文档库 最新最全的文档下载
当前位置:文档库 › 淀粉酶

淀粉酶

淀粉酶
淀粉酶

一、淀粉

?1、淀粉的性状及组成

?淀粉为白色无定形结晶粉末

?形状有圆形、椭圆形和多角形三种

?一般含水分高、蛋白质少的植物的淀粉颗粒比较大些,多成圆形或椭圆形,如马铃薯、木薯等。

淀粉的性状及组成

?碳44.4%,氢6.2%,氧49.4%

?分为直链淀粉和支链淀粉

?普通谷类和薯类淀粉含直链淀粉17%~27%,其余为支链淀粉;

?而粘高粱和糯米等则不合直链淀粉,全部为支链淀粉。

?直链淀粉聚合度约100~6000之间

?遇碘反应是纯蓝色

淀粉的性状及组成

?支链淀粉是由多个较短的α-1,4糖苷键直链结合而成。每2个短直链之间的连接为α-1,6糖苷键。

?聚合度约1000~3000,000之间,一般在6000以上。

?遇碘呈紫红色反应。

2、淀粉的特性

?糊化:淀粉在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶解于水中形成带有粘性的淀粉糊。

?第一阶段:淀粉缓慢地可逆地吸收水分

?第二阶段:当温度升到大约65℃时,淀粉颗粒经过不可逆地突然很快地吸收大量水分后膨胀,粘度增加很大。

?第三阶段:当温度继续升高,淀粉颗粒变成无形空囊,可溶性淀粉浸出,成为半透明的均质胶体。

3、酶解法

酶解法是利用专一性很强的淀粉酶及糖化酶将淀粉水解为葡萄糖的方法。

酶解法可分为两步:

第一步,利用α-淀粉酶将淀粉液化;

第二步,利用糖化酶将糊精或低聚糖进一步水解转化为葡萄糖。生产上这两步分别称为液化和糖化。由于在该过程中淀粉的液化和糖化都是在酶的作用下进行的。因此酶解法又称为双酶法或多酶法。

?优点:1、酶解法是在酶的作用下进行的,反应条件较温和,不需要耐高温高压或酸腐蚀的设备;

?2、酶作为催化剂的特点是专一性强,副反应少,故水解糖液纯度高,淀粉转化率高;

?3、可在较高的淀粉乳浓度下水解。

?4、酸解法一般使用10-12Bx(含18%--20%淀粉)的淀粉乳,而酶解法可用20—23Bx (含34%--40%淀粉)的淀粉乳,并且可以采用粗原料。

?5、用酶解法制得的糖液较纯净、颜色浅、无苦味、质量高,有利于糖液的充分利用。

?6、双酶法工艺同样适用于大米或粗淀粉原料,可避免淀粉在加工过程中的大量流失,减少粮食消耗。

缺点:酶解法反应时间较长,设备要求较多,且酶是蛋白质,易引起糖液过滤困难。当然,随着酶制剂生产及应用技术的提高,酶解法制糖将逐渐取代酸解法制糖。

葡萄糖的分解反应

葡萄糖(失水)5`-羟甲基糠醛+甲酸

氨基酸

腐植质(色素)

酸法水解淀粉过程中,由于反应温度、压力过高,时间过长,葡萄糖受酸和热的影响发生分解反应,生成5’-羟甲基糠醛,因5’-羟甲基糠醛的性质不稳定,又可进一步分解生成乙酰丙酸、蚁酸等物质,而这些物质又能自身相互聚合,或与淀粉中所含的其他有机物质相结合,产生色素。

实验结果证明:

1)5`-羟甲基糠醛是产生色素的根源

2)色素的生成量随葡萄糖浓度的增加而增加

3)PH值等于3时,色素的生成量最小

二、酶解法制糖工艺

酶解法优点:由酸法水解工艺可知,以淀粉为原料应用酸水解法制备糖液,由于需要高温、高压和催化剂,会产生一些不可发酵性糖及其一系列有色物质,这不仅降低了淀粉转化率,而且生产出来的糖液质量差。自60年代以来,国外在酶水解理论研究上取得了新进展,使淀粉水解取得了重大突破,日本率先实现工业化生产,随后其他国家也相继采用了这种先进的制糖工艺。酶解法制糖工艺是以作用专一性的酶制剂作为催化剂,因此反应条件温和,复合和分解反应较少,因此采用酶法生产不仅可提高淀粉的转化率及糖液的浓度,而且还可大幅度地改善了糖液的质量,是目前最为理想、应用最广的制糖方法。

1、淀粉酶解法的两个步骤

2、糊化温度

发生糊化现象时的温度称为糊化温度,一般来讲,糊化温度有一个范围。不同的淀粉有不同的糊化温度

举例:玉米、马铃薯、木薯、小麦等

糊化过程

第一阶段:预糊化。

第二阶段:糊化。

第三阶段:溶解。

三、液化

α-淀粉酶的特性

(1)热稳定性在60℃以下较为稳定

(2)作用温度最适作用温度为60~70℃

(3)pH稳定性在pH6.0~7.0较为稳定

(4)作用pH值最适作用pH值为6.0

(5)与淀粉浓度关系淀粉和淀粉的水解产物糊精,对酶活力有很大的提高作用。

(6)钙离子浓度对酶活力的影响

(7)pH稳定性与钙离子的关系

(8)Ca2+、Zn2+、Cl-等对α-淀粉酶有激活作用;FeSO4、ZnSO4、CuSO4则有抑制作用。

α-淀粉酶的使用要点

(1)α-淀粉酶系生化物质,光线、温度、湿度会引起酶失活。在运输中应避免日光曝晒和雨淋,仓储应保持清洁、阴凉和干燥。

(2)使用前1h用温水(40℃)将酶溶解,少量不溶物不影响使用效果。如工艺需要,可进行过滤,取滤液使用。

(3)如遇少量结块现象,可以粉碎后使用。

(4)使用量:活力为20000 U /ml耐高温淀粉酶,每1t原料(淀粉)加0.5L左右,相当于10 U /g干淀粉。

问题:1、在液化过程中为何要加入氯化钙,浓度为多少?

2、淀粉液化约多少时间?液化温度多少?

