文档库 最新最全的文档下载
当前位置:文档库 › 南开大学 2015 级多元函数微分结课统考试卷

南开大学 2015 级多元函数微分结课统考试卷

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

第十七章多元函数微分学习题课

第十七章 多元函数微分学习题课 一 疑难问题与注意事项 1.(,)z f x y =在),(000y x P 可微的等价定义: 1)0000(,)(,)()z f x x y y f x y A x B y o ρ?=+?+?-=?+?+,0 () lim 0o ρρρ →=; 2)00000 [(,)(,)] lim 0x y z f x y x f x y y ρρ →?-?+?=; 3), y x y B x A z ?+?+?+?=?βα()() ()() ,0,0,0,0lim lim 0x y x y αβ??→??→= =. 2.求(,)f x y 在00(,)x y 处的偏导数方法小结: 答 1)利用定义求(主要适用于分段函数的分段点处的偏导数): 0000000 (,)(,) (,)lim x x f x x y f x y f x y x ?→+?-=?, 0000000 (,)(,) (,)lim y y f x y y f x y f x y y ?→+?-=?. 2)转化为一元函数的导数: ()0 000,(,)x x x df x y f x y dx ==,() 000,(,)y y y df x y f x y dy == . 例如,2(,)(f x y x y =+-(1,1)x f . 解 () ()211 ,1(1,1)2x x x d x df x f dx dx ==== =. 3)先求偏导函数,在代值,即 ()0 00(,)(,),x x x y f x y f x y =,0 00(,) (,)(,)y y x y f x y f x y =. 3.求(,)z f x y =(初等函数不含分段点)的偏导函数方法小结: 答 1)求 z x ??,把y 当常数,对x 求导,求z y ??,把x 当常数,对y 求导. 2)运用轮换性,若在(,)z f x y =中,把x 换成y , y 换成x ,(,)z f x y =不变,则称(,)z f x y =关于x 和y 具有轮换性.若已经求出 z x ??,只要在z x ??把x 换成y , y 换成x ,

人教版初中数学反比例函数经典测试题含答案

人教版初中数学反比例函数经典测试题含答案 一、选择题 1.已知反比例函数k y x =的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ?的面积为 3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命 题个数是( ) A .0 B .1 C .2 D .3 【答案】D 【解析】 【分析】 根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ?? ?∈-≤???? ,y 2=2k x , 然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数k y x =的图象分别位于第二、第四象限, ∴k<0, ∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ?? ?∈-≤? ??? ,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k , ①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1 OC?AC 2=11x ?y k =322 =, ∴6k =-,故①正确; ②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()12121212 0k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

多元函数微分学习题

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线 ?? ?=+--=+++0 31020 123:z y x z y x L 及平面0 224: =-+-z y x π, 则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(2 2y x y x y x xy y x f 在点 ) 0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ? ?+=+=2 2 v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y -

答:B 4.设),(y x f 是一二元函数,),(0 y x 是其定义域内的 一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(0 y x 连续,则),(y x f 在点),(0 y x 可 导。 (B) 若),(y x f 在点),(0 y x 的两个偏导数都存在,则 ) ,(y x f 在点),(0 y x 连续。 (C) 若),(y x f 在点),(0 y x 的两个偏导数都存在,则 ) ,(y x f 在点),(0 y x 可微。 (D) 若),(y x f 在点),(0 y x 可微,则),(y x f 在点),(0 y x 连续。 答:D 5.函数2 223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是 ( ) (A) )3 2 ,31,31(- (B) )32,31,31(2- (C) )9 2 ,91,91(- (D) )9 2 ,91,91(2- 答:A 6.函数z f x y =(.)在点(,)x y 0 处具有两个偏导数 f x y f x y x y (,),(,) 0000 是函数存在全 微分的( )。 (A).充分条件 (B).充要条件

(完整版)正比例函数、反比例函数测试题(经典)

