文档库 最新最全的文档下载
当前位置:文档库 › 纳米非晶氮化硅键态结构的X射线径向分布函数研究

纳米非晶氮化硅键态结构的X射线径向分布函数研究

纳米非晶氮化硅键态结构的X射线径向分布函数研究
纳米非晶氮化硅键态结构的X射线径向分布函数研究

非晶纳米晶软磁材料都有哪些

如果金属或合金的凝固速度非常快(例如用每秒高达一百万度的冷却速率将铁-硼合金熔体凝固),原子来不及整齐排列便被冻结住了,其排列方式类似于液体,是混乱的,这就是非晶合金。非晶纳米晶软磁材料都有哪些?您可以咨询安徽华晶机械有限公司,下面小编为您简单介绍,希望给您带来一定程度上的帮助。 非晶软磁合金材料的种类: 1、铁基非晶合金铁基非晶合金:主要元素是铁、硅、硼、碳、磷等。它们的特点是磁性强(饱和磁感应强度可达1.4-1.7T )、磁导率、激磁电流和铁损等软磁性能优于硅钢片,价格便宜,最适合替代硅钢片,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电 变压器可降低铁损60-70%。铁基非晶合金的带材厚度为0.03毫米左右,广泛应用于中低频变压器的铁心(一般在10千赫兹以下) ,

例如配电变压器、中频变压器、大功率电感、电抗器等。 2、铁镍基非晶合金铁镍基非晶合金:主要由铁、镍、硅、硼、磷等组成,它们的磁性比较弱(饱和磁感应强度大约为1T以下),价格较贵,但磁导率比较高,可以代替硅钢片或者坡莫合金,用作高要求的中低频变压器铁心,例如漏电开关互感器。 3、钴基非晶合金钴基非晶合金:由钴和硅、硼等组成,有时为了获得某些特殊的性能还添加其它元素,由于含钴,它们价格很贵,磁性较弱(饱和磁感应强度一般在1T以下),但磁导率极高,一般用在要求严格的军工电源中的变压器、电感等,替代坡莫合金和铁氧体。 4、纳米(超微晶)软磁合金材料由于非晶合金中原子的排列是混乱无序的这种特殊结构,使得非晶合金具有一些独特的性质。

安徽华晶机械有限公司位于安庆长江大桥经济开发区。是人民解放军第4812工厂全资子公司。公司经营以机械制造为主,拥有各类专业生产、检验试验设备94台(套),涉及铸造、橡胶制品、压力容器、制造等多个行业,主要从事非晶软磁设备、空压机及气源设备、橡胶件(含特种橡胶件)、餐余垃圾处理设备、铸件、机械加工等产品的研制、生产、经营和服务。 自成立以来,公司上下高度重视技术创新和产品结构升级工作,建立了以市场为导向,努力满足用户需求的产品研发体系。公司坚持以跨越发展的思想为指导,秉承敬业、高效、求实、创新的优良传统,继续依托军工技术和“中”牌品质,为广大新老客户提供更优良的产品和服务。

径向分布函数..

三、径向分布函数法 中心分子 第一层:第一配位圈 第二层:第二配位圈 . . . 短程有序,远程无序 1、 基本概念,基本定义 首先定义一个新的函数---n 重相关函数 为 当系统的位能E N = 0 ,则系统内分子是独立的,由分布函数公式 可得到: g(r) r

因此对于分子相互独立的系统,, 对于分子间有相互作用的系统,相当于对分子独立性的校正,亦即表示了分子的相关性,因而称之为相关函数。 相关函数中,最重要的是二重相关函数g(2),它可由X射线衍射实验和计算机分子模拟的机器实验结果获得,由式子 可知表示如下

上式即二重相关函数与位形积分的关系。 对于由球星对称分子构成的液体,仅取决于分子1和2的距离,即可写成g(r),所以就有 故上式中的分子相对函数g(r)就是分子的径向分布函数。 因,即第一个分子是任意分布的。由于液体分子间存在相互作用,第二个分子不可能任意分布,而构成相对于中心分子的局部密度,相应的二重分布函数为 将上式代入到中得到

所以径向分布函数g(r)的物理意义可解释为:在一个中心分子周围距离为r处,分子的局部密度相对于本体密度的比值。 从径向分布函数g(r)可以计算液体的配位数: 实际上N为中心分子周围分子的总数,而为距中心分子r处在r + dr壳层内的分子数目。若将上式积分到第一配位圈的距离L处,即可得到配位数N(L)为 N(L)实际上也是围绕中心分子,半径为r=L的球体内的分子数。

如图已知: r1,r2…rN 代表坐标系原点,指向分子1,2,… N 的向量,体系分子1,分子2分别出现在r1处的体系元 的几率为: 称双重标明分布函数; :泛指(任意分子分布在r1, r2处的概率) :双重分布函数 () ()()N kT r r u N kT q u K K N Tr i d d d e d d d e Q N N ττττττ???............121/...21/1????=-*===2τd ()()()K N kT r r r u d d d d e d d r r P N ?ττττττ2 13/,...,21212]......[,21??-= ()()()K N kT r r u d d e r r P N ?ττ?? -=......,3/...2121()()2 1212,τ τd d r r P ()() 212,r r ρ () ()()() ()() () 2122 212212,,1,r r P N r r P N N r r ≈-=ρ x y