工艺的特点:利用喷射器将蒸汽喷射入淀粉乳薄膜,在短时间内通过喷射器快速升温145℃,完成糊化、液化,使形成的“不溶性淀粉颗粒”在高温下分散,数量也大为减少,从而使所得的液化液既透明又易于过滤,淀粉的出糖率也高,同时采用了真空闪急冷却,增高了液化液的浓度。

2)淀粉液化条件对酶反应的影响

淀粉颗粒状态

PH值与温度:参看工艺回答问题

1、酶解包括哪两个步骤,分别用何种酶,水解有无先后次序?

2、液化前,为何得先加热淀粉乳?

3、说说最佳液化的温度和PH?

从表中可看出结论:

a-淀粉酶与PH的关系a-淀粉酶活力与温度的关系PH=5.7

金属离子不同来源的酶对热的稳定性与不同

总之:3)液化程度控制

淀粉液化过程中,其液化气程度高好还是低好,为什么?

淀粉液化的目的?

淀粉液化的程度?

液化终点控制方法?

液化结束后,为何要进行灭酶处理,如何操作?

四、糖化

糖化是利用糖化酶(也称葡萄糖淀粉酶)将淀粉液化产物糊精及低聚糖进一步

水解成葡萄糖的过程。

1、糖化酶作用过程中应考虑的几个问题

酶的用量

原则:酶活力低,液化液浓度高,用量则多,反之则少。生产用量:30%淀粉,80-100单位/淀粉。

糖化酶

?糖化酶的特性

?(1)pH对糖化酶酶活力及酶稳定性的影响

?糖化酶的pH范围为3.0~5.5,最适pH范围为4.0~4.5。

?(2)温度对糖化酶酶活力及酶稳定性的影响

?糖化酶温度范围为40~65℃,最适温度范围为58~60℃。

?(3)抑制剂

?大部分重金属,如铜、银、汞、铅等都能对糖化酶产生抑制作用。

2、糖化工艺条件及控制

糖化是在一定浓度的液化液中,调整适当温度与PH值,加入需要量的糖化酶制

剂,保持一定时间,使溶液达到最高的葡萄糖值。

工艺过程如下:

液化----糖化----灭酶----过滤----贮糖计量----发酵

液化结束后,迅速将液化液用酸将PH调至4.2-4.5,同时迅速降温至60度,然后加入糖化酶,保温数小时后,用无水酒精检验无糊精存在时,将料液PH调至4.8-5.0,同时加热到90度,保温30分钟,然后将料液温度降低到60-70度时开始过滤,滤液进入贮糖罐备用。

作用?

问题说说酸水解法和酶水解法不同水解工艺的优劣?从水解糖液的质量、原料利用率、

糖收得率、耗能及对粗淀粉原料

的适应情况来看,酶解法好。

从淀粉水解的整个过程所需的时间来看,

酸法短,酶法最长。

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

实验三、淀粉酶活性的测定实验报告

实验四、淀粉酶活性的测定 一、实验目的: 1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义; 2、学会比色法测定淀粉酶活性的原理及操作要点。 二、实验原理: 淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70℃ 15min 则被钝化。测定时,使其中一种酶失活,即可测出另一种酶的活性。 淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。 三、实验用具: 1、实验设备 研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热恒温水浴锅,离心机,电磁炉。 2、实验材料与试剂 (1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。 (2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6的柠檬酸缓冲液; (3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入; (4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中; (5)pH 6.8的磷酸缓冲液:取磷酸二氢钾6.8g,加水500ml使溶解,用0.1mol/L氢氧化钠溶液调节pH值至6.8,加水稀释至1000ml即得。 (6)0.4mol/L的NaOH溶液; (7)1%NaCl溶液。 (8)实验材料:萌发的谷物种子(芽长约1cm) 四、操作步骤 1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。取上清液1.0ml,用pH 为6.8的缓冲溶液稀释5倍,所得酶液。 2、a- 淀粉酶活力测定 (1) 取试管4支,标明2支为对照管,2支为测定管。 (2) 于每管中各加酶液lml ,在 70℃士0.5℃恒温水浴中准确加热15min ,取出后迅速用流水冷却。 (3) 在对照管中加入4m1 0.4mol/L氢氧化钠。 (4) 在4支试管中各加入1ml pH5.6的柠檬酸缓冲液。 (5) 将4支试管置另一个40℃士 0.5℃恒温水浴中保温15min ,再向各管分别加入40℃下预热的1%淀粉溶液2m1,摇匀,立即放入40℃恒温水浴准确计时保温5min。取出后向测定管迅速加入4ml 0.4mol/L氢氧化钠,终止酶

(整理)α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

淀粉酶及其应用

淀粉酶及其应用 0 引言 淀粉酶分布非常广泛,是人们经常研究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用。 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。最初,淀粉酶一词用来指可以水解直链淀粉、支链淀粉、肝糖及其降解产品中α-1,4-糖苷键的酶(本菲尔德(Bernfeld),1955年;费希尔(Fisher)和斯坦(Stein),1960年;迈拜克(Myrback)和纽慕勒(Neumuller),1950年)。它们水解相邻葡萄糖单体之间的键,产生带有具体用酶特征的产品。 近年来,人们发现了很多与淀粉及相关多糖结构降解有关的新型酶,并对其进行了研究(鲍伊(Boyer)和英格尔(Ingle),1972年;博诺考尔(Buonocore)等人,1976年;格里芬(Griffin)和福格蒂(Fogarty),1973年;福格蒂(Fogarty)和格里芬(Griffin),1975年)。 (1)有一些微生物源可以劈开这些结构中的α-1,4或α-1,4和/或α-1,6键,人们将现在已经或将来可能对这些微生物源工业化生产有重大影响的酶分为六种(福格蒂(Fogarty)和凯利(Kelly),1979年)。 (2)水解α-1,4键和绕过α-1,6键的酶,比如α-淀粉酶(内作用淀粉酶)。 (3)水解α-1,4键,但不能绕过α-1,6键的酶,比如β-淀粉酶(把麦芽糖当作一个重要的终端产品来生产的外作用淀粉酶)。 (4)水解α-1,4和α-1,6键的酶,比如淀粉葡糖苷酶(葡萄糖淀粉酶)和外作用淀粉酶。 (5)仅水解α-1,6键的酶,比如支链淀粉酶和其它一些脱支酶。 (6)优先水解其它酶对直链淀粉和支链淀粉所起的作用产生的短链低聚糖中α-1,4键的酶,比如α-葡萄糖苷酶。 (7)将淀粉水解为一连串非还原环状口葡糖基聚合物,称为环糊精或塞查丁格(Sachardinger)糊精的酶,比如浸麻芽孢杆菌(Bacillus macerans)淀粉酶(环糊精生成酶)。 1 淀粉 在描述淀粉分解酶的作用方式和性质前,有必要来讨论一下这种天然基一一淀粉的特性。淀粉是所有高等植物中主要储备碳水化合物的。在有些植物中,淀粉占整个未干植物的70%。淀粉是不溶于水的细小颗粒。这些颗粒的大小和形状常常由植物母体决定,具有植物品种的特征。当把淀粉颗粒置于水中加热时,颗粒中的连接氢键变弱,颗粒开始膨胀、凝胶化。最终,它们根据多糖的浓度或形成糊状物或形成弥散现象。淀粉来自于植物,比如玉米、小麦、高梁、稻米的种子,或木薯、马铃薯、竹芋的茎根,或来自于西谷椰子的木髓。玉 米是淀粉的主要商业原料,通过湿磨生产工艺便可获得商品淀粉(博考特(Berkhout),1976年)。直链淀粉和支链淀粉的特性见表1。 表1直链淀粉和支链淀粉的比较 性质 直链淀粉 支链淀粉 基本结构 基本直线 分岔 在水溶液中稳定性 回生 稳定 聚合度 C.103 C.104~105 平均链长 C.103 C.20~25 β淀粉酶水解 87% 54%

