文档库 最新最全的文档下载
当前位置:文档库 › 积分电路和微分电路实验报告

积分电路和微分电路实验报告

积分电路和微分电路实验报告
积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告

篇一:实验6积分与微分电路

实验6积分与微分电路

1.实验目的

学习使用运放组成积分和微分电路。

2.实验仪器

双踪示波器、信号发生器、交流毫伏表、数字万用表。

3.预习内容

1)阅读op07的“数据手册”,了解op07的性能。2)复习关于积分和微分电路的理论知识。3)阅读本次实验的教材。

4.实验内容

1)积分电路如图5.1。在理想条件下,为零时,则

dV(t)Vi(t)

??co,当c两端的初始电压Rdt

Vo(t)??

1t

Vi(t)dtRc?o

因此而得名为积分电路。

(1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。

若输入为幅值Vi=-1V阶跃电压时,输出为

Vo(t)??

Vi1t

Vdt??t,(1)i

Rc?oRc

这时输出电压将随时间增长而线性上升。

通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。电路实际输出接近直流偏置电压,已无法正常工作。

建议用以下方法。按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。保持电路状态,关闭直流偏置电源,示波器x轴扫描

速度置0.2sec/div,Y轴输入电压灵敏度置2V/div,将扫描线移至示波器屏的下方。等待至电容上的电荷放尽。当扫描光点在示波器屏的左下方时,即时打开直流偏置电源,示波器屏上积分电路的输出为线性上升的直线,大约1秒后,积分电路输出由线性上升的直线变为水平直线,即积分电路已饱和,立即按下示波器的“stop”键。再用示波器的光标测量示波器屏上电压曲线线性上升段的电压变化量和所用的

时间,即积分电路的输出饱和电压和有效积分时间。

由于打开直流偏置电源后电路有过渡过程,所以用上述方法测量得到的曲线,

在打开直

流偏置电源后的很短的时间内不是线性上升的直线,这一时间及其对应的电压,实验者可用曲线拟合的方法估计。有的实验者测量到的还可能是弯曲的上升曲线,这是因为本实验电路使用的积分电容是电解电容,这是电解电容漏电所致。这使得电路的传递函数背离积分关系。若上升曲线弯曲得较严重,在实用电路中应更换电容。

(2)

改取c?0.1?F,Vi?0.5sin2?fit(V),fi?(10hz,20khz),测量积分

电路的幅频特性曲线。观察输入输出波形的相位差。通常,输出会有直流飘移,甚至输出被

限幅。解决的办法之一是在电容两端并接一个100K的电阻。

建议先按表6.1要求测量,再绘制幅频特性曲线。

图6.1所示电路的传递函数为

hI(s)??

1

(2)R1cs

若运放为理想运放,上式在无限宽的频带上满足积分关系。但是,由于运放的输入直流失调电压和很大的开环增益,运放输出饱和,电路无法正常工作。在电容两端并接100k Ω电阻后,电路如图5.2,其传递函数为

hI1(s)?

Vo(s)R1

(3)??2

Vi(s)R1R2cs?1

该电路对输入直流失调电压仅仅放大了10倍,由op07“数据手册”给出的输入直流失调电压的数据,

输出失调电压可估计为约300μV,这对电路的影响往往是可以忽略的。但是,(3)式满足积分规律的下限频率大大提高了,约为15.9hz。

由op07“数据手册”可见,其设有输出调零电路。对于图6.1所示电路,调零灵敏度很高,即调零电位器很小的变

化,可使输出失调电压急剧变化,电路的稳定性不好。对于图6.2所示电路,可通过调整调零电位器,使输出失调电压几乎为零。本实验电路未安装调零电位器。有兴趣者可用面包板做op07的输出支流漂移调零实验。根据op07“数据手册”给出的调零电路Fig.1optionaloffsetnullingcircuit,将两输入端短路,调整多圈电位器,使op07输出直流为零。

(3)取Vi为高电平Vh为0.5V、低电平VL为-0.5V、占空比Vh/VL为1、的方波,方波基频为fi∈(10hz,2khz),观察输入输出波形。通常,输出会有直流漂移,甚至输出被限幅。解决的办法之一是在电容两端并接一个100K的电阻。

若无100kΩ电阻,假设运放没有输入直流漂移,在稳态,取t∈(0,Ts/2)做积分,则输出是负峰值为

T

VTVT12sVih

?Vop???dt??ih(s)??ihs(4)

c0R1Rc2T12

的三角波,如图6.3。其中,Vip为输入方波的峰值,为0.5V;Ts为输入方波的周期;T1=R1c

为电路的积常数。因为在半周期内,来自R1支路的电流是恒定的。

若接了电阻R2后,R2支路对来自R1支路的电流分流,分流电流随输出电压的变化而不断变化,从而使电容的充电

(或放电)电流也不断变化,电容上的电压不再是线性上升的,输出电压Vo不再是三角波。

设在稳态,取t∈(0,Ts/2),电路的响应可可看作:阶跃输入的零状态响应和初始条件为Vop的零输入响应。阶跃输入的零状态响应的Laplace变换为

VipR21

(5)Vos(s)??