初二数学练习 班级 姓名 一、填空 1、已知正比例函数图像上一点到x 轴距离与到y 轴距离之比为1︰2,则此函数解析式是 2、2 3 (2)m y m x -=-是正比例函数,则m= 3、已知正比例函数x a y )21(-=,如果y 的值随着x 的值增大而减小,则a 的取值范围是 4、如果正比例函数y=kx (k ≠0)的自变量增加5,函数值减少2,那么当x=3时, y= 5、若反比例函数2 32k x k y --=)(,则k = ,图象经过 象限 6、已知反比例函数x k y =的图像经过点)4,5(-A 、)5,(a B ,则a = 7、函数21 a y x += (x>0),当x 逐渐增大时,y 也随着增大,则a 的范围 。 8、已知A(x 1,y 1)和B (x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1____y 2?;(填“>”, “<”或“=”) 9、直线 x 21= y 与双曲线 x y 2 = 的交点是 10、已知函数x x x f 2 2)(-=,则=)2(f 11、若函数12,1 1 21-=-= x y x y ,则函数y =y 1+y 2中,自变量x 的 取值范围是 12、如图:A 、B 是函数x y 1 =图象上关于原点O 对称的任意两点, AC 平行于y 轴,BC 平行于x 轴,则△ABC 的面积是 . 二、选择 13、下列语句不正确的是 ( ) (A) 1+x 是x 的函数 (B )速度一定,路程是时间的函数 (C )圆的周长一定,圆的面积是圆的半径的函数 (D )直角三角形中,两个锐角分别是x 、y ,y 是x 的函数

第七章 多元函数的微分学

第七章多元函数的微分学 一、多元函数微分学网络图 二、内容与要求 1.理解多元函数的概念,理解二元函数的几何意义。 2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。

4.掌握多元复合函数一阶、二阶偏导数的求法。 5.会求多元隐函数的偏导数。 6.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 重点多元函数偏导数和全微分的概念,多元复合函数一阶、二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 难点多元复合函数二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 三、概念、定理的理解与典型错误分析 1.求多元函数极限的方法 (1)利用初等多元函数的连续性,即若是初等函数,在的定义域中,则 注:所谓的初等多元函数就是用一个数学表达式给出的解析式. (2)利用多元函数极限的四则运算。 (3)转化为一元函数的极限,利用一元函数的极限来计算. (4)对于证明或求时,感觉极限可能时零, 而直接又不容易证明或计算,这时可用夹逼定理,即而 由夹逼定理知从而 2.判断多元函数极限不存在的方法 (1)选取两条特殊的路径,而函数值的极限存在,但不相等,则不存在。

注意: 与的区别,前面两个本质是两次求一元函数的极限, 我们称为求累次极限,而最后一个是求二元函数的极限,我们称为求二重极限。 例1 而知不存在. 例2 在原点的两个累次极限都不存在,但是 由于,因此. 由例1知两个累次极限存在,但二重极限不存在,由例2知两个累次极限不存在, 但二重极限存在,但我们有下面的结论。 定理7。1 若累次极限和二重极限都存在,则三者相等。 (2)推论。若存在且不相等,则不存在。 3.求多元函数的偏导数

初中数学反比例函数经典测试题及答案

初中数学反比例函数经典测试题及答案 一、选择题 1.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数 b y x = 在同平面直角坐标系中的图象大致是( ) A . B . C . D . 【答案】D 【解析】 【分析】 直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案. 【详解】 ∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0, ∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0, ∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号, ∴b <0, ∴一次函数y=ax+c ,图象经过第二、四象限, 反比例函数y=b x 图象分布在第二、四象限, 故选D . 【点睛】 此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键. 2.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB

垂直于x 轴,顶点A 在函数y 1 =1 k x (x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象 上,∠ABO=30°,则 2 1 k k =( ) A .-3 B .3 C . 1 3 D .- 13 【答案】A 【解析】 【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值. 【详解】 如图,设AB 交x 轴于点C ,又设AC=a. ∵AB ⊥x 轴 ∴∠ACO=90° 在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3 ∴点A 3a ,a ) 同理可得 点B 3,-3a ) ∴k 1332 , k 23a×(-3a )3a ∴ 213333k a k a ==-. 故选A. 【点睛】

多元函数微分法word版

§5.3 多元函数微分法 一、复合函数微分法――链式法则 模型1. ()()()z f u v u u x y v v x y ==,,,,=, z z u z z z u z x u x x y u y y νννν??????????=?+?=?+???????????; 模型2. ()()u f x y z x y =,,,z=z , x z y z u z f f x x u z f f y y ???''=+????? ???''=+???? 模型3. ()()()u f x y z y y x z x ===,,,,z ()()x y z du f f y x f z x dx '''''=++ 模型4. ()()()w f u v u u x y z v v x y z ===,,,,,,, u v u v u v w u v f f x x x w u v f f y y y w u v f f z z z ????''=+????? ????''=+? ????????''=+????? 还有其他模型可以类似处理。 【例1】 设()u f x y z =,,有连续的一阶偏导数,又函数()y y x =及()z z x =分别由 下列两式确定2xy e xy -=和0sin x z x t e dt t -= ?,求du dx 。 解 根据模型3. x y z du dy dz f f f dx dx dx '''=++

由2xy e xy -=两边对x 求导,得0xy dy dy e y x y x dx dx ???? +-+= ??????? 解出 dy y dx x =-(分子和分母消去公因子()1xy e -) 由0 sin x z x t e dt t -= ? 两边对x 求导,得()()sin 1x x z dz e x z dx -??=- ?-?? 解出 ()() 1sin x e x z dz dx x z -=- - 所以 ()()1sin x e x z du f y f f dx x x y x z z ??-???=-+-?? ??-??? 【98】设1 ()()z f xy y x y x ?=++,f ,?具有二阶连续导数,则 2________z x y ?=??。 答案:()()()yf xy x y y x y ??'''''++++ 注:①混合偏导数在连续的条件下与求导次序无关; ②此题中f 和?均为一元函数。 【05】设函数(,)()()()d x y x y u x y x y x y t t ??ψ+-=++-+? ,其中函数?具有二阶导数,ψ 具有一阶导数,则必有( ) (A )2222u u x y ??=-??;(B )2222u u x y ??=??;(C )222u u x y y ??=???;(D )222 u u x y x ??=??? 答案:B 全微分形式不变性 例:利用全微分形式不变性求sin u z e v =,u xy =,v x y =+的偏导数。 【06】设函数()f u 在(0,)+∞内具有二阶导数,且z f =满足等式 2222 0z z x y ??+=??

《多元函数微分学》练习题参考答案

多元微分学 P85-练习1 设)cos(2z y e w x +=,而3x y =,1+=x z ,求 dx dw . 解: dw w w dy w dz dx x y dx z dx ???=+?+???? 2222cos()[sin()(3x x e y z e y z x =++-+? 23232cos((3x e x x x ?? =-+???? P86-练习2 设函数20 sin (,)1xy t F x y dt t = +? ,则22 2 x y F x ==?=? . (2011) 解: 2222222222 sin cos (1)2sin ,1(1)F y xy F y xy x y xy xy y x x y x x y ??+-==??+?+, 故 22 02 4x y F x ==?=? P86-练习3 设)(2 2 y x f z +=,其中f 有二阶导数,求22x z ?? ,22y z ??.(2006) 解:z f x ?'=?; 2223222222).(z x y f f x x y x y ?'''=?+??++ 同理可求 222 222222 () z y x f f y x y x y ?'''=?+??++. P87-练习4 设)(), (x y g y x xy f z +=,其中f 有二阶连续偏导数,g 有二阶导数,求y x z ???2. (2000) 解: 根据复合函数求偏导公式 1221()z y f y f g x y x ?'''=?+?+?-?,