人体生物化学与疾病_重点_公选临床生化_考点

人体生物化学与疾病(临床生物化学/公选) 重点 名词解释 1低血糖症:低血糖症是由多种疾病引起的\以血糖浓度过低为特征的(一组)综合征,而不是一个独立的疾病。 2糖尿病:是指由于胰岛素绝对或相对不足,或利用低下而引起的以糖\脂\蛋白质代谢紊乱为特征的复杂的慢性代谢性疾病,其临床特征为持续高血糖,甚至出现尿糖. 3胰岛素抗性:又称胰岛素抵抗,是指由于靶细胞膜上胰岛素受体缺陷,导致靶细胞对胰岛素的反应差,不能将胰岛素信息转换为生物学效应的现象。 1.胰岛素释放试验:常与OGTT同时进行,利用口服葡萄糖使血糖升高,从而刺激胰岛β细胞释放胰岛素,测定空腹及服糖后1h\2h\3h的血清(浆)胰岛素水平,称为胰岛素释放试验;通过检测血清胰岛素水平,可以观察\反映胰岛β细胞的分泌功能。 2.胆石症:(cholelithiasis) 是指在胆道系统中,胆汁的某些成分(胆色素\胆固醇\黏液物质及钙等)可以在各种因素作用下析出\凝集而形成结石的现象。 3.酮症酸中毒:指在脂肪大量动用的情况下,如糖尿病\饥饿\妊娠反应较长时间伴有呕吐症状者\酒精中毒呕吐并数日少进食物者,脂肪酸在肝内氧化加强,酮体生成增加并超过了肝外组织的利用量,因而出现酮血症 4.肝纤维化:是各种慢性肝病向肝硬化发展所共有的病理改变和必经途径,是肝脏细胞外基质合成和降解失衡的结果。 5.肝硬化:是临床常见的慢性进行性肝病,由一种或多种病因长期或反复作用形成的弥漫性肝损害。 6.脂肪肝:是指由于各种原因引起的肝细胞内脂肪异常堆积的病变。脂肪性肝病正严重威胁国人的健康,成为仅次于病毒性肝炎的第二大肝病,已被公认为隐蔽性肝硬化的常见原因。 7.肝性脑病:是继发于肝功能紊乱的严重的神经综合征,又称肝性昏迷。 8.假性神经递质:某些物质结构与神经递质结构相似,可取代正常神经递质从而影响脑功能,称假神经递质。 9.肾清除率:指单位时间内多少毫升血浆中的某物质经肾脏清除。 10.微量蛋白:是指常规定性或定量方法难以检出的一些尿蛋白。包括微量白蛋白,β2-微球蛋白,Tamm-Horsfall蛋白(THP),α1-微球蛋白(1-MG) 纤维蛋白降解产物(FDP)视黄醇结合蛋白 11.肾小球性蛋白尿:由肾小球病变引起肾小球毛细血管壁通透性增加,使较多的血浆蛋白滤出,主要是白蛋白。 简答 2糖尿病的典型症状及机制 糖尿病患者存在严重的代谢紊乱,典型症状表现为“三多一少”,即多尿\多饮\多食\体重减轻; ①多尿:血糖升高,超出肾糖域(8.9~9.9mmol/L),出现尿糖,引发渗透性利尿,出现多尿的症状; ②多饮:多尿导致大量水分丢失,加之血糖升高\引起血浆渗透压相应升高,高血渗可刺激下丘脑的口渴中枢,口渴思饮,出现多饮的症状; ③多食:尿液排出大量葡萄糖,加机体糖利用障碍,能量代谢紊乱,使患者出现饥饿感而多食; ④体重减轻:由于胰岛素相对或绝对的缺乏,胰高血糖素\糖皮质激素等升高,导致机体蛋白质和脂肪消耗增多,加之机体脱水,从而引起体重减轻; 3胆固醇结石的形成机制 ①胆结石核心:脱落上皮细胞\细菌\寄生虫\胆固醇结晶等 ②胆固醇过饱和——致石性胆汁 ③胆汁排空障碍:肥胖\迷走神经部分切除\妊娠\不吃早餐 4动脉粥样硬化的发病机制 动脉粥样硬化(atherosclerosis,AS) 是指动脉内膜脂质和血液成分沉积,平滑肌细胞及胶原纤维增生,并伴有坏死及钙化等不同程度病变的一类慢性进行性病理过程。 机制:动脉内膜的平滑性和完整性受到破坏;脂质沉积;平滑肌细胞和来自血液的单核细胞不断地吞噬大量脂质成为泡沫细胞;血小板迅速粘附聚集于受损处并被激活。 5列表写出血浆高脂蛋白血症的分类\异常血浆脂蛋白\发病原因

