文档库 最新最全的文档下载
当前位置:文档库 › 年产8万吨甲苯精馏塔设计_化工原理课程设计说明书 精品

年产8万吨甲苯精馏塔设计_化工原理课程设计说明书 精品

年产8万吨甲苯精馏塔设计_化工原理课程设计说明书 精品
年产8万吨甲苯精馏塔设计_化工原理课程设计说明书 精品

年产8万吨甲苯精馏塔设计

摘要

此设计为苯-甲苯连续操作设计精馏塔,要求年产纯度为98%的甲苯6万t,塔顶馏出液中含甲苯不得高于2%,原料液中含甲苯40%(以上均为质量分数)。精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计内容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。

关键词:板式塔;苯--甲苯;工艺计算;结构图

Abstract

This design for benzene-toluene continuous operation of the column, the design requirements of the purity of 98% annual capacity of 60000 t toluene, being in distillate including toluene shall not be higher than the 2%, raw material liquid 40% (above all is the toluene quality score) distillation separation liquid mixture is a kind of the most commonly used in chemical refining unit operation, oil chemical industry etc widely applied Keywords: plate tower; Benzene, toluene; Process calculation; chart

目录

摘要································I Abstract ·······························I I 第一章文献综述····························- 1 -

1.1 概述······························- 1 -第二章设计方案的确定·························- 3 -

2.1 设计方案的确定及流程说明····················- 3 -

2.1.1 装置流程的确定······················- 3 -

2.2 操作条件····························- 3 -

2.2.1 进料液状态的选择····················- 3 -

2.2.2加热方式·························- 4 -

2.2.3回流比的选择·······················- 4 -

2.3 主要设备的工艺尺寸计算·····················- 4 -

2.4 流体力学计算··························- 4 -

2.5 已知参数····························- 5 -第三章塔体计算····························- 7 -

3.1 料液及塔顶、塔底产品含苯的摩尔分率···············- 7 -

3.2 平均分子量···························- 7 -

3.3 物料衡算····························- 7 -

3.4 塔板数的确定··························- 8 -

3.4.1 根据苯和甲苯的气液平衡数据作出x-y图···········- 8 -

3.4.2 求最小回流比及操作回流比R ················- 8 -

3.4.3 求理论板数·······················- 9 -

3.5 全塔效率····························- 9 -

3.6 实际板数N ···························- 9 -

3.7 精馏塔有效高度的计算·····················- 10 -

3.8 塔工艺条件及物性数据计算···················- 10 -

3.8.1 操作压强的计算Pa ···················- 10 -

3.8.2 操作温度的计算运用orign绘出图象如下图········- 11 -

3.8.3 平均摩尔质量计算····················- 11 -

3.8.4 平均密度计算······················- 12 -

3.8.5 液体平均表面张力的计算················- 13 -

3.8.6 液体平均粘度的计算···················- 14 -

3.9 精馏塔气液负荷计算······················- 14 -

3.10 塔和塔板的主要工艺尺寸的计算················- 15 -

3.10.2 溢流装置·······················- 16 -

3.10.3 塔板布置·······················- 18 -

3.11 筛孔数n与开孔率······················- 18 -第四章流体力学验算·························- 20 -

4.1 气体通过筛板压降相当的液柱高度···············- 20 -

4.2 液面落差··························- 21 -

4.3 精馏段雾沫夹带量的验算···················- 22 -

4.4 精馏段漏液的验算······················- 22 -

4.5 精馏段液泛验算·······················- 22 -第五章塔板负荷性能图························- 24 -

5.1精馏段···························- 24 -

5.1.1 液沫夹带线······················- 24 -

5.1.2 液泛线························- 25 -

5.1.3 液相负荷上限线····················- 26 -

5.1.4漏液线(气相负荷下限线)···············- 26 -

5.1.5 液相负荷下限线····················- 27 -第六章设计一览表··························- 29 -

6.1精馏塔的工艺设计计算结果汇总················- 29 -结束语································- 31 -参考文献·······························- 32 -附录·································- 33 -主要符号说明···························- 33 -致谢·································- 36 -

第一章文献综述

1.1 概述

塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。

(一)浮阀塔

浮阀塔广泛用于精馏、吸收和解吸等过程。其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。浮阀可根据气体流量的大小而上下浮动,自行调节。

