者六面体,非结构化网格是三角形和四面体。 结构网格在拓扑结构上相当于矩形域内的均匀网格,器节点定义在每一层的网格线上,且每一层上节点数都是相等的,这样使复杂外形的贴体网格生成比较困难。非结构网格没有规则的拓扑结构,也没有层的概念,网格节点的分布是随意的,因此具有灵活性。不过非结构网格计算的时候需要较大的内存。 非结构网格不利之处就是不能很好地处理粘性问题,在附面层内只采用三角形或四面体网格,其网格数量将极其巨大。现在比较好的方法就是采用混合网格技术,即先贴体生成能用于粘性计算的四边型或三棱柱网格,然后以此为物面边界,生成三角形非结构网格,但是生成复杂外型的四边形或三棱柱网格难度很大。在物面附近,非结构网格方法,特别是对于复杂外形如凹槽、细缝等处难以处理。 到空间网格的质量, 几何外形特性相适应,为了更好地适应其中一方面,有时不得不在另一方面做出让步,因而往往顾此失彼。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。采用结构化网格还是非结构化网格,主要看解决什么问题,如果是无粘欧拉方程的话,只要合理布局,结构和非结构都能得到较为理想的结果。但如果涉及到粘性影响的话,尤其在壁面处,结构网格有一定优势,并且其对外形适应性差的缺点,也可以通过多块拼接网格解决。目前有的非结构网格软件,也开始借鉴结构网格,如cfx的壁面加密功能。 网格节点走向(这里假设计算过程中物理量定义在网格节点上)贴近流动方向,那么计算的结果就要好一些。对于不是非常复杂的流动。例如气体的喷管流动,使用四边形(二维)网格就比三角形网格要好。不过即便是四边形网格,fluent 也是按照无结构网格进行处理的。主要是看流向是否与网格平行如果是平行的则计算中不容易出现假扩散,计算的结果就好,但是成角度的时候计算的结果搞不好就有扩散现象,所以不在于结构和非结构。 非结构和结构网格的计算结果如何取决于算法。GRIDGEN在结构网格方面有着强大的生命力,很多非常复杂的几何形状用它没问题;基于非结构网格方面的计算格式得到的结果的准确度也不次于基于结构网格的结果了。

结构化网格和非结构化网格特点

关于网格的经典文献你可以参看thomphson的Numecrial grid generation那本书,讲的有pde 和参数化代数方法.书后附有算例和代码. NURBS参数化曲线和曲面在自由曲线和曲面的cad造型广泛应用,也见到国内外的文献提到用这种方法生成网格,国内可能还没用这种方法来生成网格的实例. 如果网格生成算法感兴趣,可以看看。 关于结构和非结构网格,各有应用场合。个人比较喜欢结构网格。通过观察IDEAS中结构网格生成的步骤及要求,我觉得对于复杂的几何体,生成结构网格也是可以的,前提是采用适当的partition方法,将几何体分解成规则的基本几何体。而分解几何体是几何建模的任务。 个人感觉:生成网格的软件名目繁多,但是网格生成基本原理和算法可以归成下列所述的类别。 主要差别可能在于辅助的几何建模方法不同。网格生成应当辅以几何建模,只有与几何建模结合,才可以对复杂几何体生成高质量的网格。 网格生成的另外一个要素就是物体的参数化表示技术,当采用适当的参数化表示实体表面时,同样的网格生成技术有时候可以得到非常好的网格。NURBS是我所知道的CDA/CAM中应用较为广泛的构造复杂曲面的参数化表示技术。 不知道哪位朋友可以提供一些关于网格生成基本算法的源代码。 对于连续的物理系统的数学描述,如航天飞机周围的空气的流动,水坝的应力集中等 等,通常是用偏微分方程来完成的。为了在计算机上实现对这些物理系统的行为或状态的模拟,连续的方程必须离散化,在方程的求解域上(时间和空间)仅仅需要有限个点,通过 计算这些点上的未知变量既而得到整个区域上的物理量的分布。有限差分,有限体积和有 限元等数值方法都是通过这种方法来实现的。这些数值方法的非常重要的一个部分就是实 现对求解区域的网格剖分。 网格剖分技术已经有几十年的发展历史了。到目前为止,结构化网格技术发展得相对 比较成熟,而非结构化网格技术由于起步较晚,实现比较困难等方面的原因,现在正在处 于逐渐走向成熟的阶段。下面就简要介绍一些这方面的情况。 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。 结构化网格生成技术有大量的文献资料[1,2,3,4]。结构化网格有很多优点: 1.它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。 2.网格生成的速度快。 3.网格生成的质量好 4.数据结构简单 5.对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际 的模型更容易接近。 它的最典型的缺点是适用的范围比较窄。尤其随着近几年的计算机和数值方法的快速 发展,人们对求解区域的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就 显得力不从心了。 结构化网格的生成技术只要有:代数网格生成方法。主要应用参数化和插值的方法,对处理简单的求解区域十分有效。