(植物中)淀粉酶活性的测定

(植物中)淀粉酶活性的测定 一实验目的 本实验的目的在于掌握淀粉酶的提取及活性的测定方法。 二实验原理 植物中的淀粉酶能将贮藏的淀粉水解为麦芽糖。淀粉酶几乎存在于所有植物中,有α-淀粉酶及β-淀粉酶,其活性因植物生长发育时期不同而有所变化,其中以禾谷类种子萌发时淀粉酶活性最强。 α-淀粉酶和β-淀粉酶都各有其一定的特性,如β-淀粉酶不耐热,在高温下容易钝化,而α-淀粉酶不耐酸,在pH3.6以下容易发生钝化。通常酶提取液中同时存在两种淀粉酶,测定时,可以根据他们的特性分别加以处理,钝化其中之一,即可以测出另一种酶的活性。将提取液加热到70℃维持15分钟以钝化β-淀粉酶,便可测定α-淀粉酶的活性。或者将提取液用pH3.6的醋酸在0℃加以处理,钝化α-淀粉酶,以测出β-淀粉酶的活性。 淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定。由于麦芽糖能将后者还原成3-氨基-5-硝基水杨酸的显色基团,在一定范围内其颜色的深浅与糖的浓度成正比,故可以求出麦芽糖到含量。以麦芽糖的毫克数表示淀粉酶活性大小。 三实验材料 萌发的小麦、大麦或者豆类等(芽长1cm左右) 四实验仪器和试剂 1.仪器: 电子天平、研钵、100mL容量瓶(1个)、50mL量筒(1个)、刻度试管[25mL(9个)、10mL(1个)]、试管6支、移液管[1mL(2支)、2mL(2支)、10mL(2支)]、离心机、恒温水浴锅、7220型分光光度计 2.试剂: 1%淀粉溶液、0.4mol/LNaOH、 pH5.6的柠檬酸缓冲液:A、称取柠檬酸20.01g,溶解后稀释至1 000mL;B、称取柠檬酸钠29.41g,溶解后稀释至1 000mL;取A液13.70mL与B液26.30mL 混匀即是。 3,5-二硝基水杨酸:精确称取3,5-二硝基水杨酸1g溶于20mL1mol/LNaOH 中,加入50mL蒸馏水,在加入30g酒石酸钾钠,待溶解后用蒸馏水稀释至100mL,盖紧瓶盖,勿让CO2进入。 麦芽糖标准液:称取化学纯麦芽糖0.100g溶于少量蒸馏水中仔细移入100mL 容量瓶中,用蒸馏水稀释至刻度。 五操作步骤 1.酶液的提取: 称取萌发的水稻种子0.5g(芽长1cm左右,置于研钵中加石英砂研磨成匀浆,移入25mL刻度试管中,用水稀释至刻度,混匀后在温室下放置,每隔数分钟振荡一次,放置20分钟后离心,取上清液备用。 2.α-淀粉酶活性的测定: (1)取三支试管,编号注明1支为对照管,2支为测试管。 (2)于每管中各加入酶提取液1mL,在70℃恒温水浴中(水文的变化不应该超过±0.5℃),准确加热15分钟,在此期间β-淀粉酶受热钝化,取出后迅速在自来水中冷却。

淀粉酶活性研究

淀粉酶活性研究 宁加彬1,王文移2 (青岛科技大学) 摘要:淀粉酶主要用作果汁加工中的淀粉分解和提高过滤速度以及蔬菜加工、糖浆制造、葡萄糖等加工制造。淀粉酶活性的研究在淀粉催化分解工程中占有 重要地位。文中综述了淀粉酶活性及其热稳定性,电场对淀粉酶活性的影响。 pH值、温度、淀粉浓度和钙的添加量以及瞬时高压处理对α-淀粉酶的热稳定 性和活性的影响 关键词:淀粉酶酶活性热稳定性 淀粉酶是水解淀粉和糖原的酶类总称,通常通过淀粉酶催化水解织物上的 淀粉浆料,由于淀粉酶的高效性及专一性,酶退浆的退浆率高,退浆快,污染少,产品比酸法、碱法更柔软,且不损伤纤维。对淀粉酶的研究,有利于我们 更好的理解其催化机理。淀粉是植物种子的主要贮存物质,淀粉酶的主要作用是催化淀粉的水解,淀粉被水解成简单有机化合物并提供细胞生长所需的能量。 1、淀粉酶的研究概况 淀粉酶研究经历了一个较长的奠定和发展时期。在中国知网依据主题—— 淀粉酶进行检索,结果显示在1979-2013年共涉及15840篇文献。其中,2005 年以前的总计5256篇,2005-2010年5256篇,也就是说2005年之前的研究篇 数仅占目前土壤酶研究总数的1/3。而从2005年开始我国对土壤酶活性研究 的论文以超百篇的速度增加,且增加趋势较为明显,仅2012年就有724篇。 针对我国淀粉酶活性研究的快速发展,该文就我国淀粉酶研究种类及研究 方法的资料进行归纳总结,旨在进一步扩宽我国淀粉酶活性研究的范围,为今 后淀粉酶的研究提供一些新的思路,同时也可促进我国淀粉酶研究方法的发展。 2、淀粉酶的分类 淀粉酶是水解淀粉和糖原酶类的统称。按水解淀粉方式不同,把淀粉酶分 为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶四类。目前淀粉酶已广泛 地应用于食品、发酵、畜牧业生产、谷物加工、纺织、造纸、轻化工业、医药 和临床分析等领域 (Ashok et al.,2000;Lili,2000;柳辉等,2007;张剑等,2009)。其中,中温淀粉酶主要应用于饴糖、啤酒、黄酒、葡萄糖、味精以及抗生素等行业,也可以用于高质量的丝绸人造棉、化学纤维的退浆。淀粉 酶广泛存在于微生物、植物和动物体中。现已有大量有关土壤微生物产淀粉酶 及酶学性质的文献报道(卢涛等,2002,四川大学学报(自然科学版),39(6):1131—1133;张应玖等。2002)。

