文档库 最新最全的文档下载
当前位置:文档库 › 现代科学分析方法重点及及解答

现代科学分析方法重点及及解答

现代科学分析方法重点及及解答
现代科学分析方法重点及及解答

现代科学分析方法重点及及解答

1.紫外光谱,荧光光谱在材料研究中的应用

(1)分子内的电子跃迁有哪几种,吸收最强的跃迁是什么跃迁?

形成单键的σ电子;形成双键的π电子;未成对的孤对电子n电子。成键轨道σ、π;反键轨道σ*、π* ;非键轨道n 。

1)、?-?* 跃迁

它需要的能量较高,一般发生在真空紫外光区。在200 nm左右,其特征是摩尔吸光系数大,为强吸收带。

2)、n-?*跃迁

实现这类跃迁所需要的能量较高,其吸收光谱落于远紫外光区和近紫外光区

3)、π→π*跃迁

π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所需能量比σ→σ*跃迁

小,若无共轭,与n→σ*跃迁差不多。200nm左右,吸收强度大,强吸收。

4)、n→π*

跃迁n电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所需能量较小,吸收峰在200 ~ 400 nm左右,吸收强度小,弱吸收

吸收最强的跃迁是:π→π*跃迁

(2)紫外可见吸收光谱在胶体的研究中有重要作用,请举出三个例子来说明,并结合散射现象来讨论二氧化钛胶体和粉末漫反射光谱的差异。

举例:1)、胶体的稳定性,尤其是稀释后的稳定性;

2)、胶粒对可见光的散射;

3)、测定消光(包括吸收、散射、漫反射等对光强度造成的损失)稀释条件下,胶粒尺寸小于光波长的1/20,瑞利散射可忽略。

4)、估算晶粒的大小。

5)、尺寸效应,会发生吸收边的蓝移或是红移,可以用来像是CdS和CdSe的量子点。

差异:当测定二氧化钛的溶胶时,按晶粒尺寸的不同,分为两种情况:

1)当d<λ/20时,瑞利散射可以忽略。

2)当d>λ/20时,散射就会十分明显,这样获得是一个消光光谱,而不是吸收光谱,无法测得λonset。用粉末漫反射光谱可以克服上述缺点,得到一个较好的吸收光谱。(3)什么是荧光、磷光、光致发光和化学发光?对应的英文名称分别是什么?

荧光(Fluorescence):从激发态的最低振动能级返回到基态,不通过内部转换而是光辐射失活,则称为荧光。由于一部分能量通过振动能级变化以热能形式放出,所以发射光的波长比吸收光的波长长。

磷光(Phosphorescence):在不同多重态之间发生的无辐射跃迁过程称为系间窜跃。由从激发态的多重态经过振动弛豫到低振动能级,再返回到基态的光辐射跃迁称为磷光。

光致发光(Photoluminescence, PL):是物质吸收光能后发射冷光的现象,称为光致发光。

化学发光(Chemiluminescence):利用化学能源如化学反应得到激发态分子,它在跃迁到基态时产生的发光现象称为化学发光。

2.拉曼光谱分析与材料分析

3.拉曼光谱与红外光谱的本质区别是什么?

本质区别:红外光谱的产生是由于吸收光的能量,引起分子中偶极矩改变的振动;拉曼光谱的产生是由于单色光照射后产生光的综合散射效应,引起分子中极化率改变的振动。红外光谱是吸收光谱,拉曼光谱是散射光谱。

(2)为什么拉曼光谱技术通常只检测stocks线?反stocks线可以提供什么信息?

根据波尔兹曼定律,在室温下,分子绝大多数处于振动能级基态,由于振动能级间距还是比较大的,因此,所以斯托克斯线的强度远远强于反斯托克斯线。随温度升高,反斯托克斯线的强度增加。拉曼光谱仪一般记录的都只是斯托克斯线。

(3)与红外光谱相比,拉曼光谱的优越性有哪些?

(1)它适于分子骨架的测定,提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。(2)不受水的干扰。(3)拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。(4)拉曼光谱的谐波和合频带都不是非常强,一般都比红外光谱简单,重叠带很少见到。(5)拉曼光谱使用激

光作为光源使其相当易于探测微量样品,如表面、薄膜、粉末、溶液、气体和许多其他类型的样品。(6)共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强103到104倍。

核磁共振与材料分析

1.核磁共振产生的基本条件是什么?为什么 12C 没有核磁共振信号?

核磁共振发生的基本条件:磁性核(I≠0)静磁场与原子核能级裂分匹配的射频 12C核自旋量子数 I=0

2.解释化学位移的含义和表示方法。

一般地,把分子中同类磁核,因化学环境不同而产生的共振频率的变化量,称为

化学位移。观测核与标样共振频率之差: δ=[(νs-ν

R )/ν

R

]×106

4.在 1H-NMR 谱中,化学位移较大的磁核之间的偶合的一般规则是

什么?

由于相邻原子核之间的偶合而产生的谱带裂分数遵循2nI+1规律。对于1H,13C 等原子核,I=1/2,则变成n+1规律。

如果观测的质子相邻几组化学等价的原子核n

1,n

2

,n

3

, …,且J相等, 则该质子

裂分成( n

1+n

2

+n

3

+…,)+1重峰。在裂分的多重峰中,各峰的相对强度之比等

于二项式(a+b)n展开式各项系数之比。

4.从溶液1H NMR 谱能得到哪些信息?

(1)吸收峰的组数判断分子中氢的种类;②从化学位移判断分子中基团的类型;

③从峰的积分面积计算不同基团中氢的相对数目;④从偶合裂分个数和偶合常数判断各基团的连接关系。

5.解释 CP/MAS/DD 方法中CP、MAS、DD 的含义,为什么利用CP/MAS/DD方法能够达到高分辨的目的?CP/MAS/DD方法的优点和缺点是什么?

天然丰度低,灵敏度比较低,交叉极化(Cross-polarisation, CP )能够提高灵敏度 CP的优点和缺点?经过交叉极化之后,13C信号最多可以增加4倍?弛豫延迟时间只需要是1H T1的3-5倍,?谱图一般不具有定量价值

5.红外光谱分析与材料研究

(1)红外光谱图可以分成哪几个区?各区吸收峰能分析哪些主要基团?红外光谱分析有哪些主要制样方法?