银纳米粒子的制备及其能测试新

银纳米粒子的制备及其能测试新

毕业论文 论文题目:银纳米粒子的制备及其性能测试

目录 一、前言 (1) 1.1纳米粒子概述 (1) 1.2 纳米粒子的应用 (1) 1.3银纳米粒子概述 (2) 1.4 银纳米粒子的制备方法 (3) 1.5 研究现状 (3) 1.6 研究内容 (4) 二、实验部分 (5) 2.1 实验药品 (5) 2.2 实验仪器 (5) 2.3 实验步骤 (6) 2.3.1 银纳米粒子的制备 (6) 2.3.2 银纳米粒子的表征 (6) 2.3.3 银纳米粒子的电催化活性测试 (6) 3.1 X射线衍射仪表征 (7) 3.3 纳米激光粒度仪测试 (11) 3.4 银纳米粒子的电催化活性测试结果 (12) 四、实验结论 (13) 致谢 (14) 参考文献 (15)

摘要:随着科学技术的进步,银纳米粒子的研究开发也是日新月里的发展起来了。本文尝试了一种制备方法:用电化学还原法,以柠檬酸作为配位剂用电化学工作 溶液制得银纳米粒子。用扫描电镜观察所制得站在一定电流、时间内电解AgNO 3 的产品形貌状态,为松针状的晶体粒子,其粒径在50-100 nm之间,用X射线衍射仪分析了银纳米粒子的晶体结构及样品纯度,纳米粒度分布仪测试得出粒子的大小分布在125-199 nm范围内,并用制得的银纳米粒子修饰碳糊电极,测其C-V 曲线,对其电催化活性进行了初步探索。 关键词:银纳米粒子;电解;制备;表征

Abstract: With the progress of science and technology, the research and development of silver nanoparticles also developed very quickly. This paper attempts a preparation method:electricity chemical reduction method, using citric acid as complexing agent chemical workstation in a certain current, time electrolytic AgNO3solution obtained dendritic silver https://www.wendangku.net/doc/0118745279.html,ing scanning electron microscope observed the product appearance, and it shows pine needle shaped crystal particles, the particle diameter between 50-100 nm, by X ray diffraction analysis the silver nanoparticles on the crystal structure and purity of the samples, nanoparticle size distribution tester that particle size distribution in the range of 125-199nm, and the prepared silver nanoparticles modified carbon paste electrode, measured C-V curve, to conduct a preliminary study of the electrocatalytic activity. Key words: silver nanoparticles;Electrolysis; preparation; characterization

非晶纳米晶软磁材料应用市场概况

非晶/纳米晶软磁材料应用市场概况 非晶态软磁合金材料为20世纪70年代问世的一种新型材料,因具有铁芯损耗小、电阻率高、频率特性好、磁感应强度高、抗腐蚀性强等优点,引起了人们的极大重视,被誉为21世纪新型绿色节能材料。其技术特点为:采用超急冷凝固技术使合金钢液到薄带材料一次成型;采用纳米技术,制成介于巨观和微观之间的纳米态(10-20nm)软磁物质。非晶、纳米晶合金的优异软磁特性都来自于其特殊的组织结构,非晶合金中没有晶粒和晶界,易于磁化;纳米晶合金的晶粒尺寸小于磁交换作用长度,导致平均磁晶各向异性很小,并且通过调整成分,可以使其磁致伸缩趋近于零。【表1】列出了非晶/纳米晶软磁材料的典型性能及主要应用领域。 表1 非晶/纳米晶软磁材料的典型性能及主要应用领域

近年来,随着信息处理和电力电子技术的快速发展,各种电器设备趋向高频化、小型化、节能化。 在电力领域,非晶、纳米晶合金均得到大量应用。其中铁基非晶合金的最大应用是配电变压器铁芯。由于非晶合金的工频铁损仅为硅钢的1/5~1/3,利用非晶合金取代硅钢可使配电变压器的空载损耗降低60﹪~70﹪。因此,非晶配电变压器作为换代产品有很好的应用前景。纳米晶合金的最大应用是电力互感器铁芯。电力互感器是专门测量输变电线路上电流和电能的特种变压器。近年来高精度等级(如级、级、级)的互感器需求量迅速增加。传统的冷轧硅钢片铁芯往往达不到精度要求,虽然高磁导率玻莫合金可以满足精度要求,但价格高。而采用纳米晶铁芯不但可以达到精度要求、而且价格低于玻莫合金。 在电力电子领域,随着高频逆变技术的成熟,传统大功率线性电源开始大量被高频开关电源所取代,而且为了提高效率,减小体积,开关电源的工作频率越来越高,这就对其中的软磁材料提出了更高的要求。硅钢高频损耗太大,已不能满足使用要求。铁氧体虽然高频损耗较低,但在大功率条件下仍然存在很多问题,一是饱