并行网格生成技术

并行网格生成技术 分类 基于以下三种网格生成技术:Delaunay 网格前沿法,边细分法。 并行网格生成将原始网格生成问题划分成N个子问题来求解。 子问题的求解可分为以下三种形式: 紧耦合,部分耦合,无耦合。 并行网格生成中的难点在于 1.维持并行算法的稳定性,使得并行算法的结果正确。 2.代码重用:将原始算法移植为并行算法时不需要改动原始算法代码,并且能保证并行算法的正确性。 基于Delaunay的方法 空洞算法: 上述算法并行化后引发如下问题:

图(a)中两个空洞相交,使得产生的三角剖分边相交。 图(b)中两个空洞共享一条边,使得最终产生的剖分可能不满足德劳内空圆准则。 紧耦合算法: Parallel Optimistic Delaunay Meshing Method (PODM) PODM算法对子网格划分没有要求,这个算法通过重新划分子网格边界来保证算法稳定性。如下图(a)所示,空洞扩展到子区域之外时,将通过子区域之间的通信来保证算法的正确性。因此,这个算法是紧耦合的,不具备代码重用性。 图(a)是空洞扩展到子区域之外的情况。 图(b)是并行插入时的同步时间图。 无耦合算法: Parallel Projective Delaunay Meshing (PPDM) PPDM算法的基本思想是预先计算出Delaunay-admissible子区域边界。即,最终生成的Delaunay剖分将包括这个边界。

这样,每个子网格就可以完全独立的计算各自剖分。 因此,这个算法是无耦合并且是可完全代码复用的。 生成Delaunay-admissible子区域边界的基本思想如下: 先生成三维点集的一个凸壳。首先用Inertia Axis分割法将凸壳用平面II分成两个近似相等 的部分。然后搜索所有三角面(如上图),使得存在一个空球,球心在平面II上,球面经过P,Q,R且球内不包含其它任何点。这样,这些三角面就构成了一个Delaunay-admissible边界。 部分耦合算法: Parralel Constrained Delaunay Meshing (PCDM) method

结构化网格和非结构化网格

结构化网格和非结构化网格 1. 什么是结构化网格和非结构化网格 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。 它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。它的主要优点是: 网格生成的速度快。 网格生成的质量好。 数据结构简单。 对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。 它的最典型的缺点是适用的范围比较窄,只适用于形状规则的图形。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的几何形状的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。 1.2非结构化网格 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 2.如果一个几何造型中既有结构化网格,也有非结构化网格,分块完成的,分别生成网格后,也可以直接就调入fluent中计算。

3.在fluent中,对同一个几何造型,如果既可以生成结构化网格,也可生成非结构化网格,当然前者要比后者的生成复杂的多,那么应该选择哪种网格,两者计算结果是否相同,哪个的计算结果更好些呢, 一般来说,结构网格的计算结果比非结构网格更容易收敛,也更准确。但后者容易做。 影响精度主要是网格质量,和你是用那种网格形式关系并不是很大,如果结构话网格的质量很差,结果同样不可靠,相对而言,结构化网格更有利于计算机存储数据和加快计算速度。 结构化网格据说计算速度快一些,但是网格划分需要技巧和耐心。非结构化网格容易生成,但相对来说速度要差一些。 4.在gambit中,只有map和submap生成的是结构化网格,其余均为非结构化网格。 采用分块网格划分的时候,在两个相邻块之间设置了connected,但是这两个块我要用不同尺寸的网格来划分。比如说我用结构化的六面体网格来划分,一遍的尺寸为2,另一边的尺寸为3,这时候公共边界面该怎么处理,如果采用cooper的格式来划分这个网格,尺寸就是前面所说的,该怎么来做呢, 我用单独的两个块试过,就是在公共边界上采用interface的格式,但是由于与这个公共边界相邻的另一个边界也不得不用interface格式,结果导入fluent 的时候就说can not creat a bound loop,也不清楚这是什么问题。如果中间面两侧的面网格一致,可以直接在fluent中merge,如果不一致,可以设interface 网格的正交性是指三个方向上的网格边之间互相垂直的程度。一般而言,三维网格单元中,三个方向上的网格边之间的夹角越接近90度则质量越好。这一点在规则区域(例如正方形方腔)很容易实现,但对于流动区域比较复杂的问题则非常困难。但一般情况下,应当保证所有的网格单元内的网格边夹角大于10度,否则网格本