浮阀有盘式、条式等多种,国内多用盘式浮阀,此型又分为F-1型(V-1型)、V-4型、十字架型、和A型,其中F-1型浮阀结构较简单、节省材料,制造方便,性能良好,故在化工及炼油生产中普遍应用,已列入部颁标准(JB-1118-81)。其阀孔直径为39mm,重阀质量为33g,轻阀为25g。一般多采用重阀,因其操作稳定性好。

浮阀塔的主要优点是生产能力大,操作弹性较大,塔板效率高,气体压强降及液面落差较小,塔的造价低,塔板结构较泡罩塔简单。

(二)筛板塔

筛板是在塔板上钻有均布的筛孔,呈正三角形排列。上升气流经筛孔分散、鼓泡通过板上液层,形成气液密切接触的泡沫层(或喷射的液滴群)。

筛板塔是1932年提出的,当时主要用于酿造,其优点是结构简单,制造维修方便,造价低,气体压降小,板上液面落差较小,相同条件下生产能力高于浮阀塔,塔板效率接近浮阀塔。其缺点是稳定操作范围窄,小孔径筛板易堵塞,不适宜处理粘性大的、脏的

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

苯-甲苯体系板式精馏塔设计

化工原理课程设计 设计题目:苯-甲苯体系板式精馏塔设计 化工原理课程设计任务书 ?设计任务 分离含苯35% ,甲苯65%的二元均相混合液,要求所得单体溶液的浓度不低于97% 。(以上均为质量分率) 物料处理量:20000吨/年。(按300天/年计) 物料温度为常温(可按20℃计)。 ?设计内容 设计一常压下连续操作的板式精镏塔,设计内容应包含: 方案选择和流程设计; 工艺计算(物料、热量衡算,操作方式和条件确定等),主要设备的工艺尺寸计算(塔高、塔径); 主体设备设计,塔板选型和布置,流体力学性能校核,操作负荷性能图,附属设备选型; 绘制工艺流程示意图、塔体结构示意图、塔板布置图; (设计图纸可手工绘制或CAD绘图) ?计算机辅助计算要求 物性计算 ①编制计算二元理想混合物在任意温度下热容的通用程序;

②编制计算二元理想混合物在沸腾时的汽化潜热的通用程序。 气液相平衡计算 ①编制计算二元理想混合物在任意温度下泡点、露点的通用程序; ②编制计算二元理想混合物在给定温度、任意组成下气液分率及组成的通用程序。 精馏塔计算 ①编制计算分离二元理想混合液最小回流比的通用程序; ②编制分离二元理想混合液精馏塔理论塔板逐板计算的通用程序。 采用上述程序对设计题目进行计算 ?报告要求 设计结束,每人需提交设计说明书(报告)一份,说明书格式应符合毕业论文撰写规范,其内容应包括:设计任务书、前言、章节内容,对所编程序应提供计算模型、程序框图、计算示例以及文字说明,必要时可附程序清单;说明书中各种表格一律采用三线表,若需图线一律采用坐标纸(或计算机)绘制;引用数据和计算公式须注明出处(加引文号),并附参考文献表。说明书前后应有目录、符号表;说明书可作封面设计,版本一律为十六开(或 A4幅面)。 摘要 化工生产和现在生活密切相关,人类的生活离不开各色各样的化工产品。设计化工单元操作,一方面综合了化学,物理,化工原理等相关理论知识,根据课程任务设计优化流程和工艺,另一方面也要结合计算机等辅助设备和机械制图等软件对数据和图形进行处理。 本次设计旨在分离苯和甲苯混合物,苯和甲苯化学性质相同,可按理想物系处理。通过所学的化工原理理论知识,根据物系物理化学特性及热力学参数,对精馏装置进行选型和优化,对于设备的直径,高度,操作条件(温度、压力、流量、组成等)对其生产效果,如产量、质量、消耗、操作费用

年处理量18万吨苯—甲苯混合液的连续精馏塔的设计

BeiJing JiaoTong University HaiBin College 化工原理课程设计 说明书 题目:年处理量18万吨苯—甲苯混合液的连续 精馏塔的设计 院(系、部):化学工程系 姓名: 班级: 学号: 指导教师签名: 2015 年4 月12 日

