文档库 最新最全的文档下载
当前位置:文档库 › 3.热力学第一定律

3.热力学第一定律

能量守恒定律

自然界的能量既不能创生

也不会消灭..自然界的能量既不能创生,,也不会消灭

在热机中,驱动机械运转做功,这一能量来自于从燃料中吸收的热量,

因此永动机是不能制造出来的。

热力学第一定律是能量守恒定律在热力学体系的体现。

热力学系统热力学系统的内能的内能的内能U U (Internal Energy Internal Energy)) 一般包含如下能量:

一般包含如下能量:分子内:平动运动的能量

转动运动的能量

振动运动的能量

电子运动的能量;

核运动的能量;

分子间分子间: : : 分子间作用

分子间作用势能。……

封闭体系与环境之间的能量交换形式只有热与功两种,故有:

?U=Q + + W W

dU =δQ + δW

上式即为热力学第一定律的数学表达式。

其物理意义是:

自然界的能量是恒定的,若体系的内能发生了变化(?U),变化量必定等于体系与环境之间能量交换量(Q、W)的总和。

习题

热力学第一定律对于孤立体系的数学形式是怎样的?热力学第一定律的公式对于生命体系成立么?为什么?

dU = δQ + δW = δQ + δW f -p 外dV

恒容、无有用功时

dU = δQ V ?U =Q V

dU = δQ + δW f -p 外dV = δQ -pdV

d(U+pV)=δQ

恒压、无有用功时

定义: 焓(enthalpy )函数 H

H =U +pV dH = δQ p ?H =Q p

热力学第一定律热力学第一定律------焓

习题

某一化学反应若在恒温恒压下(298.15K)进行,放热40000J,若使该反应恒温恒压通过可逆电池来完成,则吸热4000J。计算该反应的焓变;

物质的热容

?一、热容(heat capacity)

?热容的定义:将物体温度升高一度所需要的热量称为物质的热容。

?定义式:C=δQ/dT

?物质的热容随升温的条件不同而不同。常见的有等容热容和等压热容两种。

?C V=(δQ/dT)V = (dU/dT)V∵?U=Q V

?C p=(δQ/dT)p = (dH/dT)p ∵?H=Q p

?在化学中,最常用的是等压热容。

?热容是物质的基本热力学性质

?与物质的分子结构,物态等等都有关系

?热容可以通过热力学数据表格获得,对一些理想体系,如理想气体、理想晶体,也可以通过统计热力学的理论计算去预测。

?理想气体的摩尔热容

总结如下::

常温下))总结如下

理想气体的摩尔热容((常温下

?单原子分子: C V,m=3/2R C p,m=5/2R

?双原子分子: C C V,m=5/2R C p,m=7/2R

?非线性多原子分子:C V,m=3R C p,m=4R

同种原子所组成的理想晶体, 如金、银、铜、铁、锡等金属物体, 其摩尔等容热容为:

?C V,m=3R

物理化学热力学第一定律总结

热一定律总结 一、 通用公式 ΔU = Q + W 绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V 恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) → ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0 焓的定义式:H = U + pV → ΔH = ΔU + Δ(pV ) 典型例题:3.11思考题第3题,第4题。 二、 理想气体的单纯pVT 变化 恒温:ΔU = ΔH = 0 变温: 或 或 如恒容,ΔU = Q ,否则不一定相等。如恒压,ΔH = Q ,否则不一定相等。 C p , m – C V , m = R 双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2 典型例题:3.18思考题第2,3,4题 书2.18、2.19 三、 凝聚态物质的ΔU 和ΔH 只和温度有关 或 典型例题:书2.15 ΔU = n C V , m d T T 2 T 1 ∫ ΔH = n C p, m d T T 2 T 1 ∫ ΔU = nC V , m (T 2-T 1) ΔH = nC p, m (T 2-T 1) ΔU ≈ ΔH = n C p, m d T T 2 T 1 ∫ ΔU ≈ ΔH = nC p, m (T 2-T 1)