淀粉酶活性的测定

淀粉酶活性的测定 一、原理 淀粉酶(amylase)包括几种催化特点不同的成员,其中α-淀粉酶随机地作用于淀粉的非还原端,生成麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉浆的粘度下降,因此又称为液化酶;β-淀粉酶每次从淀粉的非还端切下一分子麦芽糖,又被称为糖化酶;葡萄糖淀粉酶则从淀粉的非还原端每次切下一个葡萄糖。淀粉酶产生的这些还原糖能使3,5-二硝基水杨酸还原,生成棕红色的3-氨基-5-硝基水杨酸。淀粉酶活力的大小与产生的还原糖的量成正比。可以用麦芽糖制作标准曲线,用比色法测定淀粉生成的还原糖的量,以单位重量样品在一定时间内生成的还原糖的量表示酶活力。几乎所有植物中都存在有淀粉酶,特别是萌发后的禾谷类种子淀粉酶活性最强,主要是α-和β-淀粉酶。Α-淀粉酶不耐酸,在pH3.6以下迅速钝化;而β-淀粉酶不耐热,在70℃15min则被钝化。根据它们的这种特性,在测定时钝化其中之一,就可测出另一个的活力。本实验采用加热钝化β-淀粉酶测出α-淀粉酶的活力,再与非钝化条件下测定的总活力(α+β)比较,求出β-淀粉酶的活力。 二、材料、仪器设备及试剂 (一)材料:萌发的小麦种子(芽长约1cm)。 (二)仪器设备:1. 分光光度计;2. 离心机;3. 恒温水浴(37℃,70℃,100℃);4.具塞刻度试管;5. 刻度吸管;6. 容量瓶。 (三)试剂(均为分析纯):1. 标准麦芽糖溶液(1mg/ml):精确称取100mg麦芽糖,用蒸馏水溶解并定容至100ml;2. 3,5-二硝基水杨酸试剂:精确称取1g3,5-二硝基水杨酸,溶于20ml2mol/L NaOH溶液中,加入50ml蒸馏水,再加入30g酒石酸钾钠,待溶解后用蒸馏水定容至100ml。盖紧瓶塞,勿使CO2进入。若溶液混浊可过滤后使用;3.01mol/L pH5.6的柠檬酸缓冲液:A液(0.1mol/L 柠檬酸):称取C6H8O7.H2O 21.01g,用蒸馏水溶解并定容至1L;B液(0.1mol/L 柠檬酸钠):称取Na3C6H5O7.2H2O 29.41g,用蒸馏水溶解并定容至1L。取A液55ml与B液145ml混匀,即为0.1mol/L pH5.6的柠檬酸缓冲液;4.1%淀粉溶液:称取1g淀粉溶于100ml0.1mol/L pH5.6的柠檬酸缓冲液中。 三、实验步骤 (一)麦芽糖标准曲线的制作:取7支干净的具塞刻度试管,编号,按表(详教材)加入试剂。摇匀,置沸水浴中煮沸5min。取出后流水冷却,加蒸馏水定容至20ml。以1号管作为空白调零点,在540nm波长下比色测定。以麦芽糖含量为横座标,吸光度值为纵座标,绘制标准曲线. (二)酶液制备:称取1g萌发3天的小麦种子(芽长约1cm),置于研钵中,加少量石英砂和2ml蒸馏水,研磨成匀浆。将匀浆倒入离心管中,用6ml蒸馏水分次将残渣洗入离心管。提取液在室温下放置提取15~20min,每隔数min搅动1次,使其充分提取。然后在3000rpm 下离心10min,将上清液倒入100ml容量瓶中,加蒸馏水定容至刻度,摇匀,即为淀粉酶原液。吸取上述淀粉酶原液10ml,放入50ml容量瓶中,用蒸馏水定容至刻度,摇匀,即为淀粉酶稀释液。 (三)酶活力的测定:取6支干净的具塞刻度试管,编号,按表(详教材)进行操作。(四)结果计算:淀粉酶活力=C×V T/(W×V s×T)(mg/g/min)。式中,C为从标准曲线上查得的麦芽糖含量(mg);VT为淀粉酶原液总体积(ml);Vs为反应所用淀粉酶原液体积(ml);W为样品重量(g);t为反应时间(min)。

小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展 摘要:从各个方面来研究了小麦中淀粉酶的功能作用以及它的作用机理,通过研究可知,小麦中的а-淀粉酶和β-淀粉酶对食品的品质的影响起着重要的作用。并通过国内外的研究进展来进一步说明小麦中淀粉酶的研究是很有必要的。最后提到了淀粉酶的添加来弥补某些淀粉酶不足以满足食品加工的小麦。本文主要从小麦中的淀粉酶研究意义,国内外小麦中的淀粉酶的研究近况以及未来的发展方向进行了较为全面的综述。 关键词:小麦;淀粉酶;研究进展 在活细胞中进行着大量的化学反应的特点是速度很快,且能有秩序的进行,从而使得细胞同时能进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能够在常温常压下以极高的速度和很大的专一性进行化学反应是由于其中存在一种称为“酶”的生物催化剂。而在小麦的生长,储存,加工等环节中,其中存在的酶就具有非常重要的作用,小麦中的酶会影响着小麦的储存,加工等品质。小麦粉中的淀粉酶主要有3类,即а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶。其中与面包烘焙有关的主要是а-淀粉酶和β-淀粉酶,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以对小麦中的淀粉酶进行研究是十分有必要的。 1.研究小麦中的淀粉酶的意义 小麦中的淀粉酶主要有а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶这三类。面粉有很多用途,可以制成各种不同的成品食品。而面粉大多数都是小麦面粉,可见要研究面粉就的研究小麦,并且小麦中的а-淀粉酶,β-淀粉酶与面包烘焙有关,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以研究小麦中的淀粉酶是非常有意义的。通过研究可以更好地把握不同小麦品种的淀粉酶的性质,来改善淀粉酶,从而来改进食品品质。 1.1小麦中的а-淀粉酶对面包品质的影响 大量的研究已证实,由于淀粉酶在发酵过程中对淀粉分子进行了有益的修饰,进而改善了面包的质地、体积、颜色、货架寿命等方面的性质,具体影响如下[1,2]: 1.1.1 а-淀粉酶对面包品质的影响 ○1а-淀粉酶能增大面包体积。а-淀粉酶是通过适当阻止面筋的形成来使面包体积增加的,

