文档库 最新最全的文档下载
当前位置:文档库 › _环糊精_酚酞超分子探针检测间硝基氯苯的研究

_环糊精_酚酞超分子探针检测间硝基氯苯的研究

_环糊精_酚酞超分子探针检测间硝基氯苯的研究
_环糊精_酚酞超分子探针检测间硝基氯苯的研究

第22卷第1期2008年1月

济南大学学报(自然科学版)

J OURNAL OF UN I VERSITY O F JI NAN (Sc.i &T ech )

Vo.l 22 No .1

Jan.2008

文章编号:1671-3559(2008)01-0056-03

收稿日期:2007-09-02

基金项目:济南大学博士基金(B0407)

作者简介:王 蕾(1981-),女,山东济南人,硕士生;罗川南

(1964-),女,辽宁瓦房店人,教授,硕士生导师。

-环糊精-酚酞超分子探针检测间硝基氯苯的研究

王 蕾,徐忠鹏,王雪莹,罗川南

(济南大学化学化工学院,山东济南,250022)

摘 要: -环糊精-酚酞与间硝基氯苯相互作用生成超分子包络物并引起体系光谱信号的变化,据此以酚酞与 -环糊精形成的超分子光谱探针建立了用分光光度法测定间硝基氯苯的新方法。方法的线性范围为1.0 10-4~1.0 10-3mo l L -1,检出限为9.95 10-6m o l L -1。此法操作简单、灵敏、可靠,用于废水中硝基氯苯的测定获得满意的结果。

关键词: -环糊精;酚酞;间硝基氯苯;超分子探针中图分类号:O 657.3

文献标识码:A

-环糊精( -Cyclodex trin , -CD)是由7个葡萄糖分子形成的环状低聚糖。环糊精内部空腔具有疏水性,腔外羟基具有亲水性,使其在水中具有一

定的溶解度[1]

。由于这种外亲水内疏水的特殊结构,可以使环糊精与多种客体分子进行包合,形成超分子包合物

[2]

。 包合 就是主体与客体通过分子

间相互作用,完成彼此间的识别过程,最终使得客体

分子部分或全部嵌入到主体内部的现象。超分子包合物在分析分离

[3]

、改善药物的溶解性

[4]

、分子识

别[5]

、环境保护[6]

及生命科学领域

[7]

等方面的研究

都有着十分重要的意义。

硝基氯苯及其衍生物对生物表现出不同的毒性,对微生物而言,它属于难降解物质,被列为环境优先控制的污染物。所以国家对其制定了严格的排放标准。因此,准确测定废水中硝基氯苯类化合物的含量对于环境保护具有重要意义。目前,硝基氯苯的测定主要集中在气相色谱、液相色谱、离子色谱等领域,而利用环糊精与有机染料形成超分子探针来检测有机污染物的研究较少。由于环糊精和硝基氯苯在可见和近紫外区吸光度很小,不能采用分光光度法直接测定。故本文中用 -环糊精-酚酞超

分子包络物作为光谱探针,通过竞争包络,建立了测定硝基氯苯的新方法。该方法简单、灵敏、可靠,用于废水中硝基氯苯的测定取得了满意的结果。

1 实验部分

1.1 主要仪器与试剂

SP-2000型分光光度计(上海光谱仪器有限公

司),p H S-3C 型精密p H 计(上海精密科学仪器有限公司),AB204-S 型电子天平。

1.00 10-2

m o l L -1

-环糊精储备液( -CD,上海化学试剂站);1.00 10-2m o l L -1酚酞储备液(PP);1.00 10

-2

m o l L -1

的间硝基氯苯(m

-NCB )储备液;Na 2CO 3-N a HCO 3缓冲液;其他试剂均为分析纯,实验用水为石英二次重蒸馏水。1.2 实验方法

取若干支10m L 的具塞比色管,向其中依次加入1.0 10-3

m o l L -1

-CD 3.00mL,1.00 10

-4

m ol L -1

PP 3.50mL ,p H =11.00的N a 2CO 3-Na H -CO 3缓冲液2.00mL ,摇匀,再加入一定量的m -NCB ,稀释至10.0mL ,充分振荡,静置5m i n 。在SP -2000型分光光度计上,于最大吸收波长556nm 处测定溶液的吸光度A,对应试剂空白为A 0,计算 A ( A =A -A 0)。

2 结果与讨论

2.1 吸收光谱

按实验方法,分别做PP 、m -NCB 、PP- -CD 、PP - -CD-m -NCB 体系的吸收光谱,如图1。

由图1可知:曲线1、2、3、4基本都在556n m 处吸光度达到最大,说明主客体包络前后没有新的化学键形成,仅仅是通过分子间作用力形成的超分子包络物。这种分子间作用力包括疏水作用力、范德华力、氢键作用力以及主客体包络后环糊精空腔高能水的释放等

[8]

1. -CD(3.00 10-4m ol L-1)+PP(3.50 10-5m ol L-1)+

N a2CO3-N a H CO3(p H=11.00)

2.1+m-NCB(1.20 10-3m ol L-1)

3.PP(3.50 10-5mo l L-1)+Na2CO3-Na HCO3(pH=11.00)

4.3+m-NCB(1.20 10-3m ol L-1)

图1 吸收曲线

曲线1与曲线3的差别可以说明:PP在碱性溶液中本身以紫红色的双负离子形式存在,当PP与 -CD形成包络物后,其结构转变为无色的内酯结构[6]。而曲线3与曲线4的重合说明m-NCB与PP之间没有发生反应。但曲线1与曲线2的差别则说明m-NCB与PP同 -CD发生竞争包络反应,使得部分已经被包络的PP分子从 -CD空腔中释放出来,溶液中游离的PP分子增多,导致溶液吸光度增大。而实验又表明:溶液吸光度的增大与加入m-NCB的量在一定范围内成正比。据此可以建立一种测定m-NCB的新方法。

2.2 溶液酸度的影响

实验结果表明:溶液的p H值在9.68~11.0之间包络反应进行比较完全,而且 A变化比较平缓。故文中选择p H=11.0的Na2CO3-Na HCO3缓冲溶液为介质。