红外光谱图可以分成两个大区,4个小区。两个大区:官能团特征频率区4000~1500 cm-1和指纹区1500~400 cm-1。4个小区:氢键区4000~2500 cm-1,主要分析C-H、O-H、N-H的伸缩振动(1分) 叁键区:2500~2000 cm-1, 主要分析C≡C、C≡N的伸缩振动(1分) 双键区:2000~1500 cm-1,主要分析C=C、C

=O、苯的伸缩振动(1分) 单键区:1500~400 cm-1,主要分析C-C、C-O、C -N的伸缩振动;C-H、O-H、N-H的弯曲振动(1分)

(2)主要制样方法:

压片法(适用于能磨成粉的样品)

涂膜法(适用于能溶解的样品)

溶液法(适用于能溶解的样品)

薄膜法(溶液成膜,热压成膜,超薄切片)

全反射法(适用于橡胶、表面涂层、薄膜等样品)

(3)红外光谱的测定原理是什么?

利用红外光谱对物质分子进行的分析和鉴定。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。分子越大,红外谱带也越多。

6.5.TEM与SEM研究材料的微观结构

1. 分别画出简单立方、面心立方和体心立方[112]取向的电子衍射图。

2. 假定衍射斑点形成正方形,对下面的衍射图进行标定。

面心立方体心立方简单立方

6. 材料的力学性能与服役性能

1. 叙述变形在材料加工和使用过程中给我们带来哪些益处和问题?益处:材料的变形使其易于成型,对于加工有很大的益处。此外,金属材料可以通过变形达到硬化、强化的目的。

问题:变形使得制品的形状发生变化,限制了其使用期限,也会使其力学性能受到一定程度的影响.

2. 材料的强化方法有哪些?举出一种金属、陶瓷和高分子三种材料通用的强化方法。

材料常用的强化方法:固溶强化、热处理强化、细晶强化、形变强化、相变强化(沉淀强化、马氏体强化)、晶界强化、弥散强化、时效强化、纤维强化、辐照强化、综合强化(如:固溶强化十形变强化、结晶强化+沉淀强化、马氏体强化+表面形变强化、固溶强化+沉淀强化)

金属、陶瓷和高分子三种材料通用的强化方法:分散强化(弥散强化)、纤维强化。

3. MSP 小样品试验法可以测试哪些力学性能?请列举出3种。 MSP 强度(屈服和断裂)、弹性模量、疲劳强度及剩余寿命。(常温)

MSP 高温强度、韧脆转变温度和蠕变性能参数。(高温)

力电耦合场下的断裂强度、疲劳强度。(电场)

7. 流体的流变性能

1、简述流变体的分类,写出其应力应变关系?

欧几里德刚体:(也称绝对刚体)粘度趋向于无穷大时,在外力作用下不发生任何形变。 帕斯卡流体:粘度趋向于0,是超流体。

虎克体:γσ

k = 高弹体:)1(λ

λσ

-=nRT ——(n 为交联密度;R 为气体常数;T 为温度;λ为拉伸比) 粘弹体:dt d dt d γησλσ=+ (Maxwell 模型), dt d E γησγ+= (开尔文模型) 牛顿流体:ηλσ=

非牛顿流体:γηγγγσ

a n n K K ===-)(1 n>1,切力增稠;n=1,牛顿流体; n<1,切力变稀

2、简述高聚物流体的流变特性?

(1)高粘度和粘度形变速率的依赖性

(2)存在法向应力效应

(3)存在力学松弛现象

(4)存在拉伸粘度及可纺性

3、简述影响高聚物流动特性的主要因素?

(1)剪切速率的影响:随着剪切速率的增大,粘度开始不变,当剪切速率达到某一临界值时,粘度开始变小,出现切力变稀。随着剪切速率的继续增加,当达到另一临界值时,粘度不再变化,趋向于∞η

(2)分子量的影响:分子量变大,粘度变大。

(3)分子量分布的影响:分子量分布宽则在低剪切应力下,开始出现切力变稀现象。

(4)温度的影响: T A e /=η(表观粘度)

时温等效关系(WLF 方程))

(6.51)(44.17log g g r T T T T a -+--= 8. DSC 和DMA 在材料分析中的应用

1.简述差示扫描量热法(DSC )的原理,列举DSC 在材料研究中的应用,玻璃化转变温度如何获得?

答:示差扫描量热法(DSC )指在相同的程控温度变化下,用补偿器测量样品与参比物之间的温差保持为零所需热量对温度T 的依赖关系,它在定量分析方面的性能明显优于DTA 。DSC 谱图的的纵坐标为单位质量的功率(mW/g)。

与DTA 相比,DSC 对热效应的相应更快、更灵敏、峰的分辨率更好,更有利于定量分析。示差热分析利用了装置在试样和参比物下面的两组补偿加热丝,当试样在加热过程中由于热反应而出现温度差△T 时,通过差热放大和差动热量补偿使流入补偿丝的电流发生变化。

当试样吸热时,补偿使试样一边的电流(Is)立即增大;反之,在试样放热时则是参比物一边的电流增大,直至两边热量平衡,温度△T 差消失为止。

试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,补偿的功率则反应了对应转变发生的程度,能定量表达。

DSC 在材料研究中的应用

● 聚合物的玻璃化转变及共混相容性的研究

● 聚合物和小分子化合物结晶和熔融行为

● 氢键相互作用及凝胶转变温度

● 聚合物的结晶温度、结晶度

● 结晶动力学分析

玻璃化转变受样品聚集态结构的影响,表现在转变温度的高低和转变锋的强弱(明显或不明显)。

我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。 目前用于玻璃化温度测定的热分析方法主要为差热分析(DTA )和差示扫描量热分析法(DSC )。DSC 具体指,当温度逐渐升高,通过高分子聚合物的玻璃化转变温度时,DSC 曲线上的基线向吸热方向移动。假设A 点是开始偏离基线的点。将转变前后的基线延长,两线之间的垂直距离 为阶差ΔJ ,在ΔJ/2 处可以找到C 点,从C 点作切线与前基线相交于B 点,B 点所对应的温度值即为玻璃化转变温度Tg 。

1. DSC 测试对样品的要求?影响测试结果的因素有哪些?

答:1)样品量

样品量少使峰尖锐,分辨率高;样品多则造成峰大而宽,相邻峰发生重叠,峰位向高温漂移。在仪器灵敏度许可的情况下,样品尽可能少,5~15mg 。但考虑测定Tg 转变时热容变化小,样品可适当多一些。

2)升温速率

升温速率过快,使转变温度向高温移动,造成数据偏向高温;升温速率过慢降低测试效率,这又造成高聚物链的热转变和松弛缓慢而使热转变不太明显,特别是玻璃化转变。通常是10℃/min 的升温速率。

3)试样尺寸

样品的粘度对表面反应或受扩散控制的反应影响较大,粘度小使峰移向低温。因此最好剪碎样品。

4)样品中的水分子及小分子

样品中残留的水份及小分子有利于高聚物分子链的松弛,使测定的Tg 偏低。

5)气氛

可以是静态或动态的,可以是参加反应的。通常采用30ml/min 的氮气流,避免样品的热氧化。

4.从DMA 图谱如何识别共混物的相容性?DMA 损耗峰的强度和宽窄表示相态结构的什么特点?