摘要 目前用于气液分离的传质设备主要采用板式塔,对于二元混合物的分离,应采用连续精馏过程。浮阀塔在操作弹性、塔板效率、压降、生产能力以及设备造价等方面都比较优越。其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平进入塔板上液层进行两相接触,浮阀可根据气体流量的大小上下浮动,自行调节。其中精馏塔的工艺设计计算包括塔高、塔径、塔板各部分尺寸的设计计算,塔板的布置,塔板流体力学性能的校核及绘出塔板的性能负荷图。 关键词:气液传质分离;精馏;浮阀塔

ABSTRACT Currently,the main transferring equipment that used for gas-liquid separation is tray column. For the separation of binary, we should use a continuous process. The advantages of the float value tower lie in the flexibility of operation, efficiency of the operation, pressure drop, producing capacity, and equipment costs. Its main feature is that there is a floating valve on the hole of the plate, then the air can come into the tray plate at a steady rate and make contract with the level of liquid, so that the flow valve can fluctuate and control itself according to the size of the air. The calculations of the distillation designing include the calculation of the tower height, the tower diameter, the size of various parts of the tray and the arrangement of the tray, and the check of the hydrodynamics performance of the tray. And then draw the dray load map. Key words:gas-liquid mass transfer;rectification;valve tower

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

苯-甲苯板式精馏塔的课程设计

目录 板式精馏塔设计任务书 (3) 设计题目: (3) 二、设计任务及操作条件 (3) 三、设计内容: (3) 一.概述 (5) 1.1 精馏塔简介 (5) 1.2 苯-甲苯混合物简介 (5) 1.3 设计依据 (5) 1.4 技术来源 (6) 1.5 设计任务和要求 (6) 二.设计方案选择 (6) 2.1 塔形的选择 (6) 2.2 操作条件的选择 (6) 2.2.1 操作压力 (6) 2.2.2 进料状态 (6) 2.2.3 加热方式的选择 (7) 三.计算过程 (7) 3.1 相关工艺的计算 (7) 3.1.1 原料液及塔顶、塔底产品的摩尔分率 (7) 3.1.2 物料衡算 (8) 3.1.3 最小回流比及操作回流比的确定 (8) 3.1.4精馏塔的气、液相负荷和操作线方程 (9) 3.1.5逐板法求理论塔板数 (10) 3.1.6 全塔效率的估算 (11) 3.1.7 实际板数的求取 (13) 3.2 精馏塔的主题尺寸的计算 (13) 3.2.1 精馏塔的物性计算 (13) 3.2.2 塔径的计算 (15) 3.2.3 精馏塔高度的计算 (17) 3.3 塔板结构尺寸的计算 (18) 3.3.1 溢流装置计算 (18) 3.3.2塔板布置 (19) 3.4 筛板的流体力学验算 (21) 3.4.1 塔板压降 (21)

3.4.2液面落差 (22) 3.4.3液沫夹带 (22) 3.4.4漏液 (22) 3.4.5 液泛 (23) 3.5 塔板负荷性能图 (23) 3.5.1漏夜线 (23) 3.5.2 液泛夹带线 (24) 3.5.3 液相负荷下限线 (25) 3.5.4 液相负荷上限线 (25) 3.5.5 液泛线 (26) 3.6 各接管尺寸的确定 (29) 3.6.1 进料管 (29) 3.6.2 釜残液出料管 (29) 3.6.3 回流液管 (30) 3.6.4塔顶上升蒸汽管 (30) 四.符号说明 (30) 五.总结和设计评述 (31)