浅谈网格计算相关技术与应用(一)

浅谈网格计算相关技术与应用(一) 论文关键词]数据库浮点运算虚拟化资源共享论文摘要]论述网格计算的发展概况,在科学领域的应用范围,网格服务的特点以及在未来网络下场中的发展潜力。 一、网格计算的由来与发展 网格计算是伴随着互联网技术而迅速发展起来的,是将地理上分布的计算资源(包括数据库、贵重仪器等各种资源)充分运用起来,协同解决复杂的大规模问题,特别是解决仅靠本地资源无法解决的复杂问题,是专门针对复杂科学计算的新型计算模式。这种计算模式是利用互联网把分散在不同地理位置的电脑组织成一个“虚拟的超级计算机”,其中每一台参与计算的计算机就是一个“节点”,而整个计算机是由成千上万个“节点”组成的“一张网格”,所以这种计算方式叫网格计算。这样组织起来的“虚拟的超级计算机”有两个优势,一个是数据处理能力超强,另一个是能充分利用网上的闲置处理能力。简单地讲,网格是把整个网络整合成一台巨大的超级计算机,实现计算资源、存储资源、数据资源、信息资源、知识资源、专家资源的全面共享。 近几年,随着计算机计算能力的迅速增长,互联网络的普及和高速网络成本的大幅降低以及传统计算方式和计算机的使用方式的改变,网格计算已经逐渐成为超级计算发展的一个重要趋势。网格计算是一个崭新而重要的研究领域,它以大粒度资源共享、高性能计算和创新性应用为主要特征,必将成为21世纪经济发展的重要推动力。 二十世纪九十年代以来,世界各个国家,尤其是发达国家,建立了很多超级计算应用中心和工程研究中心,美国还制定了新一轮规划的先进计算框架(ACIP),发展面向21世纪的先进计算技术。我国在科技部的领导和主持下,经过专家组及相关单位的努力,作为我国高性能计算和信息服务战略性基础设施的国家高性能计算环境发展很快。在已经建成的5个国家级高性能计算中心的基础上,又于中南、西北等地建立了新的国家高性能计算中心,科技部加强了网络节点的建设,形成了以科学院为主体的计算网格。教育部也启动了网格计算工程,第一批12个网点正在建设之中,国家基金委也列出专项基金资助网格计算。 网格是借鉴电力网的概念出来的,网格的最终目的是希望用户在使用网格的计算能力时,就如同现在使用电力一样方便简单。 二、网格计算的应用 (一)分布式超级计算 网格计算可以把分布式的超级计算机集中起来,协同解决复杂大规模的问题。是大量的闲置计算机资源得到有效的组织,提高了资源的利用效率,节省了大量的重复投资,使用户的需求能够得到及时满足。 (二)高吞吐率计算机 网络技术能够十分有效地提高计算的吞吐率,它利用CPU周期窃取技术,将大量闲置计算机的计算资源集中起来,提供给对时间不太敏感的问题,作为计算资源的重要来源。 (三)数据密集型计算 数据密集型计算的问题求解通常同时产生很大的通讯和计算需求,需要网格能力才可以解决。网格已经在药物分子设计、计算力学、计算材料、电子学、生物学、核物理反映、航空航天等众多领域得到广泛应用。 (四)给予更广泛信息共享的人与人交互 网格的出现更急突破了人与人之间地理界线的限制,使得科技工作者之间的交流更加的方便,从某种程度上说,可以实现人与人之间的智慧共享。 (五)更广泛的资源贸易 随着大型机性能的提高和微机的更加普及,其资源的闲置问题越来越突出,网络技术可以有效地组织这些闲置资源,使得有大量的计算需求用户能够获得这些资源,而资源提供者的应