共混物不相容:存在两个Tg ,各组分的Tg 保持不变;

部分相容:存在两个Tg ,组分中较低Tg 想高温移动,原来较高Tg 向低温移动; 完全相容:只有一个Tg 。

DMA 损耗峰窄:表示结晶区与无定形区的无过渡边界明显;

DMA 损耗峰宽:表示结晶区与无定形区有过渡区域,边界不明显。

9. 材料的电性能(导电,介电)

1. 四探针法测电导率的原理?

四探针法测量原理图

参考答案1:当1、2、3、4四根金属探针排成一直线时,并以一定压力压在半导体材料上,在1、4两处探针间通过电流I ,则2、3探针间产生电位差V 。

材料电阻率 探针系数 式中:S 1、S 2、S 3分别为探针1与2,2与3,3与4之间距,用cm 为单位时的值,S 1=S 2=S 3=1mm. 每个探头都有自己的系数。C ≈6.28±0.05单位cm 。 若电流取I = C 时,则ρ=V ,可由数字电压表直接读出。

C I V =ρ121223

20π1111C S S S S S S =+--++

参考答案2:若四探针在同一平面的同一直线上,其间距分别为S 1、S 2、S 3,且S 1=S 2=S 3=S 时,则 这就是常见的直流等间距四探针法测电阻率的公式。

2.测量液体电介质介电常数的原理?

电极在空气中测量 电极在介质中测量

:

液体电介质介电常数, 3.电化学测试中,3电极体系是什么?它和2电极体系的区别?如何将3电极体系变成2电极?

三电极体系含两个回路,一个回路由工作电极和参比电极组成,用来测试工作电极的电化学反应过程,另一个回路由工作电极和辅助电极组成,起传输电子形成回路的作用。三电极指的是工作电极、参比电极和对电极,工作电极又称为研究电极,顾名思义就是我们所要考察的电极;参比电极是用来测量工作电极电势的;对电极又称为辅助电极,只是用来通过电流的.两回路指的是极化回路和测量回路

4.循环伏安法测试原理?

1.若电极反应为O +e←→R ,反应前溶液中只含有反应粒子O 、且O 、R 在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如附图所示。

2.当电极电势逐渐负移到(φ平)附近时,O 开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O 的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O 的表面浓度下降到近于零,电流也增加到最大值Ipc ,然后电流逐渐下降。当电势达到(φr)后,又改为反向扫描。

3.随着电极电势逐渐变正,电极附近可氧化的R 粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R 的方向发展。于是R 开始被氧化,并且电流增大到峰值氧化电流Ipa ,随后又由于R 的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线”。

5.如何利用电化学方法测有机物的HOMO/LUMO 能级?

标准氢电极电位相对于真空能级为-4.5V ,计算HOMO 能级的公式: E HOMO = -(4.5+e E ox ) ,相对于SCE, E HOMO = -(4.74+e E ox )。

采用三电极体系:对电极用铂丝, 工作电极用面积固定的铂片, 参比电极用SCE, 通过盐桥和鲁金毛细管与工作电极相连接. E HOMO = -(4.74+e E ox ) =-(4.74+1.0) eV=

S

I V S S S S S S I V ππρ2)1111(223133221123=++-+-?=-201

20221221111f f f f εr --=LC

21f π=2222041f k Lf C C C ==+=π分201

220220102f k f k C C -=-2122220102r f k f k )C C (ε-=-

-5.74 eV 。

再结合光谱或能谱法测得的带隙Eg,间接计算出LUMO能级数值。

1 粉末样品为什么要尽量细碎?纤维样品要整齐平直?

2 X衍射仪的基本结构及原理。

一束单色X射线入射到晶体时,由于晶体是由原子有规律排列成的晶胞所组成。由不同原子衍射的X射线相互干涉迭加,可在特殊的方向上产生强X射线衍射。衍射方向与晶胞的形状与大小有关,衍射强度则与原子在晶胞中排列方式有关。

基本原理:

每种结晶物质都有特定的结构参数,这些参数均影响这X射线衍射线的位置、强度。

位置:晶胞的形状、大小,即面间距d。

强度:晶胞内原子的种类、数目、位置。

尽管物质的种类多种多样,但却没有两种物质的衍射图是完全相同的。因此,一定物质的衍射线条的位置、数目、及其强度,就是该种物质的特征,当试样中存在两种或以上的物质时,它们的衍射花样,即峰,会同时出现,但不会干涉,即是衍射线条的简单叠加。根据此原理就可以从混合物的衍射花样中将物相一个一个地寻找出来。

当一束单色X射线入射到晶体时,由于晶体是由原子有规律排列成的晶胞所组成,而这些有规律排列的原子间的距离与入射X射线波长具有相同的数量级。故由不同原子衍射的X 射线相互干涉叠加,可在某些特殊的方向上产生强的X射线衍射。

3 晶面指数的意义及表征。

晶面指数通常用(hkl)表示。

1. 确定平面与三个坐标轴上的交点,h,k,l三个数分别对应于a,b,c三晶轴方向。平面不能通过原点,如果平面通过原点,应移动原点。

2. 取交点坐标的倒数。如晶面与相应晶轴平行,则交点为 ,倒数为“0”。例(hk0)晶面平行c轴;(h00)平行于b,c轴。

3. (hkl)中括号代表一组互相平行、面间距相等的晶面。

4. 晶面指数不允许有公约数,即hkl三个数互质。

5. 若某晶面与晶轴相截在负方向,则相应指数上加一横。

4 高分子结晶的特点。

3.1.1 晶胞由链段构成

3.2.2 折叠链(伸直链):高分子链在大多数情况下,以折叠链片晶形态构成高分子晶体。

3.3.3 结晶不完善:所谓的结晶聚合物是部分结晶或称半结晶聚合物(结晶度常常在50%以下)晶格畸变、缺陷。合成聚合物的单晶尺寸小于0.1mm,仅适用EM观察。

5 粉末法和纤维法样品的衍射花样的基本特征。

在粉末方法中,样品是大量任意取向的很小晶体。多晶团粒形成一个圆柱,其直径比入射X 射线束的直径小。衍射图是一系列不均匀的分立锥形(截面在照相底片上),其距离通过主要的晶面测定。

6 测试时入射光强、步宽、扫描速度的影响。

8.扫描速度的确定

常规物相定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定,

微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。

7 2θ角、方位角、子午线、赤道线、晶面间距、晶粒尺寸、取向度、结晶度......