2.3 介质用量的选择

实验结果表明:Na2CO3-Na H CO3缓冲液的用量对 -CD的包络行为影响不大,文中选择pH= 11.0的N a2CO3-Na H CO3缓冲溶液1.0mL。

2.4 反应时间的影响

按实验方法配制反应体系,考察了室温下放置时间对体系吸光度的影响。实验表明:反应5m in 后达到平衡, A基本不变,说明反应完成, A至少24h不变,故文中选择反应时间为5m i n。

2.5 PP浓度的影响

实验结果表明:PP在3.50mL时 A达到最大,以后随着PP用量的增加, A变化不大,故文中选择1.00 10-4m o l L-1PP3.50mL,此时溶液中PP 的浓度为3.50 10-5m o l L-1。

2.6 -CD用量的影响

按实验方法,固定PP和m-NCB的浓度,改变 -CD的浓度,测定各溶液的吸光度。实验结果表明: -CD用量在3.00mL时 A达到最大,且体系比较稳定。文中选择1.0 10-3m o l/L、 -CD3.0 mL,此时溶液中 -CD为3.0 10-4m o l L-1。2.7 m-NCB的工作曲线

在体系最佳条件下,改变m-NCB的浓度,测定各溶液的吸光度。实验结果表明:m-NCB在1 10-4~1.0 10-3m o l L-1区间具有良好的线性关系,线性回归方程为: A=0.03614+410.11c,相关系数r=0.9985。按11次空白试验的标准偏差的3倍除以工作曲线的斜率测得间硝基氯苯的检出限为:3 /斜率=3 0.00136/410.11=9.95 10-6 m ol L-1。

2.8 共存组分的影响

取6支10m L的具塞比色管分别加入主体、竞争客体、介质和有机物,各物质的加入量依照确定的最佳条件,并在比色管中分别加入一定量的共存有机物,稀释至刻度,摇匀,静置30m i n,用SP-2000型分光光度计进行测定,确定相对误差不超过正负百分之五时的干扰组分的最大浓度。实验结果表明:m-NCB的两种同分异构体邻硝基氯苯(o-NCB)和对硝基氯苯(p-NCB)干扰很严重,只能测定它们的合量。PP- -CD做探针测定1.0 10-3 m ol L-1间硝基氯苯时各干扰物的最大允许量分别为:等量的酚类有机物,10倍的联苯,20倍的2,4-二硝基甲苯,其它水中常见有机物基本不干扰测定;共存的金属离子不干扰测定。

3 样品测定

用采样瓶采集一定体积的水样,用酸调至pH= 1~2,并在4 下保存。移取适量试液于比色管中,用0.10mo l L-1N a OH溶液将试液p H值调至11左右。按实验方法测定水中m-NCB的含量并做回收实验,其结果见表1。

表1 废水中m-NCB的测定结果n=6样品

测定平均值

/mo l L-1

RSD

/%

加入量

/m ol L-1

测得总量

/m ol L-1

回收率

/%

水样1#0.0700.38 5.00 10-55.02 10-5100.4水样2#0.1104.40 5.00 10-54.78 10-595.60 #-5-5

57

第1期王 蕾,等: -环糊精-酚酞超分子探针检测间硝基氯苯的研究

由表1可见:测定的RSD小于 5%,回收率在95.60%~100.4%之间,说明本方法准确度和精确度都比较高,而且操作简单、快速,结果满意。

4 结论

经过以 -CD-PP包络物构成的超分子探针识别m-NCB的研究发现:对于光学惰性或经CD 包络未能引起光学信号显著改变的客体,用直接光度法进行测定受到限制,又由于不同的客体与主体包络能力有差别,所以可以通过竞争包络来识别检测某些不能直接测定的物质。实验表明:m-NCB 可以与 -CD形成较稳定的包络物,能够把PP- -CD包络物中的PP部分置换出来。从而建立了测定硝基氯苯新的测定方法。

参考文献:

[1] 路 平,刘 彬,吴 峰,等 -环糊精与甲基橙包合物的形

成及其光催化脱色[J] 化学应用,2003,20(2):108-111 [2] L I U Yu,Z HAO Yan l,i Z HANG H engy,i et al Po l y m eri rotaxane

con structed fro m the i ncl us i on co m p l ex of -cycl odextrin and4,

4 -d i pyri d i ne by coord i nation w it h n ic k e( )ions[J] Ange w

Ch e m I n t Ed,2003,42:3260-3263

[3] 马文瑾. -环糊精在分析化学中的应用[J].理化检验-化学

分册,2002,38(6)319-322

[4] 董振明,双少敏,张 勇,等.维生素药物 环糊精包合物的研

究与应用[J].山西大学学报(自然科学版),2000,23(3):273

-277.

[5] 尤长城,赵彦利,刘 育 竞争包结法研究 -环糊精及其两

种衍生物对一些手性脂肪族课题分子的识别作用[J] 高等学

校化学学报,2001,22(2):218-222

[6] 董爱友,童林荟 环糊精在环境中的功能应用[J] 化学试剂,

1997,19(5):302

[7] 张国梅,双少敏,钞建宾,等.环糊精超分子化学在生命科学研

究中的新进展[J].分析科学学报,2005,21(2):200-204 [8] Fornasier Roberto,R eniero Fabiano,Sci m i n Pao l o,et a.l A s y mm e-t

ric redu cti on s by NaB H4of ketone- -cycl od extri n co m p l exes

[J].J O rg C he m,1985,50:3209-3211.