四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程) ΔU ≈ ΔH –ΔnRT (Δn :气体摩尔数的变化量。如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。 101.325 kPa 及其对应温度下的相变可以查表。 其它温度下的相变要设计状态函数 不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。 或 典型例题:3.18作业题第3题 五、化学反应焓的计算 其他温度:状态函数法 Δ H m (T ) = ΔH 1 +Δ H m (T 0) + ΔH 3 α β β α Δ H m (T ) α β ΔH 1 ΔH 3 Δ H m (T 0) α β 可逆相变 298.15 K: ΔH = Q p = n Δ H m α β Δr H m ? =Δf H ?(生) – Δf H ?(反) = y Δf H m ?(Y) + z Δf H m ?(Z) – a Δf H m ?(A) – b Δf H m ?(B) Δr H m ? =Δc H ?(反) – Δc H ?(生) = a Δc H m ?(A) + b Δc H m ?(B) –y Δc H m ?(Y) – z Δc H m ?(Z) ΔH = nC p, m (T 2-T 1) ΔH = n C p, m d T T 2 T 1 ∫

2.2热力学第一定律对理想气体的应用

§2.2 热力学第一定律对理想气体的应用 2.2.1、等容过程 气体等容变化时,有=T P 恒量,而且外界对气体做功0=?-=V p W 。根据 热力学第一定律有△E=Q 。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。 p V i T C n E Q V ???= ??=?=2 式中 R i T E v T Q C V ?=??=?=2)(。 2.2.1、等压过程 气体在等压过程中,有=T V 恒量,如容器中的活塞在大气环境中无摩擦地自 由移动。 根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q ,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有 T nR V p W ?-=?-= T nC Q p ?= V p i T nC E v ??=?=?2 定压摩尔热容量p C 与定容摩尔热容量V C 的关系有R C C v p +=。该式表明:1mol 理想气体等压升高1K 比等容升高1k 要多吸热8.31J ,这是因为1mol 理想气体等压膨胀温度升高1K 时要对外做功8.31J 的缘故。 2.2.3、等温过程 气体在等温过程中,有pV =恒量。例如,气体在恒温装置内或者与大热源想

接触时所发生的变化。 理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E =0,因此有Q=-W 。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。 2.2.4、绝热过程 气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。 理想气体发生绝热变化时,p 、V 、T 三量会同时发生变化,仍遵循=T pV 恒 量。根据热力学第一定律,因Q=0,有 )(21122V p V p i T nC E W v -=?=?= 这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。 例:0.020kg 的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。 气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为: J T nC E v 6231031.85.15=???=?=?

3.热力学第一定律

能量守恒定律 自然界的能量既不能创生 也不会消灭..自然界的能量既不能创生,,也不会消灭 在热机中,驱动机械运转做功,这一能量来自于从燃料中吸收的热量, 因此永动机是不能制造出来的。 热力学第一定律是能量守恒定律在热力学体系的体现。

热力学系统热力学系统的内能的内能的内能U U (Internal Energy Internal Energy)) 一般包含如下能量: 一般包含如下能量:分子内:平动运动的能量 转动运动的能量 振动运动的能量 电子运动的能量; 核运动的能量; 分子间分子间: : : 分子间作用 分子间作用势能。……

封闭体系与环境之间的能量交换形式只有热与功两种,故有: ?U=Q + + W W dU =δQ + δW 上式即为热力学第一定律的数学表达式。 其物理意义是: 自然界的能量是恒定的,若体系的内能发生了变化(?U),变化量必定等于体系与环境之间能量交换量(Q、W)的总和。

习题 热力学第一定律对于孤立体系的数学形式是怎样的?热力学第一定律的公式对于生命体系成立么?为什么?

dU = δQ + δW = δQ + δW f -p 外dV 恒容、无有用功时 dU = δQ V ?U =Q V dU = δQ + δW f -p 外dV = δQ -pdV d(U+pV)=δQ 恒压、无有用功时 定义: 焓(enthalpy )函数 H H =U +pV dH = δQ p ?H =Q p 热力学第一定律热力学第一定律------焓 焓

习题 某一化学反应若在恒温恒压下(298.15K)进行,放热40000J,若使该反应恒温恒压通过可逆电池来完成,则吸热4000J。计算该反应的焓变;