结晶度是表征聚合物材料中,结晶与非晶在质量分率或体积分率上大小的直观数值。

现代仪器分析简答

1、现代仪器分析法有何特点?它的测定对象与化学分析法有何不同? 分析速度快,自动化程度高,特别适用于大批量分析; 灵敏度高,试样用量少,适合微量和痕量组分; 用途范围广,能适合各种分析的要求;选择性高 2、评价一种仪器分析方法的技术指标是什么? 主要技术指标: 1、精密度; 2、准确度; 3、标准曲线; 4、灵敏度; 5、检出限; 6、选择性 3、影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度 △ fN 多普勒变宽和压力变宽。 其中最主要的 是多普勒变宽和洛伦兹变宽。 4、原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。 光源的作用:发射待测元素的特征谱线。 原子化器的作用:将试样中的待测元素转化为气态的能吸收特征光的基态原子。 分光系统的作用:把待测元素的分析线与干扰线分开,使检测系统只能接收分析线。 检测系统的作用: 把单色器分出的光信号转换为电信号, 经放大器放大后以透射比或吸光度 的形式显示出来。 5、与火焰原子化器相比,石墨炉原子化器有哪些优缺点? 答:与火焰原子化器相比,石墨炉原子化器的优点有:原子化效率高, 气相中基态原子浓度 比火焰原子化器高数百倍,且基态原子在光路中的停留时间更长,因而灵敏度高得多。 缺点:操作条件不易控制,背景吸收较大,重现性、准确性均不如火焰原子化器,且设备复 杂,费用较高。 6、测定植株中锌的含量时,将三份 1.00g 植株试样处理后分别加入 0.00mL 、 1.00mL 、 2.00mL0.0500mol?L-1ZnCl2 标准溶液后稀释定容为 25.0mL ,在原子吸收光谱仪上测定吸光 度分别为0.230、0.453、0.680,求植株试样中锌的含量( 3.33 X10-3g.g-1 )。 解:设植株试样中锌的含量为 Cx mol.L-1 ??? A1=KCx A2=K(25 X 10-3Cx+1.00 0X .0500 A3=K(25 X 10-3Cx+2.00 0X .0500 解之得 Cx=2X 10-3 mol.L-1 7、 电子跃迁有哪几种类型?哪些类型的跃迁能在紫外及可见光区吸收光谱中反映出来? 答:电子跃迁的类型有四种: 6^6 * n 宀6* n ^n* n^n 。* 其中n ~6* n ~n* n^n 的跃迁能在紫外及可见光谱中反映出来。 8、何谓发色团和助色团?举例说明。 答:发色团指含有不饱和键,能吸收紫外、可见光产生 n ^n*或 n^n 跃迁的基团。例如: > C=C V, — C = C — ,> C=O , — N=N —, — COOH 等。 助色团:指含有未成键 n 电子 本身不产生吸收峰 但与发色团相连能使发色团吸收峰向 长波方向移动 吸收强度增强的杂原子基团。 例如: —NH2 —OH —OR —SR —X 等。 ?/ A=KC X 65.4 X 10-3)/25 1X 0-3 X 65.4 X 10-3) /25 10X -3 ?植株试样中锌的含量为 3.33X 10-3g.g-1

材料现代分析方法试题2(参考答案)

材料现代分析方法试题4(参考答案) 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片 答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。 选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片, 以滤掉K β线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料。 以分析以铁为主的样品,应该选用Co或Fe靶的X射线管,同时选用Fe和Mn 为滤波片。 2.试述获取衍射花样的三种基本方法及其用途? 答:获取衍射花样的三种基本方法是劳埃法、旋转晶体法和粉末法。劳埃法主要用于分析晶体的对称性和进行晶体定向;旋转晶体法主要用于研究晶体结构;粉末法主要用于物相分析。 3.原子散射因数的物理意义是什么?某元素的原子散射因数与其原子序数有何关系? 答:原子散射因数f 是以一个电子散射波的振幅为度量单位的一个原子散射波的振幅。也称原子散射波振幅。它表示一个原子在某一方向上散射波的振幅是一个电子在相同条件下散射波振幅的f倍。它反映了原子将X射线向某一个方向散射时的散射效率。 原子散射因数与其原子序数有何关系,Z越大,f 越大。因此,重原子对X射线散射的能力比轻原子要强。 4.用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成什么图案?为摄取德拜图相,应当采用什么样的底片去记录? 答:用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成一组锥心角不等的圆锥组成的图案;为摄取德拜图相,应当采用带状的照相底片去记录。