生物化学与人类健康

生物化学与人类健康 ------益生菌 陶玲 (化学系 07410120taoling7002@https://www.wendangku.net/doc/0318762441.html,) 摘要:益生菌是一种对人体有益的细菌,益生菌数量庞大、种类繁多,作为人体必须得菌群,具有 营养,改善胃肠道功能,增强机体免疫力,降低胆固醇,抵抗肿瘤,延年益寿的作用。本文以乳酸菌的 作用为例,简要的说明了益生菌的功能。 关键词:益生菌;免疫调节;乳酸菌 历史上许多国家都有过发酵制品。然而,直到20世纪初,才有人提出乳酸菌含有对健康有益的成分。此后,这个领域的科学研究才开始起步。过去的三四十年里,人类进行了大量的科学研究和临床研究,以证实“益生菌”(或者称之为“友好细菌”)给健康带来的益处,这项工作持续至今。 益生菌,那么,何谓益生菌呢? 国际营养学界普遍认可的定义是:益生菌系一种对人体有益的细菌,它们可直接作为食品添 加剂服用,以维持肠道菌丛的平衡。人体肠道及体表栖息着数以亿计的细菌,其种类多达400余种,重达两公斤,其中包括:黑曲霉、米曲霉、孢杆菌、厌氧性拟杆菌、发酵乳杆菌、乳酸乳杆菌、 长双歧杆菌、嗜酸乳酸杆菌、嗜热性双歧杆菌、短乳杆菌、保加利亚乳杆菌、干酪乳杆菌、啤酒片球菌、酿酒酵母、乳酸链球菌、二乙酰乳酸链球菌、乳链球菌、嗜热链球菌等。其中有对人有害的,被人们 称为有害菌;有对人有益的,被称为有益菌;也有介于二者之间的条件致病菌,即在一定条件下 会导致人体生病的细菌。实际上你肠道中的细菌总数比你身体里的细胞总数还多。在健康肠道中,正 常情况下,对人体有益的细菌与有害菌的比例为10:1。肠道中庞大的菌群之间相互依存、相互制约, 正常情况下,这个系统处于动态平衡状态,维护人体的健康。 益生菌数量庞大、种类繁多。迄今为止,科学家将已发现的益生菌大体上分成了三大类:乳杆菌类(如嗜酸乳杆菌、干酪乳杆菌、詹氏乳杆菌、拉曼乳杆菌等)、双歧杆菌类(如长双歧杆菌、短双歧杆菌、卵形双歧杆菌、嗜热双歧等)、 革兰氏阳性球菌(如粪链球菌、乳球菌、中介链球菌等)。 通常应用于人体的益生菌为:双歧杆菌、乳酸杆菌、肠球菌、枯草杆菌、蜡样芽胞杆菌、地衣芽孢 杆菌、酵母菌等。 约在65年前,科学家就开始对益生菌进行研究。有关益生菌的益生特性,大致包括以下几点: 1:营养作用 益生菌能提高钙、磷、铁的利用率具有帮助消化、促进铁和维生索D的吸收,以及某些B族维生素和 维生索K的合成:如尼克酸、叶酸、泛酸、烟酸和维生素Bl、B2、B6、B12等,促进机体对蛋白质的消 化吸收。尤其是叶酸及维生素B12,在食物消化系统中,起生物催化剂的作用。另外,乳酸菌中的乳糖 5-b'解-产生的半乳糖,是构成脑神经系统中脑磷脂的成分,与婴儿出生后脑的迅速生长有密切关系。 2:改善胃肠道功能

影响淀粉酶活性因素

温度、PH值、金属离子等均能影响酶的活度,具体表现在以下几个方面: ①温度: 由于酶对热是不稳定的,所以在不同的温度下,酶的活度是不同的。低温时,酶的活度很低,随着温度的升高,酶的活度逐渐增加,在某一温度下,酶的活度表现最高,此温度称为这种酶的最佳温度。 所谓稳定温度是指酶在该温度范围内是稳定的,不发生或极少发生失活现象。 每种酶都有它的稳定温度和作用最佳温度。酶退浆应选择所用酶的最佳温度,以使酶的活性及活性的稳定性都具有较大的数值。 胰酶的耐热性较差,稳定温度若低于35℃,高于55℃,则即失活,它的最佳温度为40~55℃,而BF-7658淀粉酶的耐热性高,40~85℃活性较高,20℃时也有较高的活性,当温度为100℃时,其活性尚未完全消失。酶的最佳温度可因加入某些活化剂而提高。同时可因与淀粉作用的时间不同而不同。 表BF-7658淀粉酶的最佳温度与作用时间的关系 与淀粉作用时间(min)作用最佳温度(℃) 60 70 30 80 15 90 2-3 100

由表可知,BF-7658淀粉酶的最佳温度随反应时间的缩短而提高。在实际生产中,经常采用短时间高温的处理工艺。如BF-7658淀粉酶在55~60℃轧酶后,再用汽蒸或热浴处理来求得快速退浆,使生产连续化,其机理是酶的破坏瞬间也是酶发挥最大作用的时间。 ②pH值: pH值对酶的活性影响很大,不同PH值下测得酶的活度及稳定性是不同的。 酶具有最大活性与最大稳定性所需的PH值是不同的,但适当选择可兼顾活度与稳定性。BF-7658淀粉酶在PH6.0~6.5范围内,其活度与稳定性可以兼顾。胰酶在PH为6.8~7.3范围内,其活度与稳定性可兼顾。 ③活化剂与抑制剂: 淀粉酶对淀粉的消化作用常受到一些药品的影响而变得活泼或迟钝,这种现象叫活化(激化)或阻化(抑制),这种化学药品称为活化(激化)剂或阻化(抑制)剂。例如一些轻金属盐类,都是活化剂,其中较常用的是氯化钠和氯化钙。所以为了提高酶的活性,酶退浆时可用适当的硬水(含有一定量的Ca+、Mg1+等离子),而不必加软水剂。而一些重金属盐类如Fe3+、Cu2+、Hg2+、Ag+、Zn2+等离子的盐类能使活化作用减弱,所以称为抑制剂。另外,离子型的表面活性剂对酶也有抑制作用,因此,酶退浆液中若要使用表面活性剂时,只能用非离子型表面活性剂,如渗透剂JFC等。 pH值是影响酶活的主要因素。它影响酶分子构象 的稳定性,影响酶分子极性基团的解离状态,也影响 底物的解离。pH值不是酶的特定常数,它可随底物的 浓度和种类、酶的纯度、缓冲液的种类和浓度、温度、 反应时间长短以及抑制物的作用等而改变。