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

人教版高中物理选修3-3《10.3热力学第一定律能量守恒定律(同步练习)

高中物理学习材料 (马鸣风萧萧**整理制作) 1、请填写下列现象中,能量转换的方式: ⑴水轮机带动发电机发电; ⑵水沸腾后,水壶盖被顶起; ⑶电动机带动机器运转; ⑷植物吸收太阳光进行光合作用; ⑸煤炭燃烧发热. 2.一颗子弹以某一水平速度击中了静止在光滑水平面上的木块,未从木块中穿出.对于这一过程,下列说法中正确的是()A.子弹减少的机械能等于木块增加的机械能 B.子弹减少的动量等于木块增加的动量 C.子弹减少的机械能等于木块增加的动能与木块增加的内能之和 D.子弹减少的动能等于木块增加的动能与子弹和木块的内能增量之和 3、在热力学第一定律ΔU=W+Q中,关于各个物理量的正、负,下列说法中正确的是( ) A.外界对物体做功时W为正,吸热时Q为负,内能增加时△U为正 B.物体对外界做功时W为负,放热时Q为负,内能减少时△U为负 C.物体对外界做功时W为正,吸热时Q为正,内能增加时△U为正 D.外界对物体做功时W为负,吸热时Q为负,内能增加时△U为负 4、一定质量的理想气体由状态Ⅰ(p1,V1,T1)被压缩至状态Ⅱ(p2,V2,T2),已知T2>T1,则该过程中( ) A.气体的内能一定是增加的 B.气体可能向外界放热 C.气体一定从外界吸收热量 D.气体对外界做正功 5、永动机是不可制成的,这是因为永动机( ) A.不符合机械能守恒定律 B.违背了能的转化和守恒定律 C.制造永动机的技术不过关 D.无法解决机械摩擦问题

6、根据能量守恒,下列说法正确的是( ) A.物体对外界做功2J,并从外界吸收2J的热量,则物体内能增加4J B.外界对物体做功2J,物体从外界吸收2J热量,则物体内能增加4J C.外界对物体做功2J,物体向外界放出2J的热量,则物体内能不变 D.物体对外界做功2J,并向外界放出2J的热量,则物体内能减少4J 7、汽车关闭发动机后恰能沿斜坡匀速下滑,在这过程中( ) A.汽车的机械能守恒 B.汽车的动能和势能相互转化 C.机械能转化为内能,总能量守恒 D.机械能和内能之间没有转化 8.对于在一个大气压下1㎏100℃的水变为1㎏100℃的水蒸气的过程中,下列说法中正确的是() A.水的内能增加,对外界做功,一定是吸热过程 B.水的内能不变,对外界做功,向外界吸热 C.水的内能减少,对外界不做功,向外界放热 D.水的内能增加,对外界做功,向外界放热 9. 如图10-3-5所示,一个半径为R=0.3m的半球状容器,一小铁块由边缘的A点从静止开始沿内壁下滑,当滑到容器底部B点时,容器内壁所受压力为小铁块自重的1.25倍,在它下滑的过程中内能增量的80%被铁块吸收,那么铁块温度升高多少摄氏度?铁的比热是462J/(㎏·℃) g取10m/s2. 10.如图10-3-6所示,一颗质量为m=10g的子弹以水平速度v0=200m/s 击穿一个静止的沙袋后,速度减小为v=100m/s ,沙袋被击穿后,上升的最大高度为h=0.2m.取g=10m/s2.求: (1)沙袋的质量; (2)这一过程中系统的内能增加了多少? 图10-3-6