材料现代分析方法练习与答案修改

一、选择题 1.用来进行晶体结构分析的X 射线学分支是( B ) 射线透射学;射线衍射学;射线光谱学; 2. M 层电子回迁到K 层后,多余的能量放出的特征X 射线称( B ) A. K α; B. K β; C. K γ; D. L α。 三、填空题 1. 当X 射线管电压超过临界电压就可以产生 连续 X 射线和 特征 X 射线。 2. X 射线与物质相互作用可以产生 俄歇电子 、 透射X 射线 、 散射X 射线 、 荧光X 射线 、 光电子 、 热 、 、 。 3. X 射线的本质既是 波长极短的电磁波 也是 光子束 ,具有 波粒二象 性 性。 5. 短波长的X 射线称 ,常用于 ;长波长的X 射线称 ,常用于 。 一、选择题 1.有一倒易矢量为*+*+*=*c b a g 22,与它对应的正空间晶面是( )。 A. (210); B. (220); C. (221); D. (110);。 2.有一体心立方晶体的晶格常数是,用铁靶K α(λK α=)照射该晶体能产生( )衍射 线。 A. 三条; B .四条; C. 五条;D. 六条。 3.一束X 射线照射到晶体上能否产生衍射取决于( )。 A .是否满足布拉格条件; B .是否衍射强度I ≠0; C .A+B ; D .晶体形状。 4.面心立方晶体(111)晶面族的多重性因素是( )。 A .4; B .8; C .6; D .12。 二、填空题 1. 倒易矢量的方向是对应正空间晶面的 ;倒易矢量的长度等于对应 。 2. 只要倒易阵点落在厄瓦尔德球面上,就表示该 满足 条件,能产生 。 3. 影响衍射强度的因素除结构因素、晶体形状外还 有 , , , 。 4. 考虑所有因素后的衍射强度公式为 ,对于粉末 多晶的相对强度为 。 5. 结构振幅用 表示,结构因素用 表示,结构因素=0时没有衍射我们称 或 。对于有序固溶体,原本消光的地方会出现 。 三、选择题 1.最常用的X 射线衍射方法是( )。 A. 劳厄法; B. 粉末多法; C. 周转晶体法; D. 德拜法。 2.德拜法中有利于提高测量精度的底片安装方法是( )。 A. 正装法; B. 反装法; C. 偏装法; D. A+B 。 3.德拜法中对试样的要求除了无应力外,粉末粒度应为( )。 A. <325目; B. >250目; C. 在250-325目之间; D. 任意大小。 4.测角仪中,探测器的转速与试样的转速关系是( )。 A. 保持同步1﹕1 ; B. 2﹕1 ; C. 1﹕2 ; D. 1﹕0 。 5.衍射仪法中的试样形状是( )。

材料现代分析方法试题及答案1

一、单项选择题(每题 2 分,共10 分) 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 1.透射电镜中如何获得明场像、暗场像和中心暗场像? 答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。 2.简述能谱仪和波谱仪的工作原理。 答:能量色散谱仪主要由Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识X 射线,这些X 射线被Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。最后得到以能量为横坐标、强度为纵坐标的X 射线能量色散谱。 在波谱仪中,在电子束照射下,样品发出所含元素的特征x 射线。若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的X 射线就会发生强烈衍射。波谱仪利用晶体衍射把不同波长的X 射线分开,即不同波长的X 射线将在各自满足布拉格方程的2θ方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的X射线能量色散谱。 3.电子束与试样物质作用产生那些信号?说明其用途。 (1)二次电子。当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量(约30~50 电子伏特),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。 (2)背散射电子。背散射电子是指被固体样品原子反射回来的一部分入射电子。既包括与样品中原子核作用而形成的弹性背散射电子,又包括与样品中核外电子作用而形成的非弹性散射电子。利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬度,进行定性成分分析。 (3)X 射线。当入射电子和原子中内层电子发生非弹性散射作用时也会损失其部分能量(约

材料现代分析方法北京工业大学

材料现代分析方法北京工业大学 篇一:13103105-材料现代分析方法 《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分:3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,20XX年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,20XX 年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出

版社,20XX年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,20XX年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,20XX年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,20XX年。 [7]《材料结构分析基础》,余鲲编,科学出版社,20XX年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。 b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。 e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条非自吸谱线作为内标线,两条谱线构成定量分析线对。 通常为什么不用原子吸收光谱法进行物质的定性分析? 答:原子吸收光谱法是定量测量某一物质含量的仪器,是定量分析用的,不能将物质分离,因此不能鉴定物质的性质,因此不能。。。。 原子吸收光谱法,采用峰值吸收进行定量分析的条件和依据是什么? 为了使通过原子蒸气的发射线特征(极大)频率恰好能与吸收线的特征(极大)频率相一致,通常用待测元素的纯物质作为锐线光源的阴极,使其产生发射,这样发射物质与吸收物质为同一物质,产生的发射线与吸收线特征频率完全相同,可以实现峰值吸收。 朗伯比尔定律的物理意义是什么?偏离朗伯比尔定律的原因主要有哪些? 物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。 影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度Δf N、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。 原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么? 答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。定量的依据:A=Kc 原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

材料现代分析方法练习题及答案

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

材料现代分析方法试题及答案1

《现代材料分析方法》期末试卷1 一、单项选择题(每题 2 分,共10 分) 1.成分和价键分析手段包括【b 】 (a)WDS、能谱仪(EDS)和XRD (b)WDS、EDS 和XPS (c)TEM、WDS 和XPS (d)XRD、FTIR 和Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b)NMR、FTIR 和WDS (c)SEM、TEM 和STEM(扫描透射电镜)(d)XRD、FTIR 和Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和CO 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)

4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题 5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。 以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。 3.在核磁共振谱图中出现多重峰的原因是什么? 多重峰的出现是由于分子中相邻氢核自旋互相偶合造成的。在外磁场中,氢核有两种取向,与外磁场同向的起增强外场的作用,与外磁场反向的起减弱外场的作用。根据自选偶合的组合不同,核磁共振谱图中出现多重峰的数目也有不同,满足“n+1”规律 4.什么是化学位移,在哪些分析手段中利用了化学位移? 同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。在XPS、俄歇电子能谱、核磁共振等分析手段中均利用化学位移。 5。拉曼光谱的峰位是由什么因素决定的, 试述拉曼散射的过程。 拉曼光谱的峰位是由分子基态和激发态的能级差决定的。在拉曼散射中,若光子把一部分能量给样品分子,使一部分处于基态的分子跃迁到激发态,则散射光能量减少,在垂直方向测量到的散射光中,可以检测到频率为(ν0 - Δν)的谱线,称为斯托克斯线。相反,若光子从样品激发态分子中获得能量,样品分子从激发态回到基态,则在大于入射光频率处可测得频率为(ν0 + Δν)的散射光线,称为反斯托克斯线 四、问答题(10 分) 说明阿贝成像原理及其在透射电镜中的具体应用方式。 答:阿贝成像原理(5 分):平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。在透射电镜中的具体应用方式(5 分)。利用阿贝成像原理,样品对电子束起散射作用,在物镜的后焦面上可以获得晶体的衍射谱,在物镜的像面上形成反映样品特征的形貌像。当中间镜的物面取在物镜后焦面时, 则将衍射谱放大,则在荧光屏上得到一幅电子衍射花样;当中间镜物面取在物镜的像面上时,则将图像进一步放大,这就是电子显微镜中的成像操作。 五、计算题(10 分) 用Cu KαX 射线(λ=0.15405nm)的作为入射光时,某种氧化铝的样品的XRD 图谱如下,谱线上标注的是2θ的角度值,根据谱图和PDF 卡片判断该氧化铝的类型,并写出XRD 物相分析的一般步骤。 答:确定氧化铝的类型(5 分) 根据布拉格方程2dsinθ=nλ,d=λ/(2sinθ) 对三强峰进行计算:0.2090nm,0.1604nm,0.2588nm,与卡片10-0173 α-Al2O3 符合,进一步比对其他衍射峰的结果可以确定是α-Al2O3。 XRD 物相分析的一般步骤。(5 分) 测定衍射线的峰位及相对强度I/I1: 再根据2dsinθ=nλ求出对应的面间距 d 值。 (1) 以试样衍射谱中三强线面间距d 值为依据查Hanawalt 索引。