R1R2cs?1s

Vip为输入阶跃的幅值。做Laplace反变换可得

?R2

vof(t)??(1?eT2)Vip(6)

R1

t

其中,T2=R2c为电路的时间常数。由(3)式可得电路零输入是的微分方程

T2

dvoh(t)

?voh(t)?0dt

tT2

voh(0)?Vop(7)

容易得到电路的零输入响应为

voh(t)?vope

积分电路和微分电路实验报告

竭诚为您提供优质文档/双击可除积分电路和微分电路实验报告 篇一:实验6积分与微分电路 实验6积分与微分电路 1.实验目的 学习使用运放组成积分和微分电路。 2.实验仪器 双踪示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)阅读op07的“数据手册”,了解op07的性能。2)复习关于积分和微分电路的理论知识。3)阅读本次实验的教材。 4.实验内容 1)积分电路如图5.1。在理想条件下,为零时,则 dV(t)Vi(t) ??co,当c两端的初始电压Rdt Vo(t)?? 1t

Vi(t)dtRc?o 因此而得名为积分电路。 (1)取运放直流偏置为?12V,输入幅值Vi=-1V的阶跃电压,测量输出饱和电压和有效积分时间。 若输入为幅值Vi=-1V阶跃电压时,输出为 Vo(t)?? Vi1t Vdt??t,(1)i Rc?oRc 这时输出电压将随时间增长而线性上升。 通常运放存在输入直流失调电压,图6.1所示电路运放直流开路,运放以开环放大倍数放大输入直流失调电压,往往使运放输出限幅,即输出电压接近直流电源电压,输出饱和,运放不能正常工作。在op07的“数据手册”中,其输入直流失调电压的典型值为30μV;开环增益约为112db,即4×105。据此可以估算,当Vi=0V时,Vo=30μV×4×105=12V。电路实际输出接近直流偏置电压,已无法正常工作。 建议用以下方法。按图6.1接好电路后,将直流信号源输出端与此同时Vi相接,调整直流信号源,使其输出为-1V,将输出Vo接示波器输入,用示波器可观察到积分电路输出饱和。保持电路状态,关闭直流偏置电源,示波器x轴扫描

积分电路和微分电路

积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图。 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达: i = (V/R)e-(t/CR) ?i--充电电流(A); ?V--输入信号电压(V); ?C--电阻值(欧姆); ?e--自然对数常数(2.71828);

?t--信号电压作用时间(秒); ?CR--R、C常数(R*C) 由此我们可以找输出部分即电容上的电压为V-i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): Vc = V[1-e-(t/CR)]

微分电路 微分电路是电子线路中最常见的电路之一,弄清它的原理对我们看懂电路图、理解微分电路的作用很有帮助,这里我们将对微分电路做一个简单介绍。图1给出了一个标准的微分电路形式。为表达方便,这里我们使输入为频率为50Hz的方波,经过微分电路后,输出为变化很陡峭的曲线。图2是用示波器显示的输入和输出的波形。 当第一个方波电压加在微分电路的两端(输入端)时,电容C上的电压开始因充电而增加。而流过电容C的电流则随着充电电压的上升而下降。电流经过微分电路(R、C)的规律可用下面的公式来表达(可参考右图): i = (V/R)e-(t/CR)

?i-充电电流(A); ?v-输入信号电压(V); ?R-电路电阻值(欧姆); ?C-电路电容值(F); ?e-自然对数常数(2.71828); ?t-信号电压作用时间(秒); ?CR-R、C常数(R*C) 由此我们可以看出输出部分即电阻上的电压为i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): iR = V[e-(t/CR)]

PCB实验报告

课程设计报告 利用Altium Designer设计单片机实验系统PCB板 学院城市轨道交通学院 专业电气工程与自动化 班级10控制工程 学号1042402057 姓名方玮 指导老师刘文杰 完成时间2013-05-21

目录 一、设计目的 (2) 二、设计方案 2.1、设计流程图 (2) 2.2、板层选择 (2) 2.3、元件封装 (3) 2.4、布线方案 (4) 三、原理图的绘制 3.1创建新的PCB工程 (4) 3.2创建新的电气原理图 (5) 3.3添加电路原理图到工程当中 (5) 3.4设置原理图选项 (5) 3.5电路原理图绘制 (6) 3.5.1 加载库和元件 (6) 3.5.2 放置元件 (7) 3.5.3 绘制电路 (9) 3.5.4 注意事项 (11) 3.6编译工程 (14) 四、PCB板的绘制 4.1创建新的PCB文件 (15) 4.2在工程中添加新的PCB (16) 4.3 将原理图的信息导入PCB (17) 4.4 PCB的绘制 (17) 4.4.1元件放置 (17) 4.4.2规则设置 (18) 4.4.3手动布线 (19) 4.4.4规则检查 (21) 五、实验心得体会 (23) 六、附录1 原理图 (24) 七、附录2 PCB图 (25)

利用Altium Designer 设计单片机实验 系统PCB板 一、设计目的 1.培养学生掌握、使用实用电子线路、计算机系统设计、仿真软件的能力。2.提高学生读图、分析线路和正确绘制设计线路、系统的能力。 3.了解原理图设计基础、了解设计环境设置、学习 Altium Designer 软件的功能及使用方法。 4.掌握绘制原理图的各种工具、利用软件绘制原理图。 5.掌握编辑元器件的方法构造原理图元件库。 6.熟练掌握手工绘制电路版的方法。 7.掌握绘制编辑元件封装图的方法,自己构造印制板元件库。 8.了解电路板设计的一般规则、利用软件绘制原理图并自动生成印制板图。 二、设计方案 2.1 设计流程图 2.2板层选择 根据层数分类,印制电路板可分为单面板、双面板和多层板。 (1)单面板 单面印制电路板只有一面有导电铜箔,另一面没有。在使用单面板时,通常在没有导电铜箔的一面安装元件,将元件引脚通过插孔穿到有导山铜箔的一面,导电铜箔将元件引脚连接起来就可以构成电路或电子设备。单面板成本低,但因为只有一面有导电铜箔,不适用于复杂的电子设备。 (2)双面板 双面板包括两层:顶层(Top Layer)和底层(Bottom Layer)。与单面板不同,双面板的两层都有导电铜箔,其结构示意图如图2-1所示。双面板的每层都