人体正常生理健康指标一览汇总

人体正常生理健康指标一览 温度用腋下测量正常是36-37摄氏度心率正常是60-100次/分钟血压正常不高于140/90mmHg,不低于90/60mmHg 血液总血量: 65--90ml/kg, 全血比重:男1.054--1.062 女1.048--1.062 血浆: 1.024--1.029 渗透(量)压血胶体渗透压:21±3mmHg( 2.80± 0.40kPa) 血晶体渗透压:280--310mOsn/kg(280--310mmol/L) 红细胞数: 男(4.0--5.5)×10^12/L(4.0--5.5×10^6/ul) 女(3.5--5.0)×10^12/L(3.5--5.5×10^6/ul) 血红蛋白: 男 120--160g/L(12--16g/dl)女110--150g/L(11--15g/dl) 红细胞压积: 男0.4--0.5(40--50vo%) 女0.37--0.48(37--48vol%) 红细胞平均直径: 7.33±0.29um 红细胞平均血红蛋白(H): 29.36± 3.43pg(29.36±3.43uug) 红细胞平均体积(V): 93.28± 9.80fl(93.28±9.80um^3) 红细胞平胞血红蛋白浓度(HC): 0.31--0.35(31--35%) 网织红细胞数: 0.005--0.015(0.5--1.5%) 红细胞平均渗透性脆性试验: 在0.44--0.47%(平均0.45%)盐液内开始溶解,在0.31--0.34(平均0.32%)盐液内全部溶解。白细胞数: (4--10)×10^9/L(4000--10000/ul) 白细胞分类计数中性粒细胞:0.5--0.7(50--70%) 嗜酸粒细胞:0.005--0.03(0.5--3%) 嗜碱粒细胞:0.00--0.0075(0--0.75%) 淋巴细胞:0.2--0.4(20--40%) 单核细胞:0.01--0.08(1--8%) 嗜酸粒细胞直接计数: (0.05--0.30)×10^9/L(50--300/ul) 血小板数:(100--300)×10^9/l(10--30万/ul) 出血时间:(Duke法)1--3min(lvy法)0.5--6min 凝血时间: (毛细管

生物化学知识点整理

生物化学知识点整理(总33 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为 机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。 第二节脂类的消化与吸收

脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾 上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质)

淀粉酶活性测定实验报告

班级:植物092 姓名:徐炜佳学号:03 淀粉酶活性的测定 一、研究背景及目的 酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到淀粉酶是水解淀粉的糖苷键的一类酶的总称,按照其水解淀粉的作用方式,可分为α-淀粉酶和β-淀粉酶等。α-淀粉酶和β-淀粉酶是其中最主要的两种,存在于禾谷类的种子中。β-淀粉酶存在于休眠的种子中,而α-淀粉酶是在种子萌发过程中形成的。 α-淀粉酶活性是衡量小麦穗发芽的一个生理指标,α-淀粉酶活性低的品种抗穗发芽,反之则易穗发芽。目前,关于α-淀粉酶活性的测定方法很多种,活力单位的定义也各不相同,国内外测定α-淀粉酶活性的方法常用的有凝胶扩散法、3 ,5-二硝基水杨酸比色法和降落值法。这3 种方法所用的材料分别是新鲜种子、萌动种子和面粉,获得的α-淀粉酶活性应该分别是延迟(内 二、实验原理 萌发的种子中存在两种淀粉酶,分别是α-淀粉酶和β-淀粉酶,β-淀粉酶不耐热,在高温下易钝化,而α-淀粉酶不耐酸,在下则发生钝化。本实验的设计利用β-淀粉酶不耐热的特性,在高温下(70℃)下处理使得β-淀粉酶钝化而测定α-淀粉酶的酶活性。 酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的,淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定,由于麦芽糖能将后者还原生成硝基氨基水杨酸的显色基团,将其颜色的深浅与糖的含量成正比,故可求出麦芽糖的含量。常用单位时间内生成麦芽糖的毫克数表示淀粉酶活性的大小。然后利用同样的原理测得两种淀粉酶的总活性。实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。 在实验中要严格控制温度及时间,以减小误差。并且在酶的作用过程中,四支测定管及空白管不要混淆。

细胞健康=人体健康

细胞健康=人体健康 细胞是生命的基本单位,人体内各种细胞的变化,决定着人体的健康状况。人生病,就是细胞受到破坏、毒害或疏于照顾,再加上细菌或病毒的攻击,减弱了细胞应有的功能,而引发各种慢性疾病的发生。反之,关爱细胞、呵护细胞、合理调养细胞,给细胞足够建造机体的营养素,让细胞能够自我修复破损,发挥细胞的应有功能,就可以健康常在,生命长存。 所有生命都源于一个细胞。这个细胞经过分裂,形成两个,四个以至于无穷多个细胞,它们各司其职,在我们的身体宇宙空间分工协作,和平共存。 每一天都有无数衰老细胞死去,同时又有无数新细胞长成。然而,这一自然补充过程却常常受到来自外部环境的袭击,其中包括水和土壤里的有毒物质,空气中的污染成分,太阳的辐射,加工食品中的防腐剂,还有我们在日常生活中遇到的氧化压力。 要保持机体健康,就要从呵护细胞开始。细胞健康与否,取决于细胞内部数以万计的分子的功能运转以及它所制造的、维护的和世代相传的每一个微小结构的稳定性。 人体就像一个社会,由各种器官和纤维组织组成,它们各司其职,共同维护整个机体的正常功能。 神经系统像电话公司,专门负责传送资讯。消化系统向器官和纤维组织输送原料和燃料,然后由器官和纤维组织制造蛋白质,燃烧燃料,为身体的活动提供动力。如果任何一个器官功能减弱,整个机体的功能也会随之紊乱和衰退。 那么怎样才能保持器官、组织的正常功能呢? 强化细胞营养是根本。想让细胞长期处于最佳状态,让我们先来看一看人体及其细胞是由什么构成的。人——系统——器官——组织——细胞。明确了人体的构成,我们就能做到有的放矢地强化细胞营养,保持细胞长久健康的活性,实现健康的愿望。 构成人体的物质: 一、主要元素占99.3%。其中:氢63%;氧26%;碳9%;氮1%。