Spectroscopic Study on

M-nitrochl orobenzne w ith

Inclusi on Co mplexes of

-cyclodextri n w ith Phenol phalei n WANG Le,i X U Zhong-peng,W ANG Xue-yi ng,LUO Chuan-nan

(S chool ofC he m istry and Che m i calEng i neeri ng

Un i versity of J i nan,Ji n an250022,Ch i n a)

Ab stract:Phenolpha l e i n- -cyc l odex tr i n supra m olecu lar co m plex i nteracts w ith m-nitro-ch l o robenzne to fo r m probes causing spectra l change o f the syste m and the reby g iving quant-i ta ti ve o r constructi ve infor m ati on about m-n itrochlorobenzne. So m-nitroch l o robenzne can be deter m i ned by usi ng t he supe r-m o lecular probe co m posed by -cyclodextri n and pheno l pha-l e i n.The li near range of deter m i nati on is1.0 10-4~1.0 10-3m o l/L.The li m it of detecti on i s9.95 10-6m o l/L.T he m e t hod is s i m p l e,sens itive and reli able.T h i s m ethod has been applied to t he deter m i nati on o f nitro-chlorobenzene i n w aste wa ter and satisf ac t o ry resu lts have been obta i ned.

K ey w ords: -cyclodex tri n;pheno l pha lein;m-n itroch l o-robenz ne;super m o l ecular probe

58济南大学学报(自然科学版)第22卷

解脲支原体检查方法

如对您有帮助,可购买打赏,谢谢 解脲支原体检查方法 导语:解脲支原体很有可能会出现感染的现象,而这个是男性体内的一种激素,如果通过检查发现这个解脲支原体有什么异常现象的话,在报告结果中是会 解脲支原体很有可能会出现感染的现象,而这个是男性体内的一种激素,如果通过检查发现这个解脲支原体有什么异常现象的话,在报告结果中是会表现出来的,而解脲支原体的检查方法有是有很多的,一般在做这个检查的时候都是很多男性出现了尿多尿急尿频繁的现象,所以才到医院做检查,那么解脲支原体检查方法有哪些? 解脲支原体的检查方法主要有三种,第一种检查方法就是血液检查,主要是通过抽血化验。第二种检查方法就是通过口腔的涂片的培养来进行检查。第三种检查方式就是PCR的技术检测,这种检查方式可以检查出igm的抗体情况,然后再判断感染的情况。这种疾病的治疗可以使用四环素,比如米诺环素、多西环素等等,但是建议最好两种到三种的抗生素结合一起使用,治疗效果更好。 支原体是细胞外生存的最小微生物,是一类缺乏细胞壁的原核细胞型微生物,大小一般在0.3~0.5um之间,呈高度多形性,有球形、杆形、丝状,分枝状等多种态。它不同于细胞,也不同于病毒,种类繁多、分布广泛、造成的危害相当大,给人类健康和科研工作带来不利影响。从人体分离的16种支原体中,5种对人有致病性,即肺炎支原体、解脲支原体、人型支原体,生殖支原体及发酵支脲解支原体属含脲解支原体等体、脲解支原体及人型支原体等对人有致病性。 男性支原体检查方法有哪些?男性支原体检查方法如下: 1、血常规:周围血白细胞计数一般正常嗜酸性粒细胞增多。 2、血清学检全:采用补体结合试验着恢复期血清抗体效价比急性预防疾病常识分享,对您有帮助可购买打赏

环糊精作为超分子结构的构筑单元

环糊精作为超分子结构的构筑单元 刘 雪1 , 曹克玺2 , 骆定法1 , 孙德志 1 (1.聊城师范学院化学系,山东聊城252059;2.临沂兰山职工中专,山东临沂276000) 摘 要:对环糊精的来源和分子结构特点作了简单介绍,论述了环糊精及其衍生物在超分子化学领域中的地位。理论研究上,环糊精是研究弱相互作用的模型分子化合物,化学工业中环糊精及其衍生物具有广泛用途,显示出环糊精化学研究和应用的无限潜力。关键词:环糊精;超分子结构;包合物 中图分类号:TQ 463+ .3 文献标识码:A 文章编号:0367-6358(2001)06-0321-04 修稿日期:2000-11-20 作者简介:刘 雪(1966~),女,学士.主要从事无机及结构化学研究. Cyclodextrins as Building Blocks of Supramolecular Structure LIU Xue 1, CAO Ke-xi 2, LUO Ding-fa 1, SU N De-zhi 1 (De p artment of Chemis try ,Liaoch eng N ormal University ,Shandong Liaocheng 252059,China ; 2.Liny i Lanshan P olytechnic School ,Shangd ong Liny i ,276000,China ) Abstr act :Synthesis and molecular structure of cyclodextrin (CD)were briefly introduced.T he status of CDs and derivatives of CD in supramolecular stucture were described .In research areas ,CD is a type of model compound being used for the study of weak interaction .In industry ,CD can be utilized for various purposes.T his review indicates that the chemistry of cyclodextrins has potentiality is research and applica-tion Key wor ds :cyclodextrin ;supramolecular structure ;inclusion 环糊精是直链淀粉的生物降解产物,于1891年由Villiers 首次分离出来,1904年Scharidinerge 表征它们为环状低聚糖,1938年Fr eudenberg 等人把它们描述成由吡喃葡萄糖单元通过1,4-糖苷键连接构成的大环化合物 [1-3] 。自从此类化合物发现以 来,人们对它们的兴趣日益浓厚[3] 。合成化学家们对它们感兴趣,是由于它们具有良好的稳定性和可以 区域选择性修饰,从而获得许许多多很有实用价值的新型化合物;理论化学家们对它们感兴趣,是由于它们的分子具有特殊的孔结构、光学活性和拓朴结构可诱导变形性;化学、化工工作者们对此类化合物普遍感兴趣,还由于它们来源于可再生廉价原料——淀粉,并几乎无毒。近年来,人们又发现环糊精对超分子化学十分重要,它们及相应的衍生物构成一大类水溶性不同的手性主体(host )分子,这些主 体分子可用来与客体(guest)分子结合成超分子体系,从而作为研究弱相互作用的模型化合物,自1979年Saeger W 发表题为“在研究和工业中的环糊精包 合物”以来[4],又有1万多项研究工作见诸报导。1 环糊精的合成、结构和物理性质 1.1 合成 用环糊精糖基转化酶可以由直链淀粉获得相对分 子质量大小不同的环糊精和直链寡聚麦芽糖的混合 物,然后用不同的沉淀剂将特定相对分子质量的环糊精分离出来,常见的A 、B 和C 环糊精分别用1-癸醇、甲苯和十六环-8-烯-1-酮捕集、收率为50%左右。1.2 结构 首先,来源于生物物质的环糊精是旋光性的,且直链淀粉只能降解出右旋对映体的环糊精。这类大环化合物的分子(图1)为中空圆台或截头圆锥形, ? 321?第6期化 学 世 界