122111122212222211122223323221()111 [()][()]11 z y f y f g y x y y x x x y f y f x f f f z x y x y f xyf f f g g y y x x f g g y y y y x x x ?? ?????'''==????''+?+?- ? ???????? '''''''''''''=''''''' +---++?--++?--?-?-= P87-练习5 设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可 导且在1x =处取得极值(1)1g =,求 211 x y z x y ==???. (2011) 解:由题意(1)0g '=。因为 12()z yf yg x f x ?'''=+?, 21111222122()()()()z f y xf g x f g x f yg x xf g x f x y ?????''''''''''''=+++++??????, 所以 211 12111 (1,1)(1,1)(1,1)x y z f f f x y ==?'''''=++?? P88-练习6 设),,(xy y x y x f z -+=,其中f 具有二阶连续偏导数,求dz , y x z ???2. (2009) 解: 123123,z z f f yf f f xf x y ??''''''=++=-+?? 123123()()z z dz dx dy f f yf dx f f xf dy x y ??''''''= +=+++-+?? () 1231112132122233313233211132223333(1)(1)(1()())f f yf y z x y f x y f f x y f xyf f f f x f f f x f f f y f f x ?'''=++???'''''''''''''???'''''''''''=+?-+?++?-+'''''' =++-+-+?+++?-+???+

多元函数微分学习题

第七章 多元函数微分学 【内容提要】 1.空间解析几何基础知识 三条相互垂直的坐标轴Ox 、Oy 、Oz 组成了一个空间直角坐标系。 空间直角坐标系下两点间的距离公式为: 平面方程:0Ax By Cz D +++= 二次曲面方程: 2220Ax By Cz Dxy Eyz Fzx Gx Hy Iz K +++++++++= 球面方程:()()()2 2 02 02 0R z z y y x x =-+-+- 圆柱面方程:2 22R y x =+ 椭球面方程:()222 2221,,0x y z a b c a b c ++=>, 椭圆抛物面方程:22 22,(,0)x y z a b a b +=> 双曲抛物面方程:22 22,(,0)x y z a b a b -=> 单叶双曲面图方程:122 2222=-+c z b y a x (a ,b ,c >0) 双叶双曲面方程:222 2221,(,,0)x y z a b c a b c +-=-> 椭圆锥面方程:222 2220,(,,0)x y z a b c a b c +-=> 2.多元函数与极限 多元函数的定义:在某一过程中,若对变化范围D 的每一对值(,)x y ,在变域M 中存在z 值,按一定对应法则f 进行对应,有唯一确定的值,则称f 为集合D 上的二元函数, 记为 ,x y 称为自变量,D 称为定义域,z 称为因变量。(,)x y 的对应值记为(,)f x y ,称为函数 值,函数值的集合称为值域。 多元函数的极限:设函数(,)f x y 在开区间(或闭区间)D 内有定义,000(,)P x y 是D 的内点或边界点。如果对于任意给定的正数e ,总存在正数d ,使得对于适合不等式

数学分析教案_(华东师大版)第十七章__多元函数微分学

第十七章多元函数微分学 教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及 偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2.全微分: 例1 考查函数在点处的可微性 . P107例1 二.偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17—1.