a-淀粉酶的生产与应用

α-淀粉酶的合成与应用 谷君 摘要:酶, 发酵,生产,合成,应用 关键词:生产应用 一,淀粉酶的产生菌及酶的特性 (1)淀粉酶可由微生物发酵产生,也可从植物和动物中提取,目前I业生产上都以微生物发酵法进行大规模生产淀粉酶。在 1 9 0 8年和 1 9 1 7年德国的 B o k i i n 和 F A f r o n t [ 日先后由细菌中生产出 d .淀粉酶,用于纺织品脱浆。1 9 3 7年日本的福本口获得了产生a 一淀粉酶的括革杆菌。第二次世界大战后,由干抗生素的发明,使得微生物I业大步前进, 1 9 4 9年Ⅱ - 淀粉酶开始采用深层通风培葬法进行生产。1 9 7 3年耐热性淀粉酶投入了生产r 4 3 。随淀粉酶的用途日蓝扩大,产量日见增多,生产水平也逐步提高。近些年我们国家的酶制剂行业发展较快,从 1 9 6 5年开始应用解淀粉芽孢杆菌B F 一7 6 5 8生产淀粉酶,当时仅无锡酶制剂厂独家生产,近年在国内生产酶制剂的厂家已发展到 l 2 O多个,其中约有 4 O 左右的I厂生产淀粉酶,产品也由单一的常温I业用 d 一淀粉酶,发展到现在有I业用也有食品鼓,既有常温也有耐热的,剂型上有固体的也有液体淀粉酶。酶制剂I业现已成为近代I业生产中不可缺少的组成部门,它对社会的贡献远远超过酶I业本身。 (2)世界上许多国家都以枯草杆菌,地衣芽孢杆菌生产细菌淀粉酶和米曲霉生产的真苗淀粉酶为主要产品,在工业生产中使用的菌种,最初都是从自然中得到的,通过筛选和诱变育种工作,可改变菌种的特性,提高 n 一淀粉酶的活力。O n t t r u p 以地衣芽孢杆苗AT C C 9 7 9 8为出发菌株,用 Y射线, N T G以及 uV反复 7次 诱变,使其 n 一淀粉酶的产量为原苗株的 2 5 倍。A n d r e e v a 等将枯草杆菌孢子悬浮液经 5 0 ℃加热处理 3 0分钟,酶合成速度提高了 2 —2 、 7倍,可见采用诱变育种是行之有效的方法,但也有一定的局限性和缺点,由于发生平顶效应使之育种效果降低,利用转化法改良菌种,在枯草杆菌 n 一淀粉酶的生产苗上已 取得可喜的结果 K a z u m a s a 等采用转化和诱变结合的方法.使 n 一淀粉酶产量比亲株高 l 5 0 0 - -2 0 0 0倍近年来,随生物工程技术的发展,基因工程技术已应用到菌种的改造方面。 P a l v a r 2 等把解淀粉芽孢杆菌n 一淀粉酶基因克隆到枯草芽孢杆菌中,其 n 一淀粉酶活力比其原始的野生型苗株高 5 0 0倍。 H e n a c h a n 又把地衣芽孢杆菌耐热淀粉酶基因克隆到枯草芽孢杆苗中,美国 C P C国 际公冠的 Mo f f c t 研究中心,已获得美国食品药品管理局( F DA) 的批准,可用其研制的基因工程菌生产淀粉酶,这是第一个由 F D A 批准用基因工程菌生产的酶髑剂。。我国在利用基因重组构建耐热性一淀粉酶方面已取得一定的进展,何超刚[ 3 等将脂肪嗜热芽孢杆菌淀粉酶基因质粒带人大肠杆菌,使后者具有生 产高淀粉酶能力。任大明0 将带有淀粉酶基因的克隆片段,在枯草杆菌中得到表达。朱卫民将枯草杆菌 a淀粉酶基因在大肠杆苗中的得表达。

生物化学知识点汇总(王镜岩版)

生物化学知识点汇总(王镜岩版)

————————————————————————————————作者:————————————————————————————————日期:

生物化学讲义(2003) 孟祥红 绪论(preface) 一、生物化学(biochemistry)的含义: 生物化学可以认为是生命的化学(chemistryoflife)。 生物化学是用化学的理论和方法来研究生命现象。 1、生物体是有哪些物质组成的?它们的结构和性质如何?容易回答。 2、这些物质在生物体内发生什么变化?是怎样变化的?变化过程中能量是怎样转换的?(即这些物质在生物体 内怎样进行物质代谢和能量代谢?)大部分已解决。 3、这些物质结构、代谢和生物功能及复杂的生命现象(如生长、生殖、遗传、运动等)之间有什么关系?最复 杂。 二、生物化学的分类 根据不同的研究对象:植物生化;动物生化;人体生化;微生物生化 从不同的研究目的上分:临床生物化学;工业生物化学;病理生物化学;农业生物化学;生物物理化学等。 糖的生物化学、蛋白质化学、核酸化学、酶学、代谢调控等。 三、生物化学的发展史 1、历史背景:从十八世下半叶开始,物理学、化学、生物学取得了一系列的重要的成果(1)化学方面 法国化学家拉瓦锡推翻“燃素说”并认为动物呼吸是像蜡烛一样的燃烧,只是动物体内燃烧是缓慢不发光的 燃烧——生物有氧化理论的雏形 瑞典化学家舍勒——发现了柠檬酸、苹果酸是生物氧化的中间代谢产物,为三羧酸循环的发现提供了线索。 (2)物理学方面:原子论、x-射线的发现。 (3)生物学方面:《物种起源——进化论》发现。 2、生物化学的诞生:在19世纪末20世纪初,生物化学才成为一门独立的科学。 德国化学家李比希: 1842年撰写的《有机化学在生理与病理学上的应用》一书中,首次提出了新陈代谢名词。另一位是德国医生霍佩赛勒: 1877年他第一次提出Biochemie这个名词英文译名是Biochemistry(orBiologicalchemistry)汉语翻译成 生物化学。 3、生物化学的建立: 从生物化发展历史来看,20世纪前半叶,在蛋白质、酶、维生素、激素、物质代谢及生物氧化方面有了长足 进步。成就主要集中于英、美、德等国。 英国,代表人物是霍普金斯——创立了普通生物化学学派。

相关文档