荧光比率探针及其应用研究进展

7 前 言 荧光比率技术是荧光分析中的一项重要技术。该技术在生物染色剂中,可被紫外线或蓝紫光(短波长光)激发而发射荧光的染料,称为荧光染料(荧光色素)。可被长波长光激发,这些荧光色素常称为荧光探针。荧光探针通常用于固定组织和细胞的染色,以及或活细胞中的应用, 此外还包括应用于体内荧光探针。 分子荧光探针按用途分类包括离子探针、极性探针、粘度探针、PH值探针、膜荧光探针、细胞活性探针、细胞器探针、位点特异性荧光探针等等。探针通过与分析物(如生命金属离子)进行结合后,引起荧光特性发生变化,通过测定荧光的激发波长、发射波长、荧光强度、峰位、荧光寿命、荧光量子产率和各向异性等,获得相关信息。 荧光方法测定中,荧光探针在与反应物结合后,出现激发或发射光谱移位的探针,可使用在两个不同波长测定的荧光强度比率进行测定,称为比率测量。因为通过二个选择性的波长的荧光强度变化可作为定量的依据, 通常指在波长范围内有荧光强度明显的变化。同普通荧光探针相比,比率测量探针可以被分为两部分。 一种是荧光比率效果是通过原来荧光谱的迁移。通常,这些迁移的背景是荧光探针激发态的电子转移。它被激发通过改变发色团同周围分子或原子交互作用的能量改变(溶剂化显色迁移),同外部电场的交互作用(电致显色迁移)和在发色团中的双电弛豫(双电弛豫迁移)。 另外一种结合探针,荧光谱包括2个或更多的谱带。通常,是这些谱带相对强度的改变,激发态同荧光探针发色团反应。这些反应在不连续的能量状态。 荧光比率探针及其应用研究进展 杨柳* ,郭成海,张国胜 (防化研究院第四研究所,北京 102205) 摘要 本文介绍了荧光比率探针,包括阳离子探针、阴离子探针、pH值探针、极性探针、氧化性和分子的比率测量探针的应用及近几年的研究进展。关键词 荧光分析,比率测量 *作者简介:杨柳(1975-),男,助理研究员,博士研究生,E-mail:yangliujinjin@sina.com 所以在初始和产物状态都随着能量转移而发射荧光。 荧光比率测定法可消除光漂白和探针负载和留存及设备因素(照明稳定性)引起的数据的失真。如阴离子探针可通过有机离子载体从细胞排除,如AM酯可被P糖蛋白多药载体排出荧光比率测定法可减少探针渗漏对实验结果的影响。探针与离子结合后,出现激发或发射光谱移位的探针可使用在两个不同波长测定的荧光强度比率校准,可克服由于离子浓度的变化而造成的荧光信号人工假象。 Bright等(1989)发现比率测量减少或消除几种决定因素的变化对测量荧光强度的影响,包括探针浓度、激发光的光路长度、激发强度、和检测效率。消除的人工假象包括光漂白、探针渗漏、细胞厚度、探针在细胞内(区室化作用引起)或不同细胞群之间(负载效率差异造成)的不均匀分布。 比率测量探针已经应用于不同的测量领域:离子探针(阳离子探针Ca2+、Mg2+,Zn2+,Ag+等)阴离子探针(Cl-,CN-,F-等),膜探针、活性氧和一氧化氮探针,极性探针、PH值探针等等。 1应用比率测量的阳离子探针: 各种各样的阳离子在生命活动中起重要的作用, 如构成细胞和生物体某些结构的重要成分,参与并调节生物体的代谢活动等,荧光方法通常用来测定阳离子在生物体不同组织的含量和分布。阳离子比率测量探针也在不断发展。 1.1 Ca2+检测的比率测量探针: 探针与Ca2+结合后出现光谱移位的探针可进行比率测量。主要包括:Fura-2、双- Fura-2、Fura-4F、Fura-5F、Fura-6F、 indo-1、indo-5F、mag-Fura-2

1医学检验毕业论文 (三种肺炎支原体检测法的临床应用分析)

毕业论文 题目:三种肺炎支原体检测法的临床应用分析 地市: 学校: 准考证号: 考生姓名: 王莹 指导老师: 二〇一八年八月十四日

三种肺炎支原体检测法的临床应用分析 摘要 目的探讨肺炎支原体(MP)咽拭子快速液体培养法、咽拭子聚合酶链反应(PCR)法和血清MP被动凝集法(MP-Ab)等方法在儿童MP感染诊断治疗过程中的敏感性方法采用3MP检测法对362例临床拟诊呼吸道(非细菌性)感染的患儿的咽拭子和血清标本进行配对研究,每患儿取咽拭子做快速培养和PCR,同时取血清做MP-Ab检测,对3种方法的检测结果与临床诊断治疗病例进行回顾性分析。结果回顾临床病例诊断MP感染患儿152例。MP快速培养法检出阳性78例,阳性率为51.3%,病程为(4.5±2.6)天;PCR法检测出阳性103例,阳性率为67.8%,病程为(6.2±3.5)天;MP-Ab法检测出阳性127例,阳性率83.5%,病程(8.1±4.5)天。结论 3种MP检测法的敏感性与病程有相关性,临床医生应根据患儿病程选取检测方法,以提高阳性检出率和敏感性。 关键词肺炎支原体,快速培养法,咽拭子聚合酶链反应,血清抗体,配对研究