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

苯甲苯精馏塔课程设计说明书

西北师大学 化工原理课程设计 学院: 化学化工学院 专业: 化学工程与工艺年级:2011 题目: 苯—甲苯精馏塔设计

前言 课程设计是化工原理课程的一个重要的实践教学容,是在学习过基础课程和化工原理理论与实践后,进一步学习化工设计的基础知识、培养化工设计能力的重要环节。通过该设计可初步掌握化工单元操作设计的基本程序和方法、得到化工设计能力的基本锻炼,更能从实践中培养工程意识、健全合理的知识结构。 此次化工原理设计是精馏塔的设计。精馏塔是化工生产中十分重要的设备,它是利用两组分挥发度的差异实现连续的高纯度分离。在精馏塔中,料液自塔的中部某适当位置连续的加入塔,塔顶设有冷凝器将塔顶蒸汽冷凝为液体。冷凝液的一部分(称回流液)回入塔顶,其余作为塔顶产品(称馏出液)连续排出。塔釜产生的蒸汽沿塔板上升,来自塔顶冷凝器的回流液从塔顶逐渐下降,气液两相在塔实现多次接触,进行传质传热过程,使混合物达到一定程度的分离。精馏塔的分离程度不仅与精馏塔的塔板数及其设备的结构形式有关,还与物料的性质、操作条件、气液流动情况等有关。该过程是同时进行传热、传质的过程。为实现精馏过程,必须为该过程提供物流的贮存、输送、传热、分离、控制等的设备、仪表。由这些设备、仪表等构成精馏过程的生产系统,即本次所设计的精馏装置。 课程设计是让同学们理论联系实践的重要教学环节,是对我们进行的一次综合性设计训练。通过课程设计能使我们进一步巩固和加强所学的专业理论知识,还能培养我们独立分析和解决实际问题的能力。更能培养我们的创新意识、严谨认真的学习态度。当代大学生应具有较高的综合能力,特别是作为一名工科学生,还应当具备解决实际生产问题的能力。课程设计是一次让我们接触实际生产的良好机会,我们应充分利用这样的时机认真去对待每一项任务,为毕业论文等奠定基础。更为将来打下一个稳固的基础。 虽然为此付出了很多,但在平常的化工原理课程学习中总是只针对局部进行计算,而对参数之间的相互关联缺乏认识,所以难免有不妥之处,望垂阅者提出意见,在此表示深切的意。 作者 2013年12月

苯与甲苯精馏塔课程设计

《化工原理课程设计》报告 年处理5.4万吨苯-甲苯精馏装置设计 学院:化学化工学院 班级:应用化学101班 姓名:董煌杰 学号:10114308(14) 指导教师:陈建辉 完成日期:2013年1月17日

序言 化工原理课程设计是化学工程与工艺类相关专业学生学习化工原理课程必 修的三大环节之一,起着培养学生运用综合基础知识解决工程问题和独立工作能力的重要作用。 综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

目录 一、化工原理课程设计任书 (1) 二、设计计算 (3) 1)设计方案的选定及基础数据的搜集 (3) 2) 精馏塔的物料衡算 (7) 3) 塔板数的确定 (9) 4) 精馏塔的工艺条件及有关物性数据的计算 (15) 5) 精馏塔的塔体工艺尺寸计算 (21) 6) 塔板主要工艺尺寸的计算 (23) 7) 塔板负荷性能图 (27) 三、个人总结 (36) 四、参考书目 (37)

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的氯苯140000t,塔顶馏出液中含氯苯不高于%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

化工原理课程设计苯-甲苯板式精馏塔设计

化工原理课程设计------------苯-甲苯连续精馏板式塔的设计专业年级:11级化工本2 姓名:申涛 指导老师:代宏哲 2014年7月

目录 一序言 (3) 二板式精馏塔设计任务书 (4) 三设计计算 (5) 1.1 设计方案的选定及基础数据的搜集 (5) 1.2 精馏塔的物料衡算 (8) 1.3 精馏塔的工艺条件及有关物性数据的计算 (12) 1.4 精馏塔的塔体工艺尺寸计算 (17) 1.5 塔板主要工艺尺寸的计算 (18) 1.6 筛板的流体力学验算 (21) 1.7 塔板负荷性能图 (24) 四设计结果一览表 (30) 五板式塔得结构与附属设备 (31) 5.1附件的计算 (31) 5.1.1接管 (31) 5.1.2冷凝器 (33) 5.1.3 再沸器 (33) 5.2 板式塔结构 (34) 六参考书目 (36) 七设计心得体会 (36) 八附录......................................................................................... 错误!未定义书签。

一序言 化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

化工原理课程设计-苯-甲苯精馏塔设计

资料 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。 筛板塔和泡罩塔相比较具有下列特点:生产能力大于%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。 在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 |

'

目录 第一章绪论 (1) 精馏条件的确定 (1) 精馏的加热方式 (1) 精馏的进料状态 (1) 精馏的操作压力 (1) 确定设计方案 (1) 工艺和操作的要求 (2) 满足经济上的要求 (2) 保证安全生产 (2) 第二章设计计算 (3) 设计方案的确定 (3) 精馏塔的物料衡算 (3) 原料液进料量、塔顶、塔底摩尔分率 (3) 原料液及塔顶、塔底产品的平均摩尔质量 (3) 物料衡算 (3) 塔板计算 (4) 理论板数NT的求取 (4) 全塔效率的计算 (6) 求实际板数 (7) 有效塔高的计算 (7) 精馏塔的工艺条件及有关物性数据的计算 (8) 操作压力的计算 (8) 操作温度的计算 (8) 平均摩尔质量的计算 (8) 平均密度的计算 (10) 液体平均表面张力的计算 (11) 液体平均黏度的计算 (12) 气液负荷计算 (13)