选修33热力学第一定律教案

第3节热力学第一定律 目标导航 1?知道热力学第一定律的内容及其表达式 2?理解能量守恒定律的内容 3?了解第一类永动机不可能制成的原因 诱思导学 1.热力学第一定律 (1).一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。这个关系叫做 热力学第一定律。 其数学表达式为:AUnW+Q (2).与热力学第一定律相匹配的符号法则 能量的转化或转移,同时也进一步揭示了能量守恒定律。 (4)应用热力学第一定律解题的一般步骤: ①根据符号法则写出各已知量( W、Q、AU)的正、负; ②根据方程AJ=W+Q求出未知量; ③再根据未知量结果的正、负来确定吸热、放热情况或做功情况。 2.能量守恒定律 ⑴.自然界存在着多种不同形式的运动,每种运动对应着一种形式的能量。如机械运动对应机械能; 分子热运动对应内能;电磁运动对应电磁能。 ⑵.不同形式的能量之间可以相互转化。摩擦可以将机械能转化为内能;炽热电灯发光可以将电能转化为光能。 ⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。 (4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。 (5).能量守恒定律适用于任何物理现象和物理过程。 (6).能量守恒定律的重要意义 第一,能量守恒定律是支配整个自然界运动、发展、变化的普遍规律,学习这个定律,不能满足一 般理解其内容,更重要的是,从能量形式的多样化及其相互联系,互相转化的事实岀发去认识物质世界的多样性及其普遍联系,并切实树立能量既不会凭空产生,也不会凭空消失的观点,作为以后学习和生产实践中处理一切实际问题的基本指导思想之一。第二,宣告了第一类永动机的失败。 3.第一类永动机不可能制成 任何机器运动时只能将能量从一种形式转化为另一种形式,而不可能无中生有地创造能量,即第一类永动机是不可能制造出来的。 典例探究 例1.一定量的气体在某一过程中,外界对气体做了8X104J的功,气体的内能减少了 1.2和5J,则下列 各式中正确的是() 4 5 4 A.W=8X 104J,AJ =1.2 XO5J,Q=4X104J 4 5 5

热力学第一定律

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ? ??? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

(完整word版)热力学第一定律复习题(13,10)

第二章 热力学第一定律 、 恒压条件下,△H =Q p 。 系 统状 态变化 时,计算系 统与环境间交换 的能 量 ) m dT

1. 当理想气体冲入一真空绝热容器后,其温度将 (a) 升高(b) 降低 (c) 不变(d) 难以确定 (答案) c (△U=Q+W, ∵p外=0 , ∴W=0 ,又∵绝热,∴Q=0,所以△U=0) 因为是真空故不做功,又因为是绝热故无热交换,故△U=0。温度不变。 2. 当热力学第一定律写成d U = δQ–p d V时,它适用于 (a). 理想气体的可逆过程(b). 封闭体系的任一过程 (c). 封闭体系只做体积功过程(d). 封闭体系的定压过程 (答案) c (W=W体+W非,当W非=0时,W体= -pdV) 3.对热力学可逆过程,下列说法中正确的是 (a) 过程进行的速度无限慢 (b) 没有功的损失 (c) 系统和环境可同时复原 (d) 不需环境做功 (答案) c 可逆过程: 体系经过某一过程从状态(1)变到状态(2)之后,如果能够使体系和环境都恢复到原来的状态而未留下任何永久性的变化,则该过程称为热力学可逆过程。否则为不可逆过程 特征: ①状态变化时推动力与阻力相差无限小,体系与环境始终无限接近于平衡态; ②过程中的任何一个中间态都可以从正、逆两个方向到达; ③体系变化一个循环后,体系和环境均恢复原态,变化过程中无任何耗散效应; ④等温可逆过程中,体系对环境作最大功,环境对体系作最小功。 ⑤在可逆过程中,由于状态变化时推动力与阻力相差无限小,所以完成过程所需的时间为无限长。 4.对于封闭体系来说,当过程的始态与终态确定后,下列各项中哪一个无确定值 (a) Q (b) Q + W (c) W (当Q = 0时) (d) Q (当W = 0时) (答案) a (△U=Q+W) 5.对于孤立体系中发生的实际过程,下列关系中不正确的是 (a) W = 0 (b) Q = 0 (c) ΔU= 0 (d) ΔH = 0 (答案) d (孤立体系?△U=Q+W) 6.对于内能是体系状态的单值函数概念,错误理解是 (a) 体系处于一定的状态,具有一定的内能 (b) 对应于某一状态,内能只能有一数值不能有两个以上的数值