RC一阶电路实验报告材料

实验二十一一阶线性电路过滤过程的观测 一、实验目的 1、测定RC一阶电路的零输入响应,零状态响应及完全响应。 2、学习电路时间常数的测量方法。 3、掌握有关微分电路和积分电路的概念。 4、学会用示波器测绘图形。 二、实验容 RC串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<

时间常数的测量 R=4K

R=1K R=6K C=0.22U

R=1K R=1K

三、误差分析 1)实验过程中的读数误差 2)仪器的基本误差 3)导线连接不紧密产生的接触误差 四、实验总结 在RC一阶电路的R=2k,C=0.047u中理论值t=RC=0.094MS,在仿真实验中t=0.093.5ms 其相对误差为r=0.0005/0.094*100%=0.531%<5% 在误差允许的围测得的数值可以采用。 当T=t时,Uc(t)=0.368Us,此时所对应的时间就是t,亦可用零状态响应波形增长到0.632Us所对应的时间测量。 在RC的数值变化时,即t=RC也随之变化,t越小其响应变化就越快,反之越慢。 积分电路的形成条件:一个简单的RC串联电路序列脉冲的重复激励下,当满足t=RC>>T/2条件时,且由C端作为响应输出,即为积分电路。 积分电路波形变换的特征:积分电路可以使输出方波转换成三角波或斜波。积分电路可以使矩形脉冲波转换成锯齿波或三角波。 稍微改变电阻值或增大C值,RC值也会随之变化,t越大,锯齿波的线性越好。

RC一阶电路的响应测试实验报告

? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当 满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

(完整word版)PCB实验报告

《电子线路印刷版(PCB)设计CAD》 实践报告 题目:单片机最小系统PCB设计 姓名: 学号: 系别:信息工程系 专业:通信工程 年级:09 级 2013年1月9日 一、设计的任务与要求 学习掌握一种电路设计与制板软件(课堂主要使用Protel 99SE,或其他软

件Altium Designer 、PADS、OrCAD、Proteus 等),掌握软件使用的基本技巧的基础,结合专业相关电路方面知识来设计PCB板。根据参考系统设计一个小型的单片机系统,以89C51 为核心单片机,具备如下主要功能模块:电源模块、ISP(In-System Programming)下载模块,时钟和复位模块、AD 采集模块、键盘模块、数码管和LED显示模块等,画出SCH原理图和对应的PCB 印刷电路板。 主要设计内容: 1、根据需要绘制或创建自己的元件符号,并在原理图中使用; 2、SCH原理图设计步骤与编辑技巧总结; 3、绘制或创建和元件封装,并在原理图中调用; 4、生成项目的BOM(Bill of Material); 5、设置PCB 设计规则(安全距离、线宽、焊盘过孔等等),以及PCB 设 计步骤和布局布线思路和技巧总结; 6、最终完整的SCH电路原理图; 7、元器件布局图; 8、最终完整的PCB 版图。 二、实验仪器 PC机,Protel 99SE软件 三、原理图元件库设计 3.1 6段数码管模块 LED数码管(LED Segment Displays)是由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。LED数码管有八个小LED发光二极管,常用段数一般为7段有的另加一个小数点,通过控制不同的LED的亮灭来显示出不同的字形。数码管又分为共阴极和共阳极两种类型,其实共阴极就是将八个LED的阴极连在一起,让其接地,这样给任何一个LED的另一端高电平,它便能点亮。而共阳极就是将八个LED的阳极连在一起。

实验九 积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 姓名:刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有 效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出 u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示: 微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。 2.微分电路 实验电路如上图所示。 (1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。 (2)将f改为500Hz,重复上述实验。 解答: 1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值 电路仿真图如下图所示:

电路原理图与电路板设计实验报告

电路原理图与电路板设计实验报告 学院: 班级: 专业: : 学号:

指导老师: 河南工业大学实验报告专业班级 学号 同组者姓名完成日期 成绩评定 实验题目:(一)原理图设计环境画原理图实验 实验目的: 1.熟练PROTEL99se的原理图编辑环境。 2.掌握常用管理器,菜单的使用,电气规则检查。 3.掌握元器件的调用,属性含义。 实验内容: 教材: 1.1,1.2,1.3,1.4环境熟悉 2.1,2.2工具条对象,器件调用 2.3,2.4菜单使用,元件属性修改 4.2练习1---练习8 实验仪器:PROTEL99se软件