径向分布函数、角度分布函数电子云图形的绘制

径向分布函数、角度分布函数电子云图形的绘制 1.目的要求 (1) 绘制波函数及其各种分布以及电子云的图像,观察各种函数的分布情况。 (2) 了解计算机绘图方法。 2.基本原理 (1) 程序原理:本程序可绘制类氢原子的径向分布函数,角度分布函数及原子轨道、杂化轨道和分子轨道等电子几率密度图,绘制过程中的各函数形式 列于下列各表中。式中 ,n 为主量子数, =0.0529nm ,为波尔半径, Z 是有效核电荷,由Slater 规则计算得到的周期表中前四个周期元素的有效核电荷列于表Ⅱ-24-1中,下面简要叙述对各类图形的处理方案。 ①径向分布函数图: 径向分布函数D(r)=r 2R 2(r) 反映了电子的几率随半径r 的分布情况, D(r)dr 代表半径r 到r+dr 两个球壳夹层内找到电子的几率。其中R(r)为类氢原子的径向函数,本程序所采用的径向函数R(r)分别列于表Ⅱ-24-2中。②角度分布函数图:波函数 的角度部分 以及角度分布函数 表示同一球面不同方向上 或 的相对大小, 本程序所采用的角度函数 分别列于表Ⅱ-24-3中。 3 22232 ,),(,,,,sp d sp yz xz z z z Y Y f f f p p 角度分布图是画的X-Z 平面的截面图,其余角 度分布图都是画的X-Y 平面的截面图。角度分布函数图中,凡轨道形状相同,而仅方向不同者,则仅绘出一个图形作为代表。 2na Zr = ρ0 a ),,(φθψr nlm ),(φθψlm ),(2φθψlm ),,(φθψr nlm ),,(2φθψr nlm ),(φθψlm

③等电子几率密度图:2),,(φθψr 称为电子几率密度函数,它描述在该轨道中的电子在三维空间的分布情况,为了在平面上表示出这种分布往往采用某一切面上的等值面图,程序按指定的轨道在该切面上逐点计算2ψ的值,及找出 2max ψ 的最大值,求出相对几率密度2max 2 /ψ ψ =P ,该值在X-Y 平面上是位 置坐标(x,y)的函数(对于2 3z d 轨道是在X-Z 平面),绘图时不是将取值相同的点连成曲线,而是打印一系列符号表示相对几率密度的分布区域。当P <0.01时为空白, 0.01≤P <0.02时用“:”,0.02≤P <0.1时用“/”,0.1≤P <0.25时用“O ”,0.25≤P <0.5时用“&”和P >0.5时用“#”符号表示。根据这些符号可以粗略看出几率密度的分布情况。 在X-Y 平面内,坐标变化范围为 -2.4≤x ≤2.4(步长=0.08) -1.42≤y ≤1.42(步长=0.133) 所有距离的长度单位都是10-10m 。 原子轨道使用的波函数如表Ⅱ-24-4所示。对2 32 2 4,4,4,3xz z z z f f d d 和轨道采用 X-Z 平面做截面,所有其它原子轨道都画在X-Y 平面上,程序使用原子轨道的四重轴对称性,首先计算第三象限内,即-2.4≤x ≤0,-1.42≤y ≤0的Ψ值,随后被2m ax 2 /ψ ψ =P 代替,在其它三个象限内的相应值由对称性得到,用 P(x,y)代表电子在坐标(x ,y)点的几率密度,则: P(-x,-y)=P(-x,y)=P(x,-y)=P(x,y)

非晶纳米晶软磁材料

非晶/纳米晶软磁材料 一.应用领域 非晶态软磁合金材料为20世纪70年代问世的一种新型材料,因具有铁芯损 耗小、电阻率高、频率特性好、磁感应强度高、抗腐蚀性强等优点,引起了人们 的极大重视,被誉为21世纪新型绿色节能材料。其技术特点为:采用超急冷凝 固技术使合金钢液到薄带材料一次成型;采用纳米技术,制成介于巨观和微观之 间的纳米态(10-20nm)软磁物质。非晶、纳米晶合金的优异软磁特性都来自于其 特殊的组织结构,非晶合金中没有晶粒和晶界,易于磁化;纳米晶合金的晶粒尺 寸小于磁交换作用长度,导致平均磁晶各向异性很小,并且通过调整成分,可以 使其磁致伸缩趋近于零。【表1】列出了非晶/纳米晶软磁材料的典型性能及主要 应用领域。 材料铁基非晶铁镍基非晶钴基非晶铁基纳米晶饱和磁感(T) 1.56 0.77 0.6-0.8 1.25 矫顽力(A/m) <4 <2 <2 <2 Br/Bs -- -- >0.96 0.94 最大磁导率45×104>200,000 >200,000 >200,000 铁损(W/kg) P50Hz,1.3T <0.2 P20KHz,0.5T<90 P20KHz,0.5T<30 P20KHz,0.5T<30 磁致伸缩系数27×10-615×10-6<1×10-6<2×10-6居礼温度(℃) 415 360 >300 560 电阻率(mW-cm) 130 130 130 80 应用领域 配电变压器 中频变压器 功率因子校正器 磁屏蔽 防盗标签 磁放大器 高频变压器 扼流圈 脉冲变压器 饱和电抗器 磁放大器 高频变压器 扼流圈 脉冲变压器 饱和电抗器 互感器