热力学第一定律_习题十 答案

姓名 班级 序号 热力学第一定律 1. 定量理想气体,从同一初态出发,体积V 1膨胀到V 2,分别经历三种过程,(1)等压;(2)等温;(3)绝热。其中吸收热量最多的是 [ ] (A )等压;(B )等温;(C )绝热;(D )无法判断。 解:在p-V 图上绝热线比等温线要陡,所以图中中间的曲线表示的应该是等温过程。 图中三种过程的起始态和终止态的体积分别相同,因为在p-V 图上,曲线所围成的面积等于该过程对外所做的功,所以等压过程中对外所做的功最大,等温过程次之,绝热过程最小。 根据理想气体内能2 i U RT ν =, 三种过程的起始温度一样,但图中所示的等压过程的末态温度最高,等温过程次之,绝热过程最小。所以等压过程的内能增加最多。 根据热力学第一定律Q U A =?+,既然等压过程的内能增加最多,对外所做的功也最大,等压过程从外界吸收的热量也最多,故本题答案为A 。 2.一圆柱形汽缸的截面积为22 2.510m -?,内盛有0.01kg 的氮气,活塞重10kg ,外部大气压为5110Pa ?,当把气体从300K 加热到800K 时,设过程进行无热量损失,也不考虑摩擦,问(1)气体做功多少?(2)气体容积增大多少?(3)内能增加多少? 解:(1)系统可以看成等压准静态过程,2 1 V V A pdv p V ==?? 由理想气体状态方程 m pV RT M = ,得 3 03 0.018.31(800300) 1.4810J 2810m A p V R T M -=?= ?=??-=?? (2) 50/ 1.0410Pa p M g S p =+=?活塞 由状态方程0 m pV RT RT M ν==(2N m M ν=),得231.4210m R T V P ν-??==?; (3)氮气的自由度为5,由理想气体内能公式2 i U RT ν =得,内能增加 33.710J 2 i U R T ν?=?=? 3、 一定量的某种理想气体,开始时处于压强、体积、温度分别为60102.1?=p P a , 3301031.8m V -?=,K T 3000=的初态,后经过一等容过程,温度升高到K T 4501=,再 经过一等温过程,压强降低到0p p =的末态,已知该理想气体的定压摩尔热容量和定容摩 尔热容量之比3 5 =V P C C ,求:(1)该理想气体的定压摩尔热容量P C 和定容摩尔热容量V C ; (2)气体从始态变到末态的全过程中从外界吸收的热量。

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

选修3-3热力学第一定律教案

热力学第一定律学习目标 1.知道热力学第一定律的内容及其表达式 2.理解能量守恒定律的内容 3.了解第一类永动机不可能制成的原因 自主学习 一、功和内能 1.什么样的过程叫绝热过程? 2.焦耳的实验说明了什么问题? 3.写出内能的定义。 4.内能的增加量与外界对系统所做的功有何关系? 二、热和内能 1.内能的增加量与外界向系统传递的热量有何关系? 2.做功和热传递在改变系统的内能上有何区别? 三、热力学第一定律 1.写出热力学第一定律的内容及其表达式。 2.写出能量守恒定律的内容。 3.第一类永动机不可能制成的原因是什么?