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

苯-甲苯精馏塔设计

西北师范大学 化工原理课程设计 学院: 化学化工学院 专业: 化学工程与工艺年级:2011 题目: 苯—甲苯精馏塔设计 学生姓名: 卢东升 学号: 201173020228 2014年1月3日

前言 课程设计是化工原理课程的一个重要的实践教学内容,是在学习过基础课程和化工原理理论与实践后,进一步学习化工设计的基础知识、培养化工设计能力的重要环节。通过该设计可初步掌握化工单元操作设计的基本程序和方法、得到化工设计能力的基本锻炼,更能从实践中培养工程意识、健全合理的知识结构。 此次化工原理设计是精馏塔的设计。精馏塔是化工生产中十分重要的设备,它是利用两组分挥发度的差异实现连续的高纯度分离。在精馏塔中,料液自塔的中部某适当位置连续的加入塔内,塔顶设有冷凝器将塔顶蒸汽冷凝为液体。冷凝液的一部分(称回流液)回入塔顶,其余作为塔顶产品(称馏出液)连续排出。塔釜产生的蒸汽沿塔板上升,来自塔顶冷凝器的回流液从塔顶逐渐下降,气液两相在塔内实现多次接触,进行传质传热过程,使混合物达到一定程度的分离。精馏塔的分离程度不仅与精馏塔的塔板数及其设备的结构形式有关,还与物料的性质、操作条件、气液流动情况等有关。该过程是同时进行传热、传质的过程。为实现精馏过程,必须为该过程提供物流的贮存、输送、传热、分离、控制等的设备、仪表。由这些设备、仪表等构成精馏过程的生产系统,即本次所设计的精馏装置。 课程设计是让同学们理论联系实践的重要教学环节,是对我们进行的一次综合性设计训练。通过课程设计能使我们进一步巩固和加强所学的专业理论知识,还能培养我们独立分析和解决实际问题的能力。更能培养我们的创新意识、严谨认真的学习态度。当代大学生应具有较高的综合能力,特别是作为一名工科学生,还应当具备解决实际生产问题的能力。课程设计是一次让我们接触实际生产的良好机会,我们应充分利用这样的时机认真去对待每一项任务,为毕业论文等奠定基础。更为将来打下一个稳固的基础。 虽然为此付出了很多,但在平常的化工原理课程学习中总是只针对局部进行计算,而对参数之间的相互关联缺乏认识,所以难免有不妥之处,望垂阅者提出意见,在此表示深切的谢意。 作者 2013年12月

《化工原理课程设计》指南(doc 8页)

《化工原理课程设计》指导书 一、课程设计的目的与性质 化工原理课程设计是化工原理课程的一个实践性、总结性和综合性的教学环节,是学生进一步学习、掌握化工原理课程的重要组成部分,也是培养学生综和运用课堂所学知识分析、解决实际问题所必不可少的教学过程。 现代工业要求相关工程技术人员不仅应是一名工艺师,还应当具备按工艺要求进行生产设备和生产线的选型配套及工程设计能力。化工原理课程设计对学生进行初步的工程设计能力的培养和训练,为后续专业课程的学习及进一步培养学生的工程意识、实践意识和创新意识打下基础。 二、课程设计的基本要求 (1)在设计过程中进一步掌握和正确运用所学基本理论和基本知识,了解工程设计的基本内容,掌握设计的程序和方法,培养发现问题、分析问题和解决问题的独立工作能力。 (2)在设计中要体现兼顾技术上的先进性、可行性和经济上的合理性,注意劳动条件和环境保护,树立正确的设计思想,培养严谨、求实和科学的工作作风。 (3)正确查阅文献资料和选用计算公式,准确而迅速地进行过程计算及主要设备的工艺设计计算。 (4)用简洁的文字和清晰的图表表达设计思想和计算结果。 三、设计题目 题目Ⅰ:在生产过程中需将3000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅱ:在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅲ:在生产过程中需将7000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。

相关文档
相关文档 最新文档