Au_Ag芯_壳复合结构纳米颗粒的制备和表征

Au/Ag芯-壳复合结构纳米颗粒的制备和表征* 闫仕农1,2,王永昌1,郝丽梅1,魏天杰2 (1.西安交通大学理学院现代物理研究所,陕西西安710049;2.中北大学理学系,山西太原030051) 摘要:利用二步液相还原法制备了Au/Ag芯-壳复合结构的纳米颗粒。用T EM对反应液中金离子和银离子的摩尔比分别为1B2和1B1时所制备的Au/ Ag芯-壳复合结构的纳米颗粒的尺寸和形貌进行了表征。其紫外-可见吸收光谱具有2个可区分的吸收带,与纯金和纯银纳米颗粒的光学吸收特性对比后认为:随着反应液中银离子摩尔份数的增加,等离子体共振吸收峰始终位于410nm附近的吸收带为银纳米颗粒的等离子体吸收带;另一个将随之产生蓝移的吸收带为Au/Ag芯-壳复合结构纳米颗粒的等离子体吸收带,蓝移是由于银壳厚度的增加而引起的。 关键词:二步液相还原;Au/Ag芯-壳复合结构纳米颗粒;光学吸收特性;蓝移 中图分类号:O657.3文献标识码:A 文章编号:1001-9731(2005)03-0425-02 1引言 纳米尺度的胶体金、银等贵金属颗粒由于其区别于相应块体材料的突出的催化性质、电磁性质和光学性质受到了相关研究人员的广泛关注[1~4]。特别是由表面等离子体共振(surface plasm on r esonance,SPR)而引起的在可见光范围的强吸收带一直是人们研究的热点[5~8]。近来,具有芯-壳结构的纳米颗粒(如Au/ Au2S、Au/SiO2、Ag/SiO2等)[9~13],由于其光学性质的可剪裁性,开始受到研究者的青睐。本文利用二步液相还原法,通过控制反应液中金离子和银离子的摩尔比,得到了单分散的A u/Ag芯-壳复合结构的纳米颗粒,用透射电子显微镜(T EM)对其结构、形貌和尺寸进行了表征,并对其光学吸收特性进行了分析。 2实验 采用二步液相还原法来制备Au/Ag芯-壳复合结构的纳米颗粒。首先制备金纳米颗粒,即用柠檬酸盐作还原剂,在沸腾的状态下与氯金酸(H AuCl4)溶液持续反应30min后,得到胶体金纳米颗粒,此时反应液的颜色为鲜红色;然后再加入一定量的硝酸银(AgNO3)和柠檬酸盐溶液,在沸腾的状态下,经过20m in后,反应液的颜色变为棕红色,用JEOL JEM-200CX透射电子显微镜在160kV加速电压下,观察到Au/Ag芯-壳复合结构的纳米颗粒,见图1(a)和图2(c)。实验中所有的反应溶液均是用去离子水(>18M8) 配制的。 图1(a)反应液中银离子和金离子的摩尔比为1B2时所制备的Au/Ag芯-壳复合结构纳米颗粒 TEM照片(b)相应的选区电子衍射图 Fig1(a)T EM image of silver-coated gold com posite nanoparticles corresponding to the mole ratio1 B2of Ag ions and Au ions in the reduction so- lution(b)the corr espo nding selected area elec- tro n diffractio n pattern 3结果与讨论 图1(a)和图2(c)是反应液中银离子与金离子的摩尔比分别为1B2和1B1时所制备的Au/Ag芯-壳 复合结构纳米颗粒的透射电镜照片。 图2(c)反应液中银离子和金离子的摩尔比为1B1时所制备的Au/Ag芯-壳复合结构纳米颗粒 T EM照片(d)相应的选区电子衍射图 Fig2(c)T EM image o f silver-coated gold com posite nanopar ticles corresponding to the mo le ratio1 B1of Ag ions and Au ions in the reduction so- lution(d)the corr esponding selected area elec- tr on diffr actio n pattern 图1(b)和图2(d)分别为其相应的选区电子衍射图。在制备的过程中,保持反应液中金离子和银离子 425 闫仕农等:A u/A g芯-壳复合结构纳米颗粒的制备和表征 *基金项目:国家自然科学基金资助项目(60277003) 收稿日期:2004-06-25通讯作者:闫仕农 作者简介:闫仕农(1966-),男,山西太原人,副教授,在读博士,师承西安交通大学理学院现代物理研究所王永昌教授从事纳米材料光学性能的研究。

径向分布函数

实验一 径向分布函数、角度分布函数电子云图形的绘制 一、实验目的 1.绘制波函数及其各种分布以及电子云的图像,观察各种函数的分布情况。 2.了解计算机绘图方法。 二、实验原理 1.程序原理:本程序可绘制类氢原子的径向分布函数,角度分布函数及原子轨道、杂化轨道和分子轨道等电子几率密度图,绘制过程中的各函数形式列于下列各表中。式中 ,n 为主量子数, =0.0529nm ,为波尔半径, Z 是有效核电荷,由Slater 规则计算得到的周期表中前四个周期元素的有效核电荷列于表1.1中,下面简要叙述对各类图形的处理方案。 ①径向分布函数图: 径向分布函数D(r)=r 2R 2(r) 反映了电子的几率随半径r 的分布情况, D(r)dr 代表半径r 到r+dr 两个球壳夹层内找到电子的几率。其中R(r)为类氢原子的径向函数,本程序所采用的径向函数R(r)分别列于表2-2中。 ②角度分布函数图: 的角度部分 以及角度分布函数 表示同一球面不同方向上 或 的相对大小,本程序所采用的角度函数 分别列于表3-3中。 0 2na Zr = ρ0 a ),,(φθψr nlm ),(φθψlm ),(2φ θψlm ),,(φθψr nlm ),,(2φθψr nlm ),(φθψlm