预习自检: 1、在下述各种现象中,不是由做功引起系统温度变化的是() A、在阳光照射下,水的温度升高 B、用铁锤不断捶打铅块,铅块的温度会升高 C、在炉火上烧水,水的温度升高 D、电视机工作一段时间,其内部元件温度升高 2、如图所示,活塞将汽缸分为甲、乙两室,汽缸、活塞(连同拉杆)是绝热的,且不漏气,以U甲、U乙分别表示甲、乙两气室中气体的内能,则在拉杆缓缓向外拉的过程中() A、U甲不变,U乙减小 B、U甲增大,U乙不变 C、U甲增大,U乙减小 D、U甲不变,U乙不变 3、如图所示,把浸有乙醚的一小块棉花放在厚玻璃筒内底部,当很快向下压活塞时,由于被压缩气体遽然变热,温度升高达到乙醚的燃点,使浸有乙醚的棉花燃烧起来,此实验的目的是要说明() A、对物体做功可以增加物体的热量 B、对物体做功可以改变物体的内能 C、对物体做功一定会升高物体的温度 D、做功一定会增加物体的 4、关于物体的内能和热量,下列说法中正确的有() A、热水的内能比冷水的内能大 B、温度高的物体其热量必定多,内能必定大 C、在热传递过程中,内能大的物体其内能将减少,内能小的物体其内能将增加,直到两物体的内能相等 D、热量是热传递过程中内能转移量的量度 5、下列关于物体的温度、内能和热量的说法中正确的是() A、物体的温度越高,所含热量越多 B、物体的内能越大,热量越多 C、物体的温度越高,它的分子热运动的平均动能越大 D、物体的温度不变,其内能就不变化 6、假设在一个完全密封绝热的室内,放一台打开门的电冰箱,然后遥控接通电源,令电冰箱工作一段较长的时间后再遥控断开电源,等室内各处温度达到平衡时,室内气温比接通电源前是( ) A、一定升高了 B、一定降低了 C、一定不变 D、可能升高,可能降低,也可能不变 课内探究 一、热力学第一定律 一定质量的气体,膨胀过程中是外界对气体做功还是气体对外界做功?如果膨胀时做的功是135J,同时向外放热85J,气体内能的变化量是多少?内能是增加了还是减少了? 请你通过这个例子总结ΔU、W、Q几个量取正、负值的意义。 例1.一定量的气体在某一过程中,外界对气体做了8×104J的功,气体的内能减少了1.2×105J,则下列各式中正确的是()

热力学第一定律

1.热力学第一定律 热力学第一定律的主要内容,就是能量守恒原理。能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。而不同形式的能量在相互转化时永远是数量相当的。这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。设计方案之多,但是成千上万份的设计中,没有一个能实现的。人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。第一类永动机是不可能制成的,这就是能量守恒原理。到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。1cal = 4.1840J 热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。2.热力学第二定律 能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。 也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。 人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。 这种机器就是“第二类永动机”。然而这种机器屡遭失败,不能成功,这就需要从理论上进一步探索。 前面说过,卡诺已经接近发现了热力学第一定律和热力学第二定律,但他受热质说的影响,不能把它们表述出来。 1850年,德国物理学家克劳胥斯在研究卡诺理论的基础上,提出“一个自行动作的机器,不可能把热从低温物体传到高温物体中去”。这就是热力学第二定律的“克劳胥斯表述”。1851年,英国物理学家威廉·汤姆生,即凯尔文勋爵也独立地从卡诺的工作中发现了热力学第二定律。 汤姆生,1824年生于英国贝尔发斯特城。父亲是皇家学院的数学教授,治学勤奋,对子女要求也很严格,1832年被聘到母校格拉斯哥大学任教,全家也迁往该城。 当这位新来的教授开始上第一堂课时,同学们发现教室多了两个漂亮的小男孩,也在津津有味地听着,他们就是8岁的汤姆生和他10岁的哥哥。 汤姆生10岁时,和哥哥正式进格拉斯哥大学预科学习,这可能是当时最小的大学生。汤姆生天资聪明,学习勤奋,表现出杰出的才能。15岁,他获得学校的物理学奖,第二年获天文学奖。17岁时,他在剑桥大学的数学杂志上发表了一篇论文,名震全校。 此后几年中,汤姆生发表了一连串的研究论文,内容包括数学、热力学和电学。 1846年,年仅22岁的汤姆生击败30多位教师候选人,获得了格拉斯哥大学的教授职位。1847年6月,焦耳在牛津大学举行的学术会议上,阐明机械能可以定量地转化为热能,各种形式的能都可以相互转化。 汤姆生出席了这次会议,他也是传统的热质说的拥护者,认为能量不可能转化,准备反驳焦