目录 前言 (4) 第一章文献综述 (5) §1.1 肺炎支原体的定义 (5) §1.2 肺炎支原体的发病机制 (5) §1.3 肺炎支原体的分类 (5) §1.4 肺炎支原体的临床表现 (5) §1.5 肺炎支原体的临床诊断 (5) §1.6 肺炎支原体的实验室检查 (6) 第二章材料和方法 (7) §2.1 样本 (7) §2.2方法概述 (7) §2.3临床诊断MP感染的诊断标准 (7) §2.4实验方法 (7) §2.5统计学方法 .................................................................... .. (8) 第三章结果 (9) 第四章讨论 (10) 结论 (11) 参考文献 (11) 附录 (12) 错误!未定义书签。

环糊精与双酚A的分子识别研究

环糊精与双酚A的分子识别研究 分别利用β-环糊精、2-羟丙基-β-环糊精、γ-环糊精和2,6-二甲基-β-环糊精对环境内分泌干扰素分子双酚A进行包合,采用Hildebrand-Benesi方程和紫外可见分光光度计测定了环糊精包合双酚A过程的结合常数;同时利用范特霍夫方程获得4种环糊精与双酚A结合的熵变和焓变数据,根据不同环糊精分子与双酚A分子结合的热力学信息,明确了环糊精与双酚A的分子识别机制。结果表明:当常温(20 ℃)时,包结常数大小顺序为β-环糊精>γ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精,在双酚A与环糊精的包合过程中,空间位阻效应是主要影响因素,尺寸匹配为次要影响因素;在不同环糊精与双酚A的包合过程中,其熵变ΔS>0,其焓变ΔHγ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精。这可能是因为β-环糊精和γ-环糊精均无分支存在,空间位阻相对最小,而2-羟丙基-β-环糊精只含有1个羟丙基,空间位阻相对于含有2个甲基的2,6-二甲基-β-环糊精要小;在双酚A与环糊精的包合过程中,空间位阻效应是主要影响因素;此外虽然β-环糊精和γ-环糊精均无分支,但是β-环糊精和γ-环糊精的内腔尺寸具有一定的差别,尺寸匹配也是影响包合的因素之一,综合两方面的因素,Ka(β-环糊精)>Ka(γ-环糊精)。 2.2 环糊精与双酚A结合过程中焓变和熵变的测定及讨论 上述对于环糊精Ka的测定均是在室温下进行的,而Ka与温度有一定的关系。本节通过变温控制来测定不同温度下的Ka,再通过范特霍夫方程拟合得出其热力学常数(熵变和焓变)。 表2和图2分别是在20、30、40、50、60 ℃时BPA和β-环糊精形成包结物其紫外可见吸收光谱吸光度及拟合曲线(λex=194 nm,BPA=4.4×10-5 mol/L)。根据H-B方程可确定BPA和β-CD形成1:1包结物,且Ka分别为1.99×105 L/mol、1.22×105 L/mol、9.05×104 L/mol、6.26×104 L/mol和4.80×104 L/mol。 依据测定的β-环糊精与双酚A的包合物于不同温度下在相对最大吸收波长处的吸光度A,利用-RTlnKa=ΔH-TΔS拟合可得到其ΔH=-28 560 J,ΔS=3.596 J/K。如表3和图3所示。 同理,γ-环糊精形成包结物后,拟合得其ΔH=-193 30 J,ΔS=34.153 J/K;2,6-二甲基-β-环糊精形成包结物后,拟合得其ΔH=-3 368.7 J,ΔS=76.105 J/K;2-羟丙基-β-环糊精形成包结物后,拟合得其ΔH=-259 62 J,ΔS=7.783 8 J/K。 由试验结果可知:不同环糊精与双酚A的包合过程中,其熵变ΔS>0,且焓变ΔHγ-环糊精>2-羟丙基-β-环糊精>2,6-二甲基-β-环糊精。在双酚A与环糊精的包合过程中,空间位阻效应是其主要影响因素,尺寸匹配也有一定影响。 (2)不同环糊精与双酚A的包合过程中,其熵变ΔS>0,且β-环糊精2-羟丙基-β-环糊精>γ-环糊精>2,6-二甲基-β-环糊精。升高温度,平衡向逆反应方向

支原体检查

附录XIIB支原体检查法 主细胞库、工作细胞库、病毒种子批、对照细胞以及临床治疗用细胞进行支原体检查时,应同时进行培养法和指示细胞法(DNA染色法)。病毒类疫苗的病毒收获液、原液采用培养法检查支原体,必要时,亦可采用指示细胞法筛选培养基。也可采用经国家药品检定机构认可的其他方法 第一法培养法 推荐培养基及其处方 (1)支原体肉汤培养基 猪胃消化液 500ml 氯化钠2.5g 牛肉浸液(1:2)500ml 葡萄糖 5.0g 酵母浸粉5.0g 酚红0.02g pH值7.6±0.2。于121℃灭菌15分钟。 (2)精氨酸支原体肉汤培养基 猪胃消化液 500ml 牛肉浸液(1:2)500ml 葡萄糖 1.0g 酵母浸粉5.0g L-精氨酸2.0g 酚红0.02g 氯化钠2.5g pH值7.1±0.2。于121℃灭菌15分钟。 (3)支原体半流体培养基按(1)项处方配制,培养基中不加酚红,加入琼脂2.5~3.0g。 (4)支原体琼脂培养基按(1)项处方配制,培养基中不加酚红,加入琼脂13.0~15.0g。 培养基灵敏度检查(变色单位试验法)(1)菌种肺炎支原体(ATCC 15531)、口腔支原体(ATCC 23714),由国家药品检定机构分发。 (2)操作将菌种接种于适宜的支原体培养基中,经36℃±1℃培养至培养基变色,盲传2代后,将培养物接种到待检培养基中,做10倍系列稀释,肺炎支原体稀释至10-7~10-9,接种在支原体肉汤培养基内;口腔支原体稀释至10-3~10-5,接种在精氨酸支原体肉汤培养基