实验步骤: (1)放置元件:就是在元件库中找元件,然后用元件管 理器的Place按钮将元件放在原理图中。 放置元件时需要使用如下所示快捷键: 空格键:每单击一次空格键使元件逆时针旋转90度。 TAB键:当元件浮动时,单击TAB键就可以显示属性编辑窗口。 X键:元件水平镜像。 Y键:元件垂直镜像。 (2)连接导线。使用划线工具连接导线。 (3)放置电源,地线和网络标记。放置电源和地线标记前要显示电源地线工具箱。 (4)自动元件编号:使用菜单Tool/Annotate对元件自动编号。 (5)编辑元件属性。单击元件,在弹出的属性窗口中输入元件的属性,注意一定要输入元件封装。(6)电气规则检查。使用Tool/ERC菜单,对画好的原理图进行电气规则检查,检查完毕后,出现报 表信息,就可以进行下一步。

(7)原件图元件列表。使用Edit/Export to Spread菜单,按照向导提示进行操作。 (8)建立网络表。使用菜单Design/Netlist。 实验截图:

微积分电路 实验报告

模拟电路实验报告 微积分电路

一.实验目的 1.微积分电路的工作原理及计算方法。 2.微积分电路的测试分析方法。 二.实验仪器 数字万用表 信号发生器 示波器 交流毫伏表 直流稳压电源 三.实验原理 实验原理可以构成积分和微分运算电路: 微分电路的运算关系:u 。=-RC dt du i 积分电路的运算关系:u 。=-RC 1 i u dt 四.实验内容 1.积分电路 连接积分电路,检查无误后接通+12v 和-12v 直流电源。 ①取ui=-1v,用示波器观察波形u 。,并测量运放输出电压的正向饱和电压值。(即为积分带最大时,为11.118v ) ②取ui=1v,测量运放的负向饱和电压值。(为-11.118v ) 由于波形上下波动很快,所以无法在实验实测其饱和电压值。 ③将电路中的积分电容改为0.1uF ,ui 分别输入1KHz 幅值为2v 的方波和正弦信号,观察u i 和u 。的大小及相位关系,并记录波形,计算电路的有效积分时间。

a. 输入1KHz 的方波时(记录为幅值) b. 输入1KHz 的方波时(记录为幅值) 有效积分时间:31010?==RC τ6101.0-??=0.001s ④改变电路的输入信号的频率,观察ui 和u 。的相位,幅值关系。(输入为正弦波) 随着频率变大,幅值变小,相位不变。 2.微分电路 在输入端串联滑动变阻,改进微分电路,滑动变阻器可以减少电路反馈滞后与内部滞后产生自激引起的失真。

①输入正弦波信号,f=500Hz,有效值为1v,用示波器观察Ui和U。的波形并测量输出电压值。(记录为幅值) 仿真值:ui=1.4V u。=4.3V 实验值:ui=1.4V u。=4.5V 此时滑动变阻为1k欧姆,波形无失真。 ②改变正弦波频率(20Hz——40Hz),观察Ui和U。的相位,幅值变化的情况并记录。(记录为幅值) 随着频率的增大,幅值也在增大,相位没有变化。 ③输入方波,f=200Hz,U=±5v,用示波器观察U。波形,并重复上述实验。 实验:输入方波,f=200Hz,U=±5v,滑动变阻为45k欧姆。 ④输入三角波,f=200Hz,U=±2v,用示波器观察U。波形,重复上述实验。 仿真波形为:输出为4v. 实验:输入方波,f=200Hz,U=±5v,滑动变阻为45k欧姆。 3.积分——微分电路: 在输入端串联滑动变阻,改进微分电路,滑动变阻器可以减少电路反馈滞后与内部滞后产生自激引起的失真。

电路实验报告

实验一 元件特性的示波测量法 一、实验目的 1、学习用示波器测量正弦信号的相位差。 2、学习用示波器测量电压、电流、磁链、电荷等电路的基本变量 3、掌握元件特性的示波测量法,加深对元件特性的理解。 二、实验任务 1、 用直接测量法和李萨如图形法测量RC 移相器的相移??即uC u s ??-实验原理图如图 5-6示。 2、 图5-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(电源频率在 100Hz~1000Hz 内): (1)线性电阻元件(阻值自选) (2)给定非线性电阻元件(测量电压范围由指导教师给定)电路如图5-7 3、按图5-4接线,测量电容元件的库伏特性曲线。 4、测量线性电感线圈的韦安特性曲线,电路如图5-5 5、测量非线性电感线圈的韦安特性曲线,电源通过电源变压器供给,电路如图5-8所示。 图 5-7 图 5-8 这里,电源变压器的副边没有保护接地,示波器的公共点可以选图示接地点,以减少误差。 三、思考题 1、元件的特性曲线在示波器荧光屏上是如何形成的,试以线性电阻为例加以说明。

答:利用示波器的X-Y方式,此时锯齿波信号被切断,X轴输入电阻的电流信号,经放大后加至水平偏转板。Y轴输入电阻两端的电压信号经放大后加至垂直偏转板,荧屏上呈现的是u x,u Y的合成的图形。即电流电压的伏安特性曲线。 3、为什么用示波器测量电路中电流要加取样电阻r,说明对r的阻值有何要求? 答:因为示波器不识别电流信号,只识别电压信号。所以要把电流信号转化为电压信号,而电阻上的电流、电压信号是同相的,只相差r倍。r的阻值尽可能小,减少对电路的影响。一般取1-9Ω。 四、实验结果 1.电阻元件输入输出波形及伏安特性