网格计算的应用及发展前景

[摘要]文章论述了网格计算的发展概况、在科学领域的应用范围、网格服务的特点以及在未来网络市场中的发展潜力。[关键词]数据库;浮点运算;虚拟化;资源共享现代社会由于大规模的科学和工程计算的需求,迫使计算机必须不断地提高其运算速度和存储容量。计算机的发展历史表明,为了达到更好的处理性能,除了必须提高系统的硬件的速度外,系统的结构也必须不断改进,特别是当元器件的速度达到极限时,后者将变成焦点问题。于是,超级并行机已经成为复杂科学计算领域的主宰。但以超级计算机为中心的计算模式存在明显的不足,而且目前正在经受挑战。超级计算机虽然是一台处理能力强大的“巨无霸”,但它的造价极其昂贵,通常只有一些国家级的部门,如航天、军事、气象等部门才有能力配置这样的设备。而随着人们在日常工作遇到的商业计算越来越复杂,人们迫切需要数据处理能力更强大的计算机,而超级计算机的价格显然阻止了它进入普通人的工作领域。于是,人们开始寻找一种造价低廉而数据处理能力超强的计算模式,最终科学家们经过努力找到了答案——Grid Computing(网格计算)。网格(grid)是一个集成的计算与资源环境,或者说是一个计算资源池。网格也是一种先进的计算基础设施(Advanced Computational Infrastructure,简称ACI),用于研究与工程应用相结合的项目,学科领域涉及超级计算技术、网络技术、数据库技术、中间件技术、并行算法和各种计算科学研究与应用技术,是一个综合性的跨学科高技术研究课题。网格计算(Grid Computing)是伴随着互联网技术而迅速发展起来的,是将地理上分布的计算资源(包括数据库、贵重仪器等各种资源)充分利用起来,协同解决复杂的大规模问题,特别是解决仅靠本地资源无法解决的复杂问题,是专门针对复杂科学计算的新型计算模式。这种计算模式是利用互联网把分散在不同地理位置的电脑组织成一个“虚拟的超级计算机”,其中每一台参与计算的计算机就是一个“节点”,而整个计算是由成千上万个“节点”组成的“一张网格”,所以这种计算方式叫网格计算。这样组织起来的“虚拟的超级计算机”有两个优势,一个是数据处理能力超强;另一个是能充分利用网上的闲置处理能力。简单地讲,网格是把整个网络整合成一台巨大的超级计算机,实现计算资源、存储资源、数据资源、信息资源、知识资源、专家资源的全面共享。近年来,随着计算机计算能力的迅速增长,互联网络的普及和高速网络成本的大幅度降低以及传统计算方式和计算机的使用方式的改变,网格计算已经逐渐成为超级计算发展的一个重要趋势。网格计算是一个崭新而重要的研究领域,它以大粒度资源共享,高性能计算和创新性应用为主要特征,必将成为21世纪经济发展的重要推动力。二十世纪九十年代以来,世界各个国家,尤其是发达国家,建立了很多超级计算应用中心(NCSA)和工程研究中心,美国还制定了新一轮规划的先进计算框架计划(ACIP),发展面向21世纪的先进计算技术. 我国在科技部的领导和主持下,经过306主题专家组及相关单位的努力,作为我国高性能计算和信息服务的战略性基础设施的国家高性能计算环境发展很快。在已建成的5个国家级高性能计算中心基础上,又于中南、西北等地建立了新的国家高性能计算中心,科技部并加强了网格节点的建设,形成以科学院为主体的计算网格。教育部也启动了网格计算工程,第一批12个网点正在建设中,国家基金委也列出专向基金资助网格计算。[!--empirenews.page--]网格是借鉴电力网(electric power grid)的概念出来的,网格的最终目的是希望用户在使用网格的计算能力时,就如同现在使用电力一样方便简单。在科学计算领域,网格计算可以在以下几个方面得到广泛应用:1.分布式超级计算。网格计算可以把分布式的超级计算机集中起来,协同解决复杂的大规模的问题。使大量闲置的计算机资源得到有效的组织,提高了资源的利用效率,节省了大量的重复投资,使用户的需求能够得到及时满足。2.高吞吐率计算。网格技术能够十分有效地提高计算的吞吐率,它利用CPU的周期窃取技术,将大量空闲的计算机的计算资源集中起来,提供给对时间不太敏感的问题,作为计算资源的重要来源。3.数据密集型计算。数据密集型的问题的求解往往同时产生很大的通讯和计算需求,需要网格能力才可以解决。网格可以药物分子设计、计算力学、计算材料、电子学、生物学、核物理反应、航空航天等众多的领域得到

相关文档
相关文档 最新文档