3.求偏导数: 例2 , 3 , 4 . P109—110例2 , 3 , 4 . 例5. 求偏导数. 例6. 求偏导数. 例7. 求偏导数, 并求. 例8. 求和. 解=, =. 例9 证明函数在点连续 , 并求和. 证 . 在点连续 . ,

不存在 . 三.可微条件: 1.必要条件: Th 1 设为函数定义域的内点.在点可微 , 和存在 , 且 . ( 证 ) 由于, 微分记为 . 定理1给出了计算可微函数全微分的方法. 两个偏导数存在是可微的必要条件 , 但不充分. 例10考查函数 在原点的可微性 . [1]P110 例5 . 2.充分条件:

Th 2 若函数的偏导数在的某邻域内存在 , 且和在点处连续 . 则函数在点可微 . ( 证 ) P111 Th 3 若在点处连续, 点存在 , 则函数在点可微 . 证 . 即在点可微 . 要求至少有一个偏导数连续并不是可微的必要条件 . 例11 验证函数在点可微 , 但和在点处不连续 . (简证,留为作业) 证

初中数学反比例函数经典测试题附答案

一、选择题 1.已知反比例函数k y x =的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ?的面积为 3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命 题个数是( ) A .0 B .1 C .2 D .3 【答案】D 【解析】 【分析】 根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ?? ?∈-≤? ??? ,y 2=2k x , 然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数k y x =的图象分别位于第二、第四象限, ∴k<0, ∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ?? ?∈-≤? ??? ,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k , ①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1 OC?AC 2=11x ?y k =322 =, ∴6k =-,故①正确; ②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()12121212 0k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键. 2.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )

多元函数微分法

第十章 多元函数微分学 一、学习要点 1.关于二元函数 会求二元函数的定义域和相应的函数值。求二元函数定义域及函数值的方法与一元函数的方法相似。 2.关于二元函数微分 (1)熟练掌握一阶、二阶偏导数的计算方法和复合函数、隐函数一阶偏导数的计算方法,尤其是形如z=f (x 2-y 2 ,e xy )等的复合函数的偏导数。能熟练地求全微分。 偏导数的定义、计算公式基本与一元函数导数公式相同。求偏导数时,对一个变量求导时,将另一变量视为常数。如求函数32ln z y x u ++=的偏导数 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) 复合函数求偏导数是难点。一般用链式法则,即z=f (u ,v),u=u(x ,y),v=v(x ,y),有 y v v z y u u z y z x v v z x u u z x z ????????????????????+=+= 具体情况有两种: (一)全部函数关系都给出:这时可按前边方法求偏导数,如求二元函数 )ln(2v u z +=,xy e v y x u =+=,22. 的偏导数y z x z ????,,可以把u ,v 代入z 中,再求偏导数,即 z=ln(x 2+y 2+e 2xy ),求偏导数有 xy xy e y x ye x x z 222222+++=?? xy xy e y x xe y y z 222222+++=?? (二)部分函数关系没有给出:此时只有用链式法则。如求函数z=f(xy ,x 2+y 3),

的一阶偏导数,则不能用如上方法求解.正确求法是记u=xy ,v=x 2+y 3,用链式法则 x v f y u f x v v z x u u z x z 2??????????????+=+=,23y v f x u f y z ??????+= 上例也可以用链式法则,有 xy xy xe v u v y v u y z ye v u v x v u x z 2222221,221+++=+++=???? 求隐函数的偏导数,是复合函数求偏导数的应用,方法仍然同一元隐函数的求导. 如求函数32ln z y x u ++=的偏导数. 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) (2)知道函数连续、可微、偏导数存在的关系。 3.关于偏导数的几何应用 掌握求曲线的切线与法平面,曲面的切平面与法线的方法. (1)设空间曲线方程为x =x (t),y =y (t),z = z (t),在t=t 0处的切线方向为 ))(),(),((000t z t y t x l '''=ρ,则在t 0处曲线的 切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='- 法平面方程为 )())(()())(()())((000000t z t z z t y t y y t x t x x '-+'-+'-=0 (2)曲面F (x ,y ,z)=0(或z=f (x ,y)),在曲面上的点P(x 0,y 0,z 0)处的法方向为)}1,,{(},,{),,(),,(000000z y x y x z y x z y x f f F F F n -'''''=或ρ,则在点(x 0,y 0,z 0)处的 切平面方程为 0)()()(000=-'+-'+-'z z F y y F x x F z y x 法线方程为 z y x F z z F y y F x x ' -='-='-000