传统分析方法与现代仪器分析法的比较

传统分析方法与现代仪器分析法的比较 【摘要】随着现代科技的发展,传统的化学分析方法也在与时俱进,逐步与现代科技相融合、渗透,从而使化学分析的效率比以往更加富有成效,分析的精密度、准确度更加优异,分析结果也使人更加放心,通过氯化物的传统滴定方法与间断式流动分析仪仪器法的对比,得出传统法与仪器法的各自优缺点,仅作参考。 【关键词】滴定法;仪器法;氯化物 1 实验原理比较 氯化物广泛存在于天然水中,传统测定方法是滴定法,在中性或弱碱性溶液中,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银,氯离子首先被完全沉淀,然后铬酸根才以铬酸银的形式沉淀出来,产生砖红色物质,指示氯离子滴定的终点。 目前分析氯化物的仪器主要是间断化学分析仪、流动注射分析仪、离子色谱仪等,以间断化学分析仪为例,Smartchem140全自动化学分析仪工作原理实际上是经典的比色法,试剂和样品被精确地加入反应槽,搅拌混匀,反应,然后反应混合物被传送到高精度比色计测量吸光度。 2 仪器与试剂比较 滴定法所用实验器材 锥形瓶;棕色酸式滴定管; NaCI、AgNO3、K2CrO4、NaOH(均为分析纯); 间断化学分析仪所用实验器材 比色杯、流通池、0.45微米滤膜过滤装置(上海摩速有限公司) 3 样品测定比较 滴定法首先取150mL水样置于锥形瓶中,另外取一个锥形瓶加入50mL蒸馏水作空白,加入1mL K2CrO4指示液,用AgNO3、标准溶液滴定至砖红色沉淀刚刚出现即为终点,整个实验过程都是手工操作,费时费力,分析一个水样耗时十几分钟,不适合大批量样品分析。 间断化学分析仪Smartchem-140采用目前世界上最先进的第二代全自动间断化学分析技术,吸光率反应终点采取了比色管直读式,样品与试剂在独立的

现代材料分析方法试题及答案

1. X射线衍射的几何条件是d、θ、λ必须满足什么公式?写出数学表达式,并说明d、θ、λ的意义。(5分)答:. X射线衍射的几何条件是d、θ、λ必须满足布拉格公式。(1分)其数学表达式:2dsinθ=λ(1分)其中d是晶体的晶面间距。(1分)θ是布拉格角,即入射线与晶面间的交角。(1分)λ是入射X 射线的波长。(1分) 4. 二次电子是怎样产生的?其主要特点有哪些?二次电子像主要反映试样的什么特征?用什么衬度解释?该衬度的形成主要取决于什么因素?(6分) 答:二次电子是单电子激发过程中被入射电子轰击出的试样原子核外电子。(1分) 二次电子的主要特征如下: (1)二次电子的能量小于50eV,主要反映试样表面10nm层内的状态,成像分辨率高。(1分) (2)二次电子发射系数δ与入射束的能量有关,在入射束能量大于一定值后,随着入射束能量的增加,二次电子的发射系数减小。(1分) (3)二次电子发射系数δ和试样表面倾角θ有关:δ(θ)=δ0/cosθ(1分) (4)二次电子在试样上方的角分布,在电子束垂直试样表面入射时,服从余弦定律。(1分) 二此电子像主要反映试样表面的形貌特征,用形貌衬度来解释,形貌衬度的形成主要取决于试样表面相对于入射电子束的倾角。(1分) 2. 布拉格角和衍射角: 布拉格角:入射线与晶面间的交角,(1.5 分) 衍射角:入射线与衍射线的交角。(1.5 分) 3. 静电透镜和磁透镜: 静电透镜:产生旋转对称等电位面的电极装置即为静电透镜,(1.5 分) 磁透镜:产生旋转对称磁场的线圈装置称为磁透镜。(1.5 分) 4. 原子核对电子的弹性散射和非弹性散射: 弹性散射:电子散射后只改变方向而不损失能量,(1.5 分) 非弹性散射:电子散射后既改变方向也损失能量。(1.5 分) 二、填空(每空1 分,共20 分) 1. X 射线衍射方法有劳厄法、转晶法、粉晶法和衍射仪法。 2.扫描仪的工作方式有连续扫描和步进扫描两种。 3. 在X 射线衍射物相分析中,粉末衍射卡组是由粉末衍射标准联合 委员会编制,称为JCPDS 卡片,又称为PDF 卡片。 4. 电磁透镜的像差有球差、色差、轴上像散和畸变。 5.透射电子显微镜的结构分为光学成像系统、真空系统和电气系统。 1. X射线管中,焦点形状可分为点焦点和线焦点,适合于衍射仪工作的是线焦点。 2. 在X 射线物象分析中,定性分析用的卡片是由粉末衍射标准联合委员会编制,称为JCPDS 卡片,又称为PDF(或ASTM) 卡片。 3. X射线衍射方法有劳厄法、转晶法、粉晶法和衍射仪法。 4. 电磁透镜的像差有球差、色差、轴上像散和畸变。 5. 电子探针是一种显微分析和成分分析相结合的微区分析。 二、选择题(多选、每题4 分) 1. X射线是( A D ) A. 电磁波; B. 声波; C. 超声波; D. 波长为0.01~1000?。 2. 方程2dSinθ=λ叫( A D ) A. 布拉格方程; B. 劳厄方程; C. 其中θ称为衍射角; D. θ称为布拉格角。