内。每个稀释度接种3支试管,置36℃ 士1℃ 培养7~14天,观察培养基变色结果。 ( 3 )结果判定以接种后培养基管数的2 / 3以上呈现变色的最高稀释度为该培养基的灵敏度。 液体培养基的灵敏度:肺炎支原体(ATCC 15531 )应达到10-8,口腔支原体(ATCC 23714)应达到10-4。 检查法(1)供试品如在分装后24小时以内进行支原体检查者可贮存于2~8℃ ;超过24小时应置一20℃ 以下贮存。 ( 2 )检查支原体采用支原体半流体培养基和支原体肉汤培养基(或支原体琼脂培养基)。支原体半流体培养基(或琼脂培养基)在使用前应煮沸10~15分钟,冷却至56℃ 左右,然后加人灭能新生牛血清(培养基与血清体积比为8:2 ),并可酌情加入适量青霉素,充分摇匀。液体培养基除无需煮沸外,使用前亦应同样补加上述成分。 取每支装量为10ml的支原体半流体培养墓(已冷至36℃ 士1℃ )和支原体肉汤培养基各4支,每支培养基接种供试品0.5~1.0ml,置36℃ 士1℃ 培养21天。于接种后的第7天从4支中取2支进行次代培养,每1支培养基转种支原体半流体培养基及支原体肉汤培养基各2支,置36℃ 士l℃ 培养21天,每隔3天观察1次. ( 3 )结果判定培养结束时,如接种供试品的培养基均无支原体生长,则供试品判为合格;如疑有支原体生长,可取加倍量供试品复试,如无支原体生长,供试品判为合格,如仍有支原体生长,则供试品判为不合格。 【附注】质量检定部门应会同培养基制造部门定期抽检支原体培养基灵敏度。 第二法指示细胞培养法(DNA染色法) 将供试品接种于指示细胞(无污染的Vero细胞或经国家药品检定机构认可的其他细胞)中培养后,用特异荧光染料染色。如供试品污染支原体,在荧光显微镜下可见附在细胞表面的支原体DNA着色。 试剂(1)二苯甲酰胺荧光染料浓缩液称取二苯甲酰胺荧光染料5mg,加人100ml不含酚红和碳酸氢钠的Hank 's平衡盐溶液中,室温下用磁力搅拌器搅拌30~40分钟,使完全溶解,-20℃ 避光保存。 (2)二苯甲酰胺荧光染料工作液无酚红和碳酸氢钠的Hank ' s溶液100ml中加人二苯甲酰胺荧光染料浓缩液lml,混匀。 (3)固定液醋酸:甲醉(体积比1:3)混合溶液。 (4)封片液量取0.1mol / L枸橼酸溶液22.2ml、0.2mol / L磷酸氢二钠溶液27.8ml、甘油50.0ml,混匀,调pH值至5.5。 培养墓及指示细胞(1) DMEM完全培养基。 ( 2 ) DMEM无抗生素培养基。

β- 环糊精在分子组装中的应用

β- 环糊精在分子组装中的应用 摘要:本文综述了β-环糊精及其衍生物在分子组装中的应用。 关键词:β-环糊精;分子组装 自20纪初环糊精(CDS)被分离得到以来,人们对其研究不断取得新的进展。不仅提高了CDs的产量,而且对天然CDs进行了结构改造,合成了一系列具有独特性能的CDs衍生物。目前,CDS除了在医药工业方面有广泛的用途外,还在食品、化装品、环境保护、色谱分析等方面也得到了应用。继续深人研究CDs及其包合物,对今后更好的利用CDs有极其重要的意义。 环糊精(cyclodextrins,简称CDs)是由 环糊精葡萄糖转移酶(cGT)作用于淀粉或麦 芽糖溶液制得的一系列聚合程度不等的环 状低聚糖。常见的环糊精有3种,被命名为 分别含有6个、7个和8个葡 萄糖单元。环糊精分子呈空心圆台结构 (见图1)。分布于圆台边缘的羟基(葡萄糖单元2位、3位仲羟基位于广口端,6位伯羟基处于窄口端)使CD易溶于水,而其内空腔由于C—H键和醚键的覆盖而呈疏水性,这正是疏水性客体分子能自发进入环糊精内部疏水性空腔,从而形成主.客体包合物的基础。作为主体的CD 与客体分子形成包合物的基本条件除尺寸的匹配外,一般还与主客体分子间的相互作用有关,如疏水作用、范德华力、氢键、偶极.偶极相互作用、电荷转移作用等。 王杰等[5]综合论述了环糊精包合作用为驱动力组装大分子网络的两种主要方法。将带有环糊精支化基团的高分子长链与带有客体基团的高分子长链的在溶液中混合,由于环糊精与客体基团间的包合作用,可以组装成具有交联结构的超分子网络[6-7]。由于环糊精具有疏水的空腔,某些高分子长链可以穿过其空腔,通过非共价键连接在一起,形成多聚准轮烷(polypseudorotaxane)[8],长链两端用大基团封闭后可形成多聚轮烷(polyrotaxane),形状类似于一串“项链”。环糊精多聚轮烷分子管道表面具有大量的醇羟基,多个分子管道之