PCB板制作实验报告

PCB板制作实验报告 姓名:任晓峰 08090107 陈琛 08090103 符登辉 08090111 班级:电信0801班 指导老师:郭杰荣

一实验名称 PCB印刷版的制作 二实习目的 通过PCB板的制作,了解制板工艺流程,掌握制板的原理知识,并熟悉制板工具的使用以及维护,锻炼实践动手的能力,更好的巩固制板知识的应用,具备初步制作满足需求,美观、安全可靠的板。 三PCB板的制作流程 (1)原稿制作(喷墨【硫酸纸】、激光【硫酸纸/透明菲林】、光绘非林) 把用protel设计好的电路图用激光(喷墨)打印机用透明、半透明或70g复印纸打印出。 注意事项:打印原稿时选择镜像打印,电路图打印墨水(碳粉)面必须与绿色的感光膜面紧密接触,以获得最高的解析度。稿面需保持清洁无污物,线路部分如有透光破洞,应用油性黑笔修补。 (2)曝光: 首先将PCB板裁剪成适当大小的板,然后撕掉保护膜,将打印好的线路图的打印面(碳 粉面/墨水面)贴在感光膜面上,在用透明胶将原稿和PCB板的感光面贴紧,把PCB板放在曝光箱中进行曝光。曝光时间根据PCB板子而确定。本次制作的板子约为三分钟。 曝光注意事项:请保持感光板板面及原稿清洁和整齐,若曝光时间不足则容易在下个环节容易使线路腐蚀掉。 (3)显影:调制显像剂:显像剂:水(1:20),即1包20g显像剂配400cc水。显影:膜面朝上放 感光板在盆里。 (4)蚀刻:块状三氯化铁:热水(1:3)的比例调配。蚀刻时间在10-30分钟。 注意事项:感光膜可以直接焊接不必去除,如需要去处的可以用酒精。三氯化铁蚀刻液越浓蚀刻越慢,太稀也慢。蚀刻时间不可过长或过短。蚀刻完毕后,用清水将蚀刻后的PCB板进行清洗,等待水干后在进行下一个步骤。 (5)二次曝光:将蚀刻好的PCB板放进曝光箱中进行二次曝光。此次曝光是将已经进行蚀刻的PCB 板上的线路进行曝光。 (6)二次显影:将二次曝光的PCB板再次进行显影。将进行了二次曝光的PCB板进行显影,将PCB 板上的线路进行显影,去掉线路上的感光膜,让铜箔线显露出来。 (7)打孔:使用钻头在已经制作好的PCB板上进行打孔。在本次实践过程中不进行,因为在打孔过 程中容易造成打孔钻头断裂或者PCB板损坏,工艺有一定难度。 四制作成品展示

一阶RC电路实验报告

北京交通大学电子信息工程学院2011~2012 实验报告 实验题目:一阶RC电路的研究。 实验内容及结果: 1.一阶RC电路的响应及τ值的测量 理论依据,当t=τ时,电压值为0.632A 实验电路: 激励方波周期T>8τ 实际实验数据为: 信号发生器频率 f = 83HZ 峰峰值U = 3.2V 示波器TIME/DIV = 2ms CH1/2 VOLT/DIV = 1v 电阻R = 5.1KΩ 电容 C = 0.22μF; 示波器上部分显示图像: 在两格时,电容器上的电压大概达到0.632A,对应的时间格时0.5格,即为1ms, 实验测的时间常数τ= 0.1ms,理论的τ值是R*C=0.1122ms.误差为%10.09。

2.设计一个积分电路: 根据实验要求:τ = 10T ,通过τ可计算出R 值。 R = C τ 实验电路: 实际实验数据为: 信号发生器 频率 f = 100HZ 峰峰值U = 4V 示波器 TIME/DIV = 2ms CH1 VOLT/DIV=1V CH2 VOLT/DIV=50mV 电阻 R = 10K Ω 电容 C = 10μF; 示波器上部分显示图像: 从图中可知微分信号的峰峰值为110mV 。 根据公式 20C *1t usdt R 得出理论峰峰值为100mV 。 误差为10%。 CH2(50mV) CH1(1V)

3.设计一个微分电路 根据实验要求:T = 10τ,通过τ可计算出R值。 τ R = C 实验电路: 实际实验数据为: 信号发生器频率 f = 100HZ 峰峰值U = 4V 示波器TIME/DIV = 2ms CH1 VOLT/DIV=2V CH2 VOLT/DIV=2V 电阻R = 2.13KΩ 电容 C = 470nF; 示波器上部分显示图像: 实验图像与理论图像相差不大,冲击信号的峰值大概是激励方波的两倍,在图上可以明显的看出。

微分和积分电路的异同

电子知识 微分电路(13)积分电路(20) 输出电压与输入电压成微分关系的电路为微分电路,通常由电容和电阻组成;输出电压与输入电压成积分关系的电路为积分电路,通常由电阻和电容组成。微分电路、积分电路可以分别产生尖脉冲和三角波形的响应。积分运算和微分运算互为逆运算,在自控系统中,常用积分电路和微分电路作为调节环节;此外,他们还广泛应用于波形的产生和变换以及仪器仪表之中。以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这两种运算电路。 (一)积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 (二)他们被广泛的用于自控系统中的调节环节中,此外还广泛应用于波形的产生和变换以及仪表之中。 (三)验证:你比如说产生三角波的方法,有这样两个简单的办法,第一就是在方波发生电路中,当滞回比较器的阈值电压数值比较小时,咱们就可以把电容两端的电压看成三角波,第二呢直接把方波电压作为积分运算电路的发生电路的输出电压uo1=+Uz,时积分电路的输出电压uo将线性下降;而当