多元函数微分学练习题

多元函数微分学练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1 (,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? . 12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

反比例函数经典测试题含解析

反比例函数经典测试题含解析 一、选择题 1.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数 b y x = 在同平面直角坐标系中的图象大致是( ) A . B . C . D . 【答案】D 【解析】 【分析】 直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案. 【详解】 ∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0, ∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0, ∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号, ∴b <0, ∴一次函数y=ax+c ,图象经过第二、四象限, 反比例函数y=b x 图象分布在第二、四象限, 故选D . 【点睛】 此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键. 2.在同一直角坐标系中,函数y=k(x -1)与y= (0)k k x <的大致图象是

A . B . C . D . 【答案】B 【解析】 【分析】 【详解】 解:k<0时,y= (0)k k x <的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限, 观察可知B 选项符合题意, 故选B. 3.已知点()11,A y -、()22,B y -都在双曲线32m y x +=上,且12y y >,则m 的取值范围是( ) A .0m < B .0m > C .32 m >- D .32 m <- 【答案】D 【解析】 【分析】 根据已知得3+2m <0,从而得出m 的取值范围. 【详解】 ∵点()11,A y -、()22,B y -两点在双曲线32m y x +=上,且y 1>y 2, ∴3+2m <0, ∴32 m <- , 故选:D . 【点睛】 本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限. 4.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =8 x 上,过点C 作CE ∥x 轴交双曲线于点E ,则CE 的长为( )

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

反比例函数测试题(含答案)

反比例函数测试题(含答案) (时间90分钟满分100分)5 . 已知反比例函数的图象经过点(m3m),则此反比例函数的图象 在 班级 ________ 学号________ 姓名_________ 得分 一、选择题(每小题3分,共24分) 1.如果x、y之间的关系是ax'?y=O(a H0),那么y是x的( ) A .正比例函数 B .反比例函数 C .一次函数 D.二次函数 4 2 . 函数y =—-的图象与x 轴的交点的个数是 x () A.第一、二象限 C.第二、四象限 第一、三象限 第三、四象限 6. 某气球内充满了一定质量的气体,当温度不变时, 的气压P (kPa )是气体体积V ( m3) 气球内气体 的反比例函数,其 图象如图所示.当气球内的气压大于120 kPa时,气球发将爆 炸.为了安全起见,气球的体积应 60 P (kPa) \(1.6, 60) ■I I3T W ■■ 1' ? W / f 3 1.6 V (m3) 第6题 A . 零个B.一个C 3 . 反比例函数y ( ) A. 第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限 4.已知关于x的函数y = k (x+1 )和y =— .两个 D.不能确定 4 = —- 的图象在 x A.不小于-m3 B .小于-mi C .不小于-mi D .小于- 5 7 . 如果点 的面积为 A. 2 &已知: P为反比例函数 4 4 y 的图象上一点, x PQ L x 轴, 垂足为Q那么△ POQ 反比例函数 1-'2m “心宀r _ . 的图象上两点 A( x1, y1) ,B (X2,y 2)当X1< 0 k (k丰0)它们在同一坐标系中的大 致 x v x2时,yK y2,贝y m的取值范围( A. m v 0.m> 0 1 mv — 2 1 n> — 2 二、填空题(每小题2分,共20分) 9.有m台完全相同的机器一起工作,需m小时完成一项工作,当 由 x台机器(x

(完整版)高等数学(同济版)多元函数微分学练习题册

第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( ) 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题: . ,.2. 2.0,1.0,1,2.1= == =?-=?=?===dz e z dz z y x y x x y z x y 则设全微分值 时的全增量当函数 二、选择题(单选): 1. 函数z=f(x,y)在点P 0(x 0,y 0)两偏导数存在是函数在该点全微分存在的: (A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件。 答:( )

相关文档
相关文档 最新文档