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

热力学第一定律主要公式

热力学第一定律主要公式 1.?U 与?H 的计算 对封闭系统的任何过程 ?U=Q+W 2111()H U p V pV ?=?-- (1) 简单状态变化过程 1) 理想气体 等温过程 0T U ?= 0T H ?= 任意变温过程 ,21()V m U nC T T ?=- ,21()p m H nC T T ?=- 等容变温过程 H U V p ?=?+? (V U Q ?=) 等压变温过程 p U Q p V ?=-? ()p H Q ?= 绝热过程 ,21()V m U W nC T T ?==- ,21()p m H nC T T ?=- 2)实际气体van derWaals 气体等温过程 2 1 211U n a V V ?? ? ??? ?=- 2 22111 211()H U pV n a p V pV V V ?? ? ??? ?=?+?=-+- (2) 相变过程 等温等压相变过程 p tra H Q ?= (p Q 为相变潜热) p tra tra U Q p V ?=-? (3)无其她功的化学变化过程

绝热等容反应 0r U ?= 绝热等压反应 0r H ?= 等温等压反应 r p H Q ?= r r U H p V ?=?-? 等温等压凝聚相反应 r r U H ?≈? 等温等压理想气体相反应 ()r r U H n RT ?=?-? 或 r r B B H U RT ν?=?-∑ 由生成焓计算反应热效应 f ()(,)r m m B B H T H T B θθν?=?∑ 由燃烧焓计算反应热效应 c ()(,)r m m B B H T H T B θν?=-?∑ 由键焓估算反应热效应 ,,()(,(i m i i m i i i H T n H T n H ?=??∑∑反应物)-生成物) 式中:i n 为i 种键的个数;n i 为i 种键的键焓。 不同温度下反应热效应计算 2 1 21()()d T r m r m r p T H T H T C T ?=?+?? 2、体积功W 的计算 任意变化过程 W= d e p V -∑ 任意可逆过程 2 1 W= d V V p V -? 自由膨胀与恒容过程 W=0 恒外压过程 21()e W p V V =-- 等温等压→l g 相变过程(设蒸气为理想气体) 1()g g g W p V V pV n RT =--≈-=- 等温等压化学变化 ()W p V n RT =-?=? (理想气体反应) 0W ≈ (凝聚相反应) 理想气体等温可逆过程

10-3 热力学第一定律 能量守恒定律

第3节热力学第一定律能量守恒定律 学习目标:1.理解热力学第一定律并会应用于实际.2.能运用热力学第一定律解释自然界能量的转化、转移问题.3.理解能量守恒定律及其应用,知道能量守恒定律是自然界普遍遵从的基本规律.4.知道第一类永动机是不可能制成的. 一、热力学第一定律 [课本导读] 预习教材54页“热力学第一定律”部分,请同学们关注以下问题: 1.改变内能有哪种方式? 2.热力学第一定律的内容及表达式是什么? [知识识记] 1.改变内能的两种方式 做功和热传递. 2.热力学第一定律 (1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.

(2)表达式:ΔU=Q+W. 二、能量守恒定律和永动机 [课本导读] 预习教材54~56页“能量守恒定律”及“永动机不可制成”部分,请同学们关注以下问题: 1.能量守恒定律的内容是什么? 2.能量守恒定律的意义是什么? 3.永动机为什么不可能制成? [知识识记] 1.能量守恒定律 (1)内容: 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. (2)意义: ①各种形式的能可以相互转化. ②各种物理现象可以用能量守恒定律联系在一起. 2.永动机不可能制成 (1)第一类永动机:不需要任何动力或燃料,却能不断地对外做功的机器.

(2)不可制成的原因:违背了能量守恒定律. 1.做功和热传递在改变物体内能上是不等效的.() [答案]× 2.运动的物体在阻力作用下会停下来,说明机械能凭空消失了.() [答案]× 3.功和能可以相互转化.() [答案]× 4.第一类永动机不能制成,是因为它违背了能的转化和守恒定律.() [答案]√ 5.某个物体的能量减少,必然有其他物体的能量增加.() [答案]√ 6.自由摆动的秋千摆动幅度越来越小,减少的机械能转化为内能,但总能量守恒.() [答案]√

热力学第一定律基本概念和重点总结

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

相关文档
相关文档 最新文档