uo1=-Uz时,uo将线性上升;从而产生三角波,这时你就会发现两种方法产生的三角波的效果还是第二种的好,因为第一种方法产生的三角波线性度太差,而且如果带负载后将会使电路的性能发生变化。你可以用我说的这两种方法分别试试就知道差别优势了。 积分电路和微分电路当然是对信号求积分与求微分的电路了,它最简单的构成是一个运算放大器,一个电阻R和一个电容C,运放的负极接地,正极接电容,输出端Uo再与正极接接一个电阻就是微分电路,设正极输入Ui,则Uo=-RC(dUi/dt)。 当电容位置和电阻互换一下就是积分电路,Uo=-1/RC*(Ui 对时间t的积分),这两种电路就是用来求积分与微分的。方波输入积分电路积分出来就是三角波,而输入微分电路出来就是尖脉冲。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准

PCB板实验报告

pcb板制作实验报告 姓名:任晓峰 08090107 陈琛 08090103 符登辉 08090111 班级:电信0801班 指导老师:郭杰荣 一实验名称 pcb印刷版的制作 二实习目的 通过pcb板的制作,了解制板工艺流程,掌握制板的原理知识,并熟悉制板工具的使用 以及维护,锻炼实践动手的能力,更好的巩固制板知识的应用,具备初步制作满足需求,美 观、安全可靠的板。 三 pcb板的制作流程 (1)原稿制作(喷墨【硫酸纸】、激光【硫酸纸/透明菲林】、光绘非林) 把用protel设计好的电路图用激光(喷墨)打印机用透明、半透明或70g复印纸打印出。 注意事项:打印原稿时选择镜像打印,电路图打印墨水(碳粉)面必须与绿色的感光膜 面紧密接触,以获得最高的解析度。稿面需保持清洁无污物,线路部分如有透光破洞,应用 油性黑笔修补。 (2)曝光: 首先将pcb板裁剪成适当大小的板,然后撕掉保护膜,将打印好的线路图的打 印面(碳粉面/墨水面)贴在感光膜面上,在用透明胶将原稿和pcb板的感光面贴紧,把pcb 板放在曝光箱中进行曝光。曝光时间根据pcb板子而确定。本次制作的板子约为三分钟。 曝光注意事项:请保持感光板板面及原稿清洁和整齐,若曝光时间不足则容易在下个环 节容易使线路腐蚀掉。 (3)显影:调制显像剂:显像剂:水(1:20),即1包20g显像剂配400cc水。显影:膜 面朝上放感光板在盆里。 (4)蚀刻:块状三氯化铁:热水(1:3)的比例调配。蚀刻时间在10-30分钟。 注意事项:感光膜可以直接焊接不必去除,如需要去处的可以用酒精。三氯化铁蚀刻液 越浓蚀刻越慢,太稀也慢。蚀刻时间不可过长或过短。蚀刻完毕后,用清水将蚀刻后的pcb 板进行清洗,等待水干后在进行下一个步骤。 (5)二次曝光:将蚀刻好的pcb板放进曝光箱中进行二次曝光。此次曝光是将已经进行蚀 刻的pcb板上的线路进行曝光。 (6)二次显影:将二次曝光的pcb板再次进行显影。将进行了二次曝光的pcb板进行显影, 将pcb板上的线路进行显影,去掉线路上的感光膜,让铜箔线显露出来。 (7)打孔:使用钻头在已经制作好的pcb板上进行打孔。在本次实践过程中不进行,因为 在打孔过程中容易造成打孔钻头断裂或者pcb板损坏,工艺有一定难度。 四制作成品展示 五对焊接实习的感受 首先,我们要感谢郭老师的教导,是老师一步一步的细致讲解,让我们成功完成了实验。 通过制板的学习,基本掌握了pcb板生产制作的原理和流程,以及电路板后期焊接,安 装和调试与其前期制作的联系,培养了我们理论联系实际的能力,提高了分析问题和解决问 题的能力,不仅锻炼了同学们之间团队合作的精神,还增强了我们独立工作的能力,收获很 大,虽然在实验制作过程中遇到不少困难和挫折,但通过分析问题,请教老师和同学,最终 顺利完成了课程设计的要求和任务。 电子制作中或在电子产品开发中,都会用到电路板,自制电路板的方法有很多,一般采

微积分电路实验报告器件实验

示波器的使用及微分、积分电路实验报告 一、实验目的 1、熟练掌握示波器、函数信号发生器、及面包板的使用方法 2、能够准确解读示波器的图像,读出实验所需数据 3、了解微分、积分电路的原理,能够做出简单的微分、积分电路,并解释其 波形 二、实验仪器 双踪示波器、函数信号发生器、面包板、电阻、电容,数字万用表 三、实验原理 微、积分电路原理 所谓的微分及积分电路实际上就就是在电路分析中的一阶电路,简单的微、积分电路,可利用电阻与电容、脉冲信号组成。 如图 : 其中脉冲信号为矩形波,电阻两端电压输出为微分形式,电容两端输出为积分形式。所以微、积分电路其实为同一电路,只就是不同部分电压的输出不同。 因为实验中,函数信号为最小值0V,最大值5V,所以我们也以此来计算电容、电阻两端电压变化情况。 因为dq i dt =,而对于电容又有q=Cu; 所以电容两端有du i C dt =,则根据欧姆定理及基尔霍夫定律(KVL): c c s du RC u u dt +=; 上式可变为 1()c s c du u u dt RC =- 即1c s c du dt u u RC =-,可变为()1s c s c d u u dt u u RC --=-,