F-E-03_聚乙烯醇与环糊精分子组装行为

聚乙烯醇与环糊精分子组装行为 高婷,郭敏杰*,樊志,么敬霞,郭艳玲 (天津科技大学理学院, 天津, 300457) 关键词:聚乙烯醇环糊精分子组装 分子组装聚合物是单体之间经可逆的和方向性的次价键相互作用连接而成的聚合物[1]。分子组装聚合物的合成过程涉及互补单体通过分子识别的选择性非共价键合、链生长(组分沿一定方向的序列键合)和链终止[2]。分子组装聚合物主要是由氢键等非共价键作用形成的,主要可以分为:氢键型[3]、配位作用型(或称金属型)[4]、π-π堆叠型[5]、离子型[6]和混杂型[7]分子组装聚合物。环糊精及其衍生物是一类重要的超分子主体化合物,其分子具有“内疏水、外亲水”独特的空间结构,使其对许多的分子具有包合作用。本文对聚乙烯醇(PVA)与γ–环糊精(γ–CD)在水溶液中的自组装行为进行了实验研究。 实验选取两种不同的聚乙烯醇分别与γ–环糊精进行分子组装:PVA I,分子量9000~10000,醇解度为98%;PV AⅡ,分子量为22000~26000,醇解度为98%。实验将得到的两种包合产物分别进行了旋光度测试,并分别进行了红外谱图分析和热重分析。 聚乙烯醇、γ–环糊精和组装体的旋光度值如表1所示,从表1中可以看出PVA 与γ-CD包合产物与PV A、γ-CD、PV A与γ-CD混合物的旋光度有明显的不同。 表1 聚乙烯醇和环糊精组装前后的旋光度变化 Table 1 the optical rotation between mixture and inclusion complex of PV A and γ-CD γ–CD and PV AⅠγ–CD and PV AⅡ γ–CD PV AⅠPV AⅡ Mixture Inclusion complex Mixture Inclusion complex Molecular weight 1294 9000 26000 ————Optical rotation(α)0.175 0 0 0.175 0.085 0.175 0.065 Specific optical rotation [α]D20 +175°0 0 +175°+85°+175°+65°Temperature of decomposition (℃) 300.4 262.5 275.5 262.5 287.3 275.5 295.6 *通讯联系人,国家自然科学基金资助项目(No. 20704031),天津市教育委员会科学基金资助项目(No. 20060515),天津科技大学科学基金资助项目(No.20060420)

支原体检测

支原体检验法 1 培养基 1.1 检验禽源细胞和由禽胚组织或其细胞制成的活疫苗,用改良Frey 氏培养基。 1.2 检验其他种类细胞和病毒活疫苗,用支原体培养基 1.3 检验血清用无血清的支原体培养基 2 检查法 2.1 样品处理每批制品取样3-5瓶,液体制品混合后备用;冻干制品加液体培养基复原成混悬液后混合。检测血清时用血清直接接种。 2.2 疫苗的检测 2.2.1 接种于观察每个样品需同时用以下两种方法检测 2.2.2.1 液体培养基培养将疫苗混合物5.0ml接种小瓶液体培养基中,再从小瓶中去0.2ml移植接种于1小管液体培养基中,将小瓶与小管置于37℃培养,分别于接种后5日、10日、15日从培养瓶中取出0.2ml培养物移植到小管液体培养基内,每日观察培养物有无颜色变黄或变红,如果无变化,则在最后一次移植小管培养、观察后14日后停止观察。在观察期内,如果发现小瓶或任一小管内液体颜色出现明显变化,在原pH变化达0.5时,应立即移植于液体培养基和固体培养基,观察在液体培养基中是否出现恒定的pH变化,及固体上有无典型的“煎蛋”状支原体菌落。 2.2.2.2 琼脂固体平板培养在每次液体培养物移植小管培养的同时,取培养物0.1-0.2ml接种于琼脂平板,置含5%-10%二氧化碳。潮湿的

环境、37℃下培养。此外,在液体培养基颜色出现变化,在原pH变化达到0.5时,也同时接种琼脂平板。每5-7日,在低倍显微镜下观察各琼脂平板上有无支原体菌落出现,经14日观察,仍无菌落时,停止观察。 2.2.2 对照每次检查需同时设置阳性、阴性对照,在同条件下培养观察。检测禽类疫苗时用滑液支原体作为对照,检测其他疫苗时用猪鼻支原体作为对照。 2.3 血清的检测取本血清50ml代替培养基中的马、猪血清,按附录38页培养基配方配成大瓶培养,按2.2.1.2项稀释、移植、培养,观察小管培养基的pH变化情况和琼脂平板上有无菌落。 3 结果判定 3.1 接种本物的任何一个琼脂平板上出现支原体菌落时,判定血清或者疫苗不合格。 3.2 阳性对照中至少有一个平板出现支原体菌落,而阴性对照中无支原体生长,则检验有效。 附注:上述小瓶培养基是指在100ml小瓶中盛20ml液体培养基;小管培养基是指在1.0cm*10cm中盛1.8ml培养基。小管与小瓶须用胶塞封口。

药典三部(2015版)-通则-3301支原体检查法

3301 支原体检查法 主细胞库、工作细胞库、病毒种子批、对照细胞以及临床治疗用细胞进行支原体检查时,应同时进行培养法和指示细胞培养法(DNA染色法)。病毒类疫苗的病毒收获液、原液采用培养法检查支原体,必要时,亦可采用指示细胞培养法筛选培养基。也可采用经国家药品检定机构认可的其他方法。 第一法培养法 推荐培养基及其处方 ⑴支原体液体培养基 支原体肉汤培养基 猪胃消化液500ml 氯化钠 2.5g 牛肉浸液(1︰2)500ml 葡萄糖 5.0g 酵母浸粉 5.0g 酚红0.02g pH值7.6±0.2。于121℃灭菌15分钟 精氨酸支原体肉汤培养基 猪胃消化液500ml 葡萄糖 1.0g 牛肉浸液(1︰2)500ml L-精氨酸 2.0g 酵母浸粉 5.0g 酚红0.02g 氯化钠 2.5g pH值7.1±0.2。于121℃灭菌15分钟 ⑵支原体半流体培养基按⑴项处方配制,培养基中不加酚红,加入琼脂 2.5~ 3.0g。 ⑶支原体琼脂培养基按⑴项处方配制,培养基中不加酚红,加入琼脂 13.0~15.0g。 除上述推荐培养基外,亦可使用可支持支原体生长的其他培养基,但灵敏度必须符合要求。 培养基灵敏度检查(变色单位试验法)⑴菌种肺炎支原体(ATCC 15531株)、口腔支原体(ATCC 23714株),由国家药品检定机构分发。 ⑵操作将菌种接于适宜的支原体培养基中,经36℃±1℃培养至培养基变色,盲传两代后,将培养物接种至待检培养基中,做10倍系列稀释,肺炎支原