材料现代分析技术考试要点(可缩印)

1、下图为金属镁粉的X射线衍射图谱(注:X射线源为Cu Kα辐射,其平均波长为1.5418 埃)。查衍射卡片得知镁的(112)晶面间距为1.3663埃,问图中哪个峰是镁(112)晶面的衍射峰,计算过程。图中高角度衍射峰有劈裂,为何? Cu Kα辐射的波长为λ=1.5418 埃。根据布拉格方程2d sinθ = λ知道:晶面间距d=1.3663埃; 所以:sinθ=λ/2d=0.4057; 所以θ=34.346; 所以2θ=68.69,可以知道2θ=68.7对应的衍射峰是Mg(112)晶面的衍射峰。劈裂是因为波长包含两个所致。 2、比较X射线光电子、特征X射线及俄歇电子的概念。 X射线光电子是电子吸收X光子能量后逸出样品所形成的光电子。特征X射线是处于激发态的电子跃迁到低能级释放出的能量以X射线形式释放。俄歇电子是激发态电子跳到基态释放的能量传递给相邻电子,导致相邻同能级电子逸出样品形成俄歇电子。3、在透射电镜中,电子束的波长主要取决于什么?多晶电子衍射花样与单晶电子衍射花样有何不同?多晶电子衍射花样是如何形成的,有何应用?明场像和暗场像有何不同?简述透射电镜样品制备方法。 电子束的波长主要取决于电子加速电压或电子能量。单晶电子衍射花样由规则排列的衍射斑点构成。多晶衍射花样由不同半径的衍射环组成。多晶中晶粒随机排列取向,相当于倒易点阵在空间绕某点旋转,而在倒易空间形成一组圆球,圆球的一定截面形成圆环。应用可用于确定晶格常数。明场像是直射电子形成的像;暗场像是散射电子形成的像。间接样品的制备:将样品表面的浮凸复制于某种薄膜而获得的。直接样品的制备:(1)初减薄-制备厚度约100-200um的薄片;(2)、从薄片上切取直径3mm 的圆片;(3)预减薄—从圆片的一侧或两侧将圆片中心区域减薄至数um;(4)终减薄。4、简述用于扫描电镜成像的常用信号电子种类。波、能谱仪的工作原理是什么?比较两种谱仪进行微区成分分析时的优缺点。 1、背散射电子;是指被固体样品中的原子核反弹回来的一部分入射电子。 2、二次电子;是指被入射电子轰击出来的核外电子。 3、吸收电子;入射电子进入样品后,经多次非弹性散射,能量损失殆尽(假定样品有足够厚度,没有透射电子产生),最后被样品吸收。 4、俄歇电子;如果原子内层电子能级跃迁过程中释放出来的能量E不以X射线的形式释放,而是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇电子。波谱仪原理:波谱仪依据不同元素的特征X射线具有不同波长这一特点来对样品成分进行分析,波谱仪通过晶体衍射分光的途径实现对不同波长的X射线分散展谱。波谱仪优点:分辨率高,峰背比高。波谱仪缺点:采集效率低,分析速度慢。能谱仪原理:能谱仪根据不同元素的特征X射线具有不同的能量这一特点来对检测的X 射线进行分散展谱,实现对微区成分分析。能谱仪优点:分析速度快,灵敏度高,谱线重复性好。能谱仪缺点:能量分辨率低,峰背比低,工作条件要求严格。 5、XPS的主要工作原理和应用是什么?以Mg Kα(波长为9.89埃),为激发源,由谱仪(功函数3eV)测得固体中某元素X射线光电子动能980.5eV,求此元素的电子结合能。h =4.1357*10-15 eVs; c=2.998*108m/s。答:XPS的主要原理为光电效应原理。XPS 主要用于分析表面化学元素的组成,化学态及其分布,特别是原子的价态,表面原子的电子密度,能级结构。应用有元素及其化学态的定性分析、定量分析,化学结构分析。 激发光子能量: hv=hc/λ=4.1357*10-15eVs*2.998*108m/s/9.89*10-10m=1253.6eV. 电子结合能为1253.6-3-980.5=270.1eV 6、什么是拉曼散射,斯托克斯线和反斯托克斯线,拉曼位移? 单色光照射物体时有一部分比入射光强度小10-7量级的非弹性散射光含有与入射光不

(完整版)材料现代分析方法第一章习题答案解析

第一章 1.X射线学有几个分支?每个分支的研究对象是什么? 答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。 X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。 X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。 X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。 2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少? 解:已知条件:U=50kV 电子静止质量:m0=9.1×10-31kg 光速:c=2.998×108m/s 电子电量:e=1.602×10-19C 普朗克常数:h=6.626×10-34J.s 电子从阴极飞出到达靶的过程中所获得的总动能为: E=eU=1.602×10-19C×50kV=8.01×10-18kJ 由于E=1/2m0v02 所以电子击靶时的速度为: v0=(2E/m0)1/2=4.2×106m/s 所发射连续谱的短波限λ0的大小仅取决于加速电压: λ0(?)=12400/U(伏) =0.248? 辐射出来的光子的最大动能为: E0=hv=h c/λ0=1.99×10-15J 3. 说明为什么对于同一材料其λK<λKβ<λKα? 答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k 以kα为例: hV kα = E L– E k

h e = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α 4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象? 答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。 5. 特征X 射线与荧光X 射线的产生机理有何不同?某物质的K 系荧光X 射线波长是否等于它的K 系特征X 射线波长? 答:特征X 射线与荧光X 射线都是由激发态原子中的高能级电子向低能级跃迁时,多余能 量以X 射线的形式放出而形成的。不同的是:高能电子轰击使原子处于激发态,高能级电子回迁释放的是特征X 射线;以 X 射线轰击,使原子处于激发态,高能级电子回迁释放 的是荧光X 射线。某物质的K 系特征X 射线与其K 系荧光X 射线具有相同波长。6. 连续谱是怎样产生的?其短波限 与某物质的吸收限 有何不同(V 和 V K 以kv 为单位)? 答:当X 射线管两极间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰 击,由于阳极的阻碍作用,电子将产生极大的负加速度。根据经典物理学的理论,一个带 负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电 磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。 在极限情况下,极少数的电子在一次碰撞中将全部能量一次性转化为一个光量子,这 个光量子便具有最高能量和最短的波长,即短波限。连续谱短波限只与管压有关,当固定