3 22 2 3 2 ,),(,,,,sp d sp yz xz z z z Y Y f f f p p 角度分布图是画的X-Z 平面的截面图, 其余角度分布图都是画的X-Y 平面的截面图。角度分布函数图中,凡轨道形状相同,而仅方向不同者,则仅绘出一个图形作为代表。 ③等电子几率密度图:2),,(φθψr 称为电子几率密度函数,它描述在该轨道中的电子在三维空间的分布情况,为了在平面上表示出这种分布往往采用某一切面上的等值面图,程序按指定的轨道在该切面上逐点计算 2 ψ 的值,及找出 2max ψ 的最大值,求出相对几率密度 2max 2 /ψ ψ =P ,该值在X-Y 平面上是位置坐标(x,y)的函数(对于2 3z d 轨 道是在X-Z 平面),绘图时不是将取值相同的点连成曲线,而是打印一系列符号表示相对几率密度的分布区域。当P <0.01时为空白, 0.01≤P <0.02时用“:”,0.02≤P <0.1时用“/”,0.1≤P <0.25时用“O ”,0.25≤P <0.5时用“&”和P >0.5时用“#”符号表示。根据这些符号可以粗略看出几率密度的分布情况。 在X-Y 平面内,坐标变化范围为 -2.4≤x ≤2.4(步长=0.08) -1.42≤y ≤1.42(步长=0.133) 所有距离的长度单位都是10-10m 。 原子轨道使用的波函数如表1-4所示。对2 3 2 2 4,4,4,3xz z z z f f d d 和轨道采 用X-Z 平面做截面,所有其它原子轨道都画在X-Y 平面上,程序使用原子轨道的四重轴对称性,首先计算第三象限内,即-2.4≤x ≤0,-1.42≤y ≤0的Ψ值,随后被2max 2 /ψ ψ =P 代替,在其它三个象限内的相应 值由对称性得到,用P(x,y)代表电子在坐标(x ,y)点的几率密度,则:

非晶和纳米晶合金的比较

铁基非晶合金在工频和中频领域,正在和硅钢竞争。铁基非晶合金和硅钢相比,有以下优缺点。 1)铁基非晶合金的饱和磁通密度Bs比硅钢低 但是,在同样的Bm下,铁基非晶合金的损耗比0.23mm厚的3%硅钢小。一般人认为损耗小的原因是铁基非晶合金带材厚度薄,电阻率高。这只是一个方面,更主要的原因是铁基非晶合金是非晶态,原子排列是随机的,不存在原子定向排列产生的磁晶各向异性,也不存在产生局部变形和成分偏移的晶粒边界。因此,妨碍畴壁运动和磁矩转动的能量壁垒非常小,具有前所未有的软磁性,所以磁导率高,矫顽力小,损耗低。 2)铁基非晶合金磁芯填充系数为0.84~0.86 3)铁基非晶合金磁芯的工作磁通密度 1.35T~1.40T,硅钢为1.6T~1.7T。铁基非晶合金工频变压器的重量是硅钢工频变压器的重量的130%左右。但是,即使重量重,对同样容量的工频变压器,磁芯采用铁基非晶合金的损耗,比采用硅钢的要低70%~80%。 4)考虑损耗,总的评估价为89% 假定工频变压器的负载损耗(铜损)都一样,负载率也都是50%。那么,要使硅钢工频变压器的铁损和铁基非晶合金工频变压器的一样,则硅钢变压器的重量是铁基非晶合金变压器的1?8倍。因此,国内一般人所认同的抛开变压器的损耗水平,笼统地谈论铁基非晶合金工频变压器的重量、成本和价格,是硅钢工频变压器的130%~150%,并不符合市场要求的性能价格比原则。国外提 出两种比较的方法,一种是在同样损耗的条件下,求出两种工频变压器所用的铜铁材料重量和价格,进行比较。另一种方法是对铁基非晶合金工频变压器的损耗降低瓦数,折合成货币进行补偿。每瓦空载损耗折合成5~11美元,相当于人民币42~92元。每瓦负载损耗折合成0.7~1.0美元,相当于人民币6~8.3元。例如一个50Hz,5kVA单相变压器用硅钢磁芯,报价为1700元/台;空载损耗28W,按60元人民币/W计,为1680元;负载损耗110W,按8元人民币/W计,为880元;则,总的评估价为4260元/台。用铁基非晶合金磁芯,报价为2500元/台;空载损耗6W,折合成人民币360元;负载损耗110W,折合成人民币880元,总的评估价为3740元/台。如果不考虑损耗,单计算报价,5kVA铁基非晶合金工 频变压器为硅钢工频变压器的147%。如果考虑损耗,总的评估价为89%。 5)铁基非晶合金抗电源波形畸变能力比硅钢强 现在测试工频电源变压器磁芯材料损耗,是在畸变小于2%的正弦波电压下进行的。而实际的工频电网畸变为5%。在这种情况下,铁基非晶合金损耗增加到106%,硅钢损耗增加到123%。如果在高次谐波大,畸变为75%的条件下(例如工频整流变压器),铁基非晶合金损耗增加到160%,硅钢损耗增加到300%以上。说明铁基非晶合金抗电源波形畸变能力比硅钢强。 6)铁基非晶合金的磁致伸缩系数大 是硅钢的3~5倍。因此,铁基非晶合金工频变压器的噪声为硅钢工频变压器噪声的120%,要大3~5dB。