两端积分,可得1ln()s c u u t k RC --=+ 积分常数可由初始条件加以确定: 当一个信号周期开始,电容两端电压先就是从0V 变为5V ,再变为0V 。 所以就是两个过程,第一个过程,(0)0c u V = 则,t =0时,可知ln s k u =-; 所以1ln()ln s c s u u u t RC --=-,即1ln s c s u u t u RC -=- 两边取反对数,得1t s c RC s u u e u --=,即:1()(1)t RC c s u t u e -=- 而R c s u u u +=,所以1t RC R s u u e -= 第二个过程,(0)c s u u =,则,t =0时,可知s c u u -趋近于0,不能直接算出k 值,所以可以将电容瞧做一个以电压源0()c u t 与一个初始电压为0的电容的串联,所以10()()()c c u t u t u t =+。 而1()u t 瞧做零状态响应:110() ()(1)t RC c u t u t e -=-- 则10()()t RC c c u t u t e -=,而(0)c s u u =,所以1()t RC c s u t u e -= 又因为R c s u u u +=,而s u =0所以1t RC R s u u e -=- 由此可知,两个过程一开始,电容两端的电压都不会发生突变,而就是渐渐减小或增加,但始终为正(脉冲信号无反方向信号),而电阻两端的电压则会发生突变,电压与上一次突变反向,电压值的大小为脉冲信号的最大值。所以电阻两端电压的波形图的峰峰值应为对应的电容两端电压的波形图的两倍。 有以上两个过程的分析可知,电容的充放电的时间主要与R 、C 相关,所以课

PCB设计实训报告

印刷电路板的设计与制作 实训报告 应用电子1121 姓名: 孙浩然 学号: 1103180138 指导老师:冯薇王颖 实训时间:2012.12.29----2013.1.6 实训地点:6407

目录实训目的 实训内容 (1)电路简介 (2)手绘电路图(包括测绘数据) (3)BOM表 (4)原理图库文件 (5)原理图绘制 (6)封装库 (7)PCB板绘制

一、实训目的 增加我们对PCB制板工艺流程的熟悉程度,增强我们的实际动手操作能力,为以后的工作奠定良好的基础。 二、实训内容 (1)电路简介

(2)手绘电路图(包括测绘数据) 1、原理图设计 打开protel99se,建立库文件,通过File/New/Project/PCB Project建立,然后在File/New/Schemotic建立原理图将此原理图移到库里面并通过File/Save As保存到U盘里面首先打开PRTOEL99E软件,新建一个名位17张准.ddb文件,会生成Design Team Recycle Bi表,为以后的PCB图及自动布线,做好铺垫。 要注意的是: a.画导线要用连线工具。因为这样才有电气属性, b.放置网络标号。放置网络标号要用连线工具栏的网络连接工具,不要用画图工具去自己制作。 . (3)BOM表 序 号 品名位号封装备注 1 CAP C1 C Capaci tor

2 CON5 J 3 J3 Connec tor 3 CON11 J2 J2 4 CON12 J1 J1 Connec tor 5 JD1 JD1 JD1 6 JD2 JD2 JD2 7 PU1 PU1 PU1 8 RES2 R9 R Resist or 9 RES2 R8 R Resist or 10 RES2 R7 R Resist or 11 RES2 R12 R Resist or 12 RES2 R11 R Resist or 13 RES2 R10 R Resist or 14 RES2 R3 R Resist or 15 RES2 R2 R Resist or 16 RES2 R1 R Resist or 17 RES2 R6 R Resist or 18 RES2 R5 R Resist or

积分电路和微分电路

什么是积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 基本积分电路: 积分电路如下图所示,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 原理:从图得,Uo=Uc=(1/C)/icdt,因Ui=UR+Uo当t=to 时,Uc=Oo随后C 充电,由于ROTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c) / icdt=(1/RC) / Uidt 这就是输出Uo正比于输入Ui的积分(/ Uidt ) RC电路的积分条件:RO Tk 积分电路的作用: 积分电路能将方波转换成三角波,积分电路具有延迟作用,积分电路还有移相作用。积分电路的应用很广,它是模拟电子计算机的基本组成单元,在控制和测量系统中也常常用到积分电路。此外,积分电路还可用于延时和定时。在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。 微分电路 可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换

的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10 就可以了。 积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图 R=10K o輸出 匚=0-3 F=5OHZ o ---- 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达:

PCB设计实验报告

Protel 99SE原理图与PCB设计的实验报告摘要: Protel 99SE是一种基于Windows环境下的电路板设计软件。该软件功能强大,提供了原理图设计、电路混合信号仿真、PCB图设计、信号完整性分析等电子线路设计需要用的方法和工具,具有人机界面友好、管理文件灵活、易学易用等优点,因此,无论是进行社会生产,还是科研学习,都是人们首选的电路板设计工具。 我们在为期两个星期的课程设计中只是初步通过学习和使用Protel 99SE软件对一些单片机系统进行原理图设计绘制和电路板的印制( PCB),来达到熟悉和掌握Protel 99SE软件相关操作的学习目的。 在该课程设计报告中我主要阐述了关于原理图绘制过程的步骤说明、自制原器件的绘制和封装的添加以及根据原理图设计PCB图并进行了PCB图的覆铜处理几个方面。 关键字:Protel 99SE原理图封装PCB板 正文 一、课程设计的目的 通过本课程的实习,使学生掌握设计电路原理图、制作电路原理图元器件库、电气法则测试、管理设计文件、制作各种符合国家标准的印制电路板、制作印制板封装库的方法和实际应用技巧。主要包括以下内容:原理图(SCH)设计系统;原理图元件库编辑;印制电路板(PCB)设计系统;印制电路板元件库编辑。 二、课程设计的内容和要求 原理图(SCH)设计系统 (1)原理图的设计步骤; (2)绘制电路原理图; (3)文件管理; (4)生成网络表文件; (5)层次原理图的设计。 基本要求:掌握原理图的设计步骤,会绘制电路原理图,利用原理图生产网络表,以达到检查原理图的正确性的目的;熟悉文件管理的方法和层次原理图的设计方法。 原理图元件库编辑 (1)原理图元件库编辑器; (2)原理图元件库绘图工具和命令; (3)制作自己的元件库。 基本要求:熟悉原理图元件库的编辑环境,熟练使用元件库的常用工具和命令,会制自己的元件库。 印制电路板(PCB)设计系统 (1)印制电路板(PCB)的布线流程; (2)设置电路板工作层面和工作参数; (3)元件布局; (4)手动布线与自动布线; (5)电路板信息报表生成。

PCB实训报告

《印刷电路板设计与制版》 课 程 综 合 设 计 报 告 专业:应用电子技术 指导老师:张艳阳、谢海明 学号:19号 报告人:雷维 2011年1月2日 DXP课程实训报告 前言:DXP整个实训过程包括PCB板设计和PCB生产制造两个过程,不管是开始的设计还是后续的生产制造过程都较为复杂。其中PCB板设计这一环节在DXP2004软件上完成,而PCB生产制造过程中

涉及的工艺范围较广,从简单的机械加工到复杂的机械加工,有普通化学反应、光化学反应、电化学反应和热化学反应等工艺,计算机辅助设计(CAM)等多方面知识。由于其生产过程是一种非连续的流水线形式,任何一个环节出问题都会造成大量报废的后果,且无法再次回收利用。 一、实训目的 增加我们对PCB制板工艺流程的熟悉程度,增强我们的实际动手操作能力,为以后的工作奠定良好的基础。 二、实训流程 1、绘制超声波测距仪原理图以及PCB板图的设计 1.1 超声波测距仪原理图 在绘制原理图时,需要我们注意的是按要求添加各个元器件的封装,尤其值得注意的是那些自己画的元件封装。因为,原理图中元件的封装将直接影响后面实物元器件的装配与焊接。例如,原理图中加载的是贴片元件,而购买回来的元件是直插式元件,那么我们就无法将元器件完好的安装到电路板上。还有一点也是特别重要的,那就是在给引脚添加网络标号时,注意让两个相连引脚的标号保持一致,否则,在生成网络报表时将产生错误。 超声波发射电路图:

超声波接收电路图: 电源电路与测温电路: 1.2 超声波测距仪PCB板图(设计PCB板图时,元器件的布局好坏是成功的关键)

2、报表的生成与PCB文件的打印(即打印菲林底板)。 菲林底版是印制电路板生产的前导工序,菲林底版的质量直接影响到印制板生产质量。在生产某一种印制线路板时,必须有至少一套相应的菲林底版。印制板的每种导电图形(信号层电路图形和地、电源层图形)和非导电图形(阻焊图形和字符)至少都应有一张菲林底片。通过光化学转移工艺,将各种图形转移到生产板材上去。 3、电路板覆铜(老师事先已完成) 4、钻孔(根据钻孔文件设置打孔机) 5、电路板覆铜面抛光、烘干、刷漆 6、覆铜面显影(贴底部信号层底片) 7、去膜(此工序需要操作两次才能将漆膜彻底去掉,曝光部分为需

一阶电路实验报告

福建工程学院实验报告专业 班级 座号 姓名 日期

实验二十一一阶线性电路过滤过程的观测 一、实验目的 1、测定RC一阶电路的零输入响应,零状态响应及完全响应。 2、学习电路时间常数的测量方法。 3、掌握有关微分电路和积分电路的概念。 4、学会用示波器测绘图形。 二、实验内容 RC串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<

时间常数的测量 R=4K

R=1K R=6K C=0.22U

R=1K R=1K

三、误差分析 1)实验过程中的读数误差 2)仪器的基本误差 3)导线连接不紧密产生的接触误差 四、实验总结 在RC一阶电路的R=2k,C=0.047u中理论值t=RC=0.094MS,在仿真实验中t=0.093.5ms 其相对误差为r=0.0005/0.094*100%=0.531%<5% 在误差允许的范围内测得的数值可以采用。 当T=t时,Uc(t)=0.368Us,此时所对应的时间就是t,亦可用零状态响应波形增长到0.632Us所对应的时间测量。 在RC的数值变化时,即t=RC也随之变化,t越小其响应变化就越快,反之越慢。 积分电路的形成条件:一个简单的RC串联电路序列脉冲的重复激励下,当满足t=RC>>T/2条件时,且由C端作为响应输出,即为积分电路。 积分电路波形变换的特征:积分电路可以使输出方波转换成三角波或斜波。积分电路可以使矩形脉冲波转换成锯齿波或三角波。 稍微改变电阻值或增大C值,RC值也会随之变化,t越大,锯齿波的线性越好。

相关文档