材料现代分析方法试题9(参考答案)

材料现代分析方法试题9(参考答案) 一、基本概念题(共10题,每题5分) 1.为什么特征X射线的产生存在一个临界激发电压?X射线管的工作电压与其靶材的临界激发电压有什么关系?为什么? 答:要使内层电子受激发,必须给予施加大于或等于其结合能的能量,才能使其脱离 轨道,从而产生特征X射线,而要施加的最低能量,就存在一个临界激发电压。X射线 管的工作电压一般是其靶材的临界激发电压的3-5倍,这时特征X射线对连续X射线比 例最大,背底较低。 2.布拉格方程2dsinθ=λ中的d、θ、λ分别表示什么?布拉格方程式有何用途?答:d HKL表示HKL晶面的面网间距,θ角表示掠过角或布拉格角,即入射X射线或衍射线与面网间的夹角,λ表示入射X射线的波长。该公式有二个方面用途: (1)已知晶体的d值。通过测量θ,求特征X射线的λ,并通过λ判断产生特征X射线的元素。这主要应用于X射线荧光光谱仪和电子探针中。(2)已知入射X射线的波 长,通过测量θ,求晶面间距。并通过晶面间距,测定晶体结构或进行物相分析。3.多重性因子的物理意义是什么?某立方晶系晶体,其{100}的多重性因子是多少?如该晶体转变为四方晶系,这个晶面族的多重性因子会发生什么变化? 答:多重性因子的物理意义是等同晶面个数对衍射强度的影响因数叫作多重性因子。某立方晶系晶体,其{100}的多重性因子是6?如该晶体转变为四方晶系多重性因子是4;这个晶面族的多重性因子会随对称性不同而改变。 4.什么是丝织构,它的极图有何特点? 答:丝织构是一种晶粒取向轴对称分布的织构,存在于拉、轧或挤压成形的丝、棒材 及各种表面镀层中。其特点是多晶体中各种晶粒的某晶向[uvw]与丝轴或镀层表面法线 平行。 丝织构的极图呈轴对称分布 5.电磁透镜的像差是怎样产生的? 如何来消除和减少像差? 答:电磁透镜的像差包括球差、像散和色差。 球差即球面像差,是磁透镜中心区和边沿区对电子的折射能力不同引起的,其中离

材料现代分析方法考试试卷

材料现代分析方法考试试卷

班级学号姓名考试科目现代材料测试技术A卷开卷一、填空题(每空 1 分,共计20 分;答案写在下面对应的空格处,否则不得分) 1. 原子中电子受激向高能级跃迁或由高能级向低能级跃迁均称为_辐射跃迁__跃迁或_无辐射跃迁__跃迁。 2. 多原子分子振动可分为__伸缩振动_振动与_变形振动__振动两类。 3. 晶体中的电子散射包括_弹性、__与非弹性___两种。 4. 电磁辐射与物质(材料)相互作用,产生辐射的_吸收_、_发射__、_散射/光电离__等,是光谱分析方法的主要技术基础。 5. 常见的三种电子显微分析是_透射电子显微分析、扫描电子显微分析___和_电子探针__。 6. 透射电子显微镜(TEM)由_照明__系统、_成像__系统、_记录__系统、_真空__系统和__电器系统_系统组成。 7. 电子探针分析主要有三种工作方式,分别是_定点_分析、_线扫描_分析和__面扫描_分析。 二、名词解释(每小题 3 分,共计15 分;答案写在下面对应的空格处,否则不得分) 1. 二次电子二次电子:在单电子激发过程中被入射电子轰击出来的核外电子. 2. 电磁辐射:在空间传播的交变电磁场。在空间的传播遵循波动方程,其波动性表现为反射、折射、干涉、衍射、偏振等。 3. 干涉指数:对晶面空间方位与晶面间距的标识。 4. 主共振线:电子在基态与最低激发态之间跃迁所产生的谱线则称为主共振线 5. 特征X射线:迭加于连续谱上,具有特定波长的X射线谱,又称单色X射线谱。 三、判断题(每小题 2 分,共计20 分;对的用“√”标识,错的用“×”标识) 1.当有外磁场时,只用量子数n、l 与m 表征的原子能级失去意义。(√) 2.干涉指数表示的晶面并不一定是晶体中的真实原子面,即干涉指数表示的晶面上不一定有原子分布。(√) 3.晶面间距为d101/2 的晶面,其干涉指数为(202)。(×) 4.X 射线衍射是光谱法。(×) 5.根据特征X射线的产生机理,λKβ<λKα。(√) 6.物质的原子序数越高,对电子产生弹性散射的比例就越大。(√) 7.透射电镜分辨率的高低主要取决于物镜。(√) 8.通常所谓的扫描电子显微镜的分辨率是指二次电子像的分辨率。(√) 9.背散射电子像与二次电子像比较,其分辨率高,景深大。(×) 10.二次电子像的衬度来源于形貌衬度。(×) 四、简答题(共计30 分;答案写在下面对应的空格处,否则不得分) 1. 简述电磁波谱的种类及其形成原因?(6 分)答:按照波长的顺序,可分为:(1)长波部分,包括射频波与微波。长波辐射光子能量低,与物质间隔很小的能级跃迁能量相适应,主要通过分子转动能级跃迁或电子自旋或核自旋形成;(2)中间部分,包括紫外线、可见光核红外线,统称为光学光谱,此部分辐射光子能量与原子或分子的外层电子的能级跃迁相适应;(3)短波部分,包括X 射线和γ射线,此部分可称射线谱。X 射线产生于原子内层电子能级跃迁,而γ射线产生于核反应。

现代材料分析方法试题及答案

1《现代材料分析方法》期末试卷 一、单项选择题(每题 2 分,共 10 分) 1.成分和价键分析手段包括【 b 】 (a)WDS、能谱仪(EDS)和 XRD (b)WDS、EDS 和 XPS (c)TEM、WDS 和 XPS (d)XRD、FTIR 和 Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b) NMR、FTIR 和 WDS (c)SEM、TEM 和 STEM(扫描透射电镜)(d) XRD、FTIR 和 Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM) (b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和 X 射线光电子谱仪(XPS) (d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【 b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和 CO 二、判断题(正确的打√,错误的打×,每题 2 分,共 10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题 5 分,共 25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。

相关文档
相关文档 最新文档