银纳米粒子的合成

银纳米粒子的合成及其表征 一、实验目的: 1. 掌握银纳米粒子的合成原理和制备方法。 2. 掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构 造。 3. 进一步熟悉紫外分光光度法的测定原理。 二、实验原理: 纳米粒子是指粒子尺寸在纳米量级(1~100nm)的超细材料。由于其特有的小尺寸效应、表面效应、量子尺寸效应、量子隧道效应等,使其拥有完全不同于常规材料的光学性能,力学性能,热学性能,磁学性能,化学性能,催化性能,生物活性等,从而引起了科技工作者的极大兴趣,并成为材料领域研究的热点。成为21世纪最有前途的材料。 银纳米粒子,因其独特的光学电学性能,得到人们的关注。常用的制备方法分为物理法和化学法。化学法有溶胶-凝胶法、电镀法、氧化-还原法和真空蒸镀法等。本实验中我们利用氧化还原法合成银纳米粒子。银纳米粒子引起尺寸的不同,表现出不同的颜色。由黄溶胶和灰溶胶两种。可用紫外可见光谱表征。根据朗伯-比耳定律:A=εb c,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。据此,可绘制校准曲线。并对样品进行测定。本实验我们利用氧化还原法合成黄溶胶,并对其进行表征。 三、试剂和仪器 TU-1901紫外-可见分光光度计,比色管 (1.5mmol/L),王水 硝酸银(1mmol/L),NaBH 4 四、实验步骤:

1、化学还原法制备纳米银: 2KBH4+2AgNO3+6H2O→2Ag+2KNO3+2H3BO3+7H2↑ (反应开始后BH4-由于水解而大量消耗:BH4-+H++2H2O→中间体→HBO2+4H2↑) 还原法制得的纳米银颗粒杂质含量相对较高,而且由于相互间表面作用能较大,生成的银微粒之间易团聚,所以制得的银粒径一般较大,分布很宽。 2、银纳米粒子的合成 1)制备银纳米粒子的玻璃容器均需在王水或铬酸溶液中浸泡,最后用去离子水洗涤几次。 (M=37.85)溶液。 2)配制50 mL 1.5mmol/L的NaBH 4 溶液置于冰浴中,在剧烈搅拌下,逐滴加入2.5 3)取15mL 1.5 mmol/L的NaBH 4 mL 1mmol/L的AgNO 溶液,继续搅拌30 min,制得黄色的银纳米粒子溶胶。 3 3、银纳米粒子的表征和测量 1)紫外可见光谱的表征 1. 启动计算机,打开主机电源开关,启动工作站并初始化仪器。 2. 在工作界面上选择测量项目(光谱扫描,光度测量),设置测量条件(测量波长等)。 3. 将空白放入测量池中,点击基线,进行基线校正。 4. 将合成的银纳米粒子放入样品池,点击开始,进行扫描。确定最大吸收波长。 5. 校准曲线的绘制 配制稀释不同倍数的银纳米粒子溶液(1,2,4,5倍),放入样品池,进行

径向分布函数

2.2.3 径向部分和角度部分的对画图 1. 径向部分的对画图 结尾部分增加如下内容: 需要指出,常有人将4πr 2ψ2作为径向分布函数的定义, “理由”是:ψ2代表概率密度,4πr 2代表球面积,二者相乘即为半径为r 的球面上的概率。但这种说法至少是片面的,甚至是错误的。事实上,以上说法只对s 电子云才成立,因为它们是与方向无关的球对称形,Y 00=(4π)-1/2,|Y 00|2=(4π)-1,R 2( r )=ψ2/|Y 00|2=4πψ2,从而D ( r )= r 2R 2( r )才可以进一步写成D ( r )= 4πr 2ψ2。可见,D ( r )= r 2R 2( r )对于任何原子轨道的电子云都是适用的,而 D ( r )= 4πr 2ψ2只适用于s 电子云,用于其它电子云都是错误的。 电子云在空间的分布并没有一个明确的边界,所以,衡量轨道的大小取决于如何定义轨道的半径。文献中常见到两种定义: (1) 轨道最可几半径,即径向分布函数D (r )最大值对应的半径r max 。在这个半径上,单位厚度球壳内电子出现的几率最大。以单电子原子的1s 轨道为例: 000000032100322221030 33222223300 03230020()24()d ()4d 422d d 421010Zr a Zr a Zr Zr Zr a a a Zr a Zr a Z R r e a Z D r r R r e a D r Z Z Z r e re r e r a r a a Z Zr re a a Zr re a ?????????=???? ==????==???????????=?=???????=????

熔体快淬法制备非晶、纳米晶

熔体快淬法制备非晶、纳米晶 一、实验目的 1. 实践粗晶材料如何制备成非晶、纳米晶材料; 2. 了解不同快淬速度对材料的组织的影响; 3. 了解材料从粗晶变成非晶或纳米晶对其性能的影响。 二、实验原理 熔体快淬就是在真空状态下,将熔融的金属或合金在一定的压力下,注射到高速旋转的水冷铜辊上,使其在极大的过泠度下凝固,获得具有超细结构的非平衡组织,由于这种方法具有极高的冷速,可使金属及合金的晶粒尺寸达到纳米级或得到非晶组织。使制备的金属或合金具有与一般非平衡冷却完全不同的力学和物理性能。 金属或合金的晶粒尺寸随过冷度的增加而减小。熔体快淬的冷速极高,可以使多种金属及合金形成纳米晶或非晶态。而且,由于冷却铜辊的转速及液态金属及合金的喷射压力是可调的,所以冷却速度可以严格控制,从而达到控制金属或合金的晶粒度的目的。 应用熔体快淬制备纳米晶、非晶态金属及合金的工艺易于控制,而且可以实现批量生产,易于产业化。目前,熔体快淬已经在稀土永磁材料、贮氢合金、Ni2MnGa磁性形状记忆合金、耐高温非晶钛基及钛锆基钎焊料、高强度非晶态结构材料等领域得到广泛的应用。 熔体快淬方法的典型工艺如下所示,母合金冶炼→浇注成锭→铸锭在带喷嘴的试管中再熔化→熔化喷射→高速旋转的冷却辊→固化→薄带和辊分离→收集带子→晶化退火(可省略)→破碎制粉→SPS烧结。 熔体快淬分为单辊快淬法和双辊快淬法。本实验室用的是单辊快淬法,其原理如图1 所示。铸锭在试管内被感应线圈加热熔化,然后通入氩气,使试管内外产生0.3~0.7个大气压的压力差,使熔化合金从漏嘴喷出,到达快速旋转的辊面,迅速凝固,形成连续薄带,再借助离心力抛离辊面。如此完成一次喷铸过程需要数秒到数十秒的时间。图2为快淬的薄带。如果淬速更高,得到的薄带将更碎且细小,其晶粒为纳米级(如图3)。实验中,水冷铜辊的转速、液态金属的压力、液态金属的温度、石英管喷口的尺寸、形状以及喷口与铜辊的距离都是快淬工艺的关键因素。 图1 单辊快淬法制备NdFeB薄带图2 NdFeB薄带

银纳米线复合纳米级纤维的制备及性能研究

银纳米线复合纳米级纤维的制备及性能研究 邢明杰逄邵伟丁莉燕陈向阳 (青岛大学,山东青岛,266071) 摘要:研究银纳米线的制备工艺以及银纳米线添加量对聚乙烯吡咯烷酮/银纳米线复合纳米级纤维性能的影响三采用水热反应法制备了银纳米线,通过静电纺丝方式制备了聚乙烯吡咯烷酮/银纳米线复合纳米级纤维三测试了不同反应条件下银纳米线及不同银纳米线含量的复合纳米级纤维的微观形貌二复合纳米级纤维的抗菌性能与光催化性能三结果表明:溶液静置30min后,在180?时水热反应24h,获得的银纳米线形貌较理 想;银纳米线质量分数达到5%时,复合纳米级纤维就具有显著的抗菌性;银纳米线质量分数为8%时,复合纳米级纤维具有较好的光催化性能三认为:聚乙烯吡咯烷酮/银纳米线复合纳米级纤维具有较理想的抗菌性和光催化性能三 关键词:静电纺丝;银纳米线;聚乙烯吡咯烷酮;抗菌性;光催化性能 中图分类号:TS101.92+1 TB383文献标志码:A文章编号:1000-7415(2018)09-0006-05 Pre p aration and Pro p ert y Stud y on Silver Nanowire Com p osite Nanofiber XING Min gj ie PANG Shaowei DING Li y an CHEN Xian g y an g (Qin g dao Universit y,Shandon g Qin g dao,266071) Abstract The influences of silver nanowire p re p aration p rocess and silver nanowire additive amount on p ro p-erties were studied.Silver nanowire was p re p ared with the method of h y drothermal reaction p ol y vin y l py rrolidone/ silver nanowire com p osite fiber was p re p ared b y electrostatic s p innin g.The microto p o g ra p h y of com p osite nanofi-ber with the silver nanowire under different reaction conditions and with different silver nanowire contents were tested.The test results showed that the mor p holo gy of silver nanowires was ideal when it was obtained after the solution was p laced30mins and the h y drothermal reaction was ha pp ened for24h at180?.When the silver nanowire mass fraction in com p osite nanofiber was u p to5%,it had obvious antibacterial p ro p ert y.The com p osite nanofiber with the silver nanowire mass fraction of8%had better p hotocatal y tic p ro p ert y.It is considered that the p ol y vin y l py rrolidone/silver nanowire com p osite nanofiber has better antibacterial p ro p ert y and p hotocatal y tic p ro p ert y. Ke y Words Electrostatic S p innin g,Silver Nanowire,Pol y vin y l py rrolidone,Antibacterial Pro p ert y,Photocat-al y tic Pro p ert y 静电纺丝是通过高压电场的作用使聚合物溶液或熔体流动并发生形态变化,最终形成纳米级纤维集合体三与传统的非织造材料相比,静电纺纳米级纤维集合体具有纤维直径小二比表面积大二孔隙率高等特点,在组织工程,药物稀释,制备吸声二过滤材料和碳纳米管等方面有着广阔的应用前景[1]三近年来,纳米银材料因为其优异的抗菌性[2]二导电性二良好的生物相容性二导热性和催化 性[3],被广泛应用于生物科学二医疗卫生二光电材 作者简介:邢明杰(1964―),男,教授,xm j q du@https://www.wendangku.net/doc/0118745279.html, 收稿日期:2018-04-08料等研究领域三目前制备银纳米线的方法[4]主要有多元醇法二溶剂热(水热)法二电化学法和模板法等,其中水热法凭借操作简单二环保无污染的特点被广泛采用三为了研究反应条件对银纳米线生长的影响,扩大纳米银材料的使用范围,本文对银纳米线的制备二抗菌性能和光催化性能进行了研究三 1试验部分 1.1试验原料与仪器 原料:硝酸银A g NO3,天津市风船化学试剂科技有限公司,分析纯;聚乙烯吡咯烷酮(以下简 ?6?Cotton Texti le Technolo gy第46卷第9期2018年9月 =================================================万方数据

纳米铁纸(非晶、纳米晶材料)

目前,国内纳米生物效应的研究工作主要从生物整体水平、细胞水平、分子水平和环境等几个层面开展。其重点是研究纳米物质整体生物学效应以及对生理功能的影响、纳米物质的细胞生物学效应及其机制以及大气纳米颗粒对人体作用和影响等领域的研究。 (1)在纳米颗粒的整体生物效应方面,目前已经取得了一些初步的研究结果。我们发现在生理盐水溶液中尺寸小于100nm的磁性纳米颗粒,仅仅微克量级进入小鼠血管就能很快导致凝血现象以致堵塞血管,导致小鼠死亡。说明这种纳米颗粒进入生物体容易与心血管系统相互作用,可能有导致心血管疾病的潜在危险。进一步研究发现,对这种纳米颗粒表面进行化学修饰,可以极大地改变它的生物效应。一般的微米Cu粉,被认为是无毒的。但研究发现,纳米Cu粉对小鼠的脾、肾、胃均能造成严重伤害,而相同剂量的微米Cu却没有损害。但是,也不是所有的纳米颗粒都如此,比如,我们发现纳米ZnO与通常的微米ZnO的生物毒性,几乎没有差别。目前,大部分纳米材料的生物效应以及它们和相应微米材料的差别等问题还没有进行研究。 (2)纳米颗粒在体内的吸收、分布、代谢和清除,各种纳米物质与生物靶器官相互作用的机理等,是另一个重要的研究方向。研究发现富勒烯在SD大鼠中,90%-95%富集于肝脏,48小时清除。然而,稍做表面修饰后的富勒烯,如:166Hox@C82OHx,其生物效应明显不同,显出生物分布较广,在肝、骨骼、脾、肾、肺的含量依次递减,其它组织分布极低。比如对Gd@C82OH40的生物分布研究结果表明,其24小时后主要位于肝和脾,在肺和血液中衰减极快。水溶性富勒烯衍生物C61CO2H2可以进入细胞,并达到不同的细胞器中。我们与北京大学合作研究还发现,分子量高达60万的水溶性多羟基单壁碳纳米管SWNToks 能非常容易且迅速地在小鼠的各组织和脏器间穿梭,现有的知识还无法解释这种现象。(3)纳米颗粒与细胞的相互作用研究刚刚开始。纳米颗粒能够进入细胞并与细胞发生作用,主要是对跨膜过程和细胞分裂、增殖、凋亡等基本生命过程的影响和相关信号传导通路的调控,从而在细胞水平上产生的生物效应。研究发现,材料的拓扑结构和化学特性是决定细胞与其相互作用的重要因素。某些纳米拓扑结构会促进细胞的粘附、铺展和细胞骨架的形成,但是在某些情况下,纳米拓扑结构会对细胞骨架分布和张力纤维的取向产生负面影响。本实验室研究发现碳纳米管容易进入细胞,并影响细胞结构,在低剂量下(2.5μg /mk),可以刺激肺巨噬细胞的吞噬能力,但在高剂量下(20μg / mk),则严重降低肺巨噬细胞对外源性毒物的吞噬功能。在研究纳米氧化钛对人肝细胞(L02细胞株)的影响时,庞小峰等人发现纳米氧化钛游离于细胞之间,阻碍了胞间通信,降低细胞的生长速度。另有研究发现,富勒醇能够吸收紫外辐照产生的自由基,保护细胞膜不被紫外辐照损伤,能明显提高细胞存活率。纳米材料与细胞的作用机理目前尚不清楚,需要更进一步的系统研究。 (4)纳米颗粒与生物大分子的相互作用研究。重点在纳米材料与生物分子,例如蛋白质、DNA的相互作用及其对生物分子结构和功能的影响等。在研究血浆蛋白分子在碳纳米管无纺膜表面的吸附行为中,许海燕等人发现纤维蛋白原分子有比较强的吸附作用,并且吸附上的纤维蛋白原分子的构型功能发生了某些改变。纳米结构物质与补体系统和免疫细胞的激活作用研究说明,纳米颗粒与蛋白质分子之间存在着较强的相互作用,使补体蛋白分子的酶活性发生改变。研究发现PAMAM dendrimers可通过静电作用与DNA形成稳定的复合物,且可保护与之复合的DNA分子免受限制性内切酶的降解,可以作为DNA运送的载体导入细胞,实行外源基因在生物体内的表达。 (5)大气中纳米颗粒的生物效应。目前,临床实验研究已对大气中超细颗粒物的生物毒性得出了初步结论,发现尺寸在7-100 nm的颗粒物在人体呼吸系统内有很高的沉积率;尺寸越小越难以被巨噬细胞清除,且容易向肺组织以外的组织器官转移,超细颗粒物可穿过血脑屏障。由于纳米毒理学刚开始发展,这方面的研究和数据比较少,目前尚缺乏准确的分析测试方法,研究存在一定的难度。

硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金

硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金 磁性材料 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场h 作用下,必有相应的磁化强度m 或磁感应强度b,它们随磁场强度h 的变化曲线称为磁化曲线(m~h或b~h曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度h 足够大时,磁化强度m达到一个确定的饱和值ms,继续增大h,ms保持不变;以及当材料的m值达到饱和后,外磁场h降低为零时,m并不恢复为零,而是沿msmr曲线变化。材料的工作状态相当于m~h曲线或b~h曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整洁排列。 剩余磁感应强度br:是磁滞回线上的特征参数,h回到0时的b值。 矩形比:br∕bs 矫顽力hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的b与h的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗p:磁滞损耗ph及涡流损耗pe p = ph + pe = af + bf2+ c pe ∝f2 t2 / ,ρ 降低, 磁滞损耗ph的方法是降低矫顽力hc;降低涡流损耗pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mw)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何外形及磁化状态密切相关。设计者必须熟知材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何外形及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶

相关文档
相关文档 最新文档