体稀释至10-7~10-9,接种在支原体肉汤培养基内;口腔支原体稀释至10-3~10-5,接种在精氨酸支原体肉汤培养基内。每个稀释度接种3支试管,置36℃±1℃培养7~14天,观察培养基变色结果。 ⑶结果判定以接种后培养基管数的2/3以上呈现变色的最高稀释度为该培养基的灵敏度。 液体培养基的灵敏度:肺炎支原体(ATCC 15531株)应达到10-8,口腔支原体(ATCC 23714株)应达到10-4。 检查法 ⑴供试品如在分装后24小时以内进行支原体检查可贮存于2~8℃;超过24小时应置-20℃以下贮存。 ⑵检查支原体采用支原体液体培养基和支原体半流体培养基(或支原体琼脂培养基)。半流体培养基(或琼脂培养基)在使用前应煮沸10~15分钟,冷却至56℃左右,然后加入灭能小牛血清(培养基︰血清为8︰2),并可酌情加入适量青霉素,充分摇匀。液体培养基除无需煮沸外,使用前亦应同样补加上述成分。 取每支装量为10ml的支原体液体培养基各4支、相应的支原体半流体培养基各2支(已冷却至36℃±1℃),每支培养基接种供试品0.5~1.0ml,置36℃±1℃培养21天。于接种后的第7天从4支支原体液体培养基中各取2支进行代次培养,每支培养基分别转种至相应的支原体半流体培养基及支原体液体培养基各2支,置36℃±1℃培养21天,每隔3天观察1次。 ⑶结果判定培养结束时,如接种供试品的培养基均无支原体生长,则供试品判为合格;如疑有支原体生长,可取加倍量供试品复试,如无支原体生长,供试品判为合格,如仍有支原体生长,则供试品判为不合格。 【附注】质量检定部门应会同培养基制造部门定期抽检支原体培养基灵敏度。 第二法指示细胞培养法(DNA染色法) 将供试品接种于指示细胞(无污染的Vero细胞或经国家药品检定机构认可的其他细胞)中培养后,用特异荧光染料染色。如供试品污染支原体,在荧光显微镜下可见附在细胞表面的支原体DNA着色。 试剂⑴二苯甲酰胺荧光染料(Hoechst 33258)浓缩液称取二苯甲酰胺荧光染料5mg,加入100ml不含酚红和碳酸氢钠的Hank’s平衡盐溶液中,在室

基于环糊精衍生物的分子组装及其光控行为研究

基于环糊精衍生物的分子组装及其光控行为研究超分子化学作为一门涉及化学、生物、材料、环境以及信息等众多领域的交叉学科,自问世以来一直倍受青睐。其研究核心为分子识别和分子组装。 而其中通过非共价键将分子模块组装成高度有序、具有特定功能的组装体是广大超分子化学家为之奋斗的目标。在本论文中,利用阴离子环糊精、偶氮苯桥联环糊精及偶氮苯桥联二茂铁构筑了新颖的超分子体系,并对其功能进行了探究;具体内容如下:(1)简要介绍了超分子化学和环糊精的概况,并对离子型环糊精和偶氮苯类衍生物在超分子化学研究中的进展进行了归纳。 (2)设计合成了一系列羧酸修饰环糊精,并研究了它们对阳离子两亲分子的诱导聚集行为,发现静电相互作用和多电荷在其中发挥了重要作用,基于此构筑了一种稳定的纳米粒子并实现了对模型药物分子的包载和缓慢释放。(3)设计合成了偶氮苯桥联全甲基化β-环糊精,利用其顺反异构体在构型上的差异与两亲卟啉分子通过二级组装分别构筑了纳米管和纳米胶束,并通过光照首次实现了两种具有不同形貌组装体的相互转换。 (4)进一步研究了偶氮苯桥联全甲基化β-环糊精顺反异构体在不同溶剂中的构型,探究了其顺反异构体与四羧基卟啉的键合行为和组装行为;成功实现了光转换的纳米粒子和纳米线。(5)设计合成了金刚烷修饰的苯丙氨酸二肽和偶氮苯桥联的β-环糊精,基于二肽类分子的组装特性,金刚烷修饰苯丙氨酸二肽自组装成纳米纤维;利用金刚烷与β-环糊精的键合,顺式和反式构型的偶氮苯桥联的β-环糊精的加入将纳米纤维分别转化为一维纳米管和二维纳米片,并且两种不同维度的组装体可以在不同波长的光照下进行可逆、往复的转换。 (6)设计合成了偶氮苯桥联的二茂铁,与α-环糊精构筑了光响应的准[2]轮

细胞支原体污染常用支原体检测方法和试剂盒介绍

细胞支原体污染常用支原体检测方法和试剂盒介绍 (2016年10月16日) 哺乳动物细胞的培养,支原体(Mycoplasma)污染是个世界性的问题。支原体污染几乎可以改变细胞的所有参数,导致实验结果的不准确、甚至完全错误。从2013年开始,《Nature》期刊已正式要求投稿的文章,如涉及细胞培养都要进行支原体检测。相信会有越来越多的高水平期刊将做出同样的支原体检测要求。 目前,细胞支原体污染常用的支原体检测方法主要有: 一、培养法 ●原理:将待检测样品先接种到支原体液体培养基中大量繁殖,然后再转 接种到支原体固体培养基中,培养一段时间后(大约一个月),如果固体 培养中,出现典型的支原体菌落,则说明待测样品有支原体污染。 ●优点:支原体培养法是相对可靠的支原体检测技术,也是我国药典认可 的方法之一。 ●缺点:(1)培养法非常耗时的,需要数周,不适合作为细胞培养液中支 原体污染的快速检测;(2)通过固体培养法无法检测污染细胞的一种最 常见的支原体,即猪鼻支原体(M.Hyorhinis)。这是因为猪鼻支原体无 法在支原体固体培养基上形成可见的菌落。而猪鼻支原体约占所有细胞 支原体污染的20-50%。 ●《培养法支原体检测试剂盒》》主要厂家:读者可以根据《中国药典》中 收录的培养法支原体检测方法进行操作。 二、荧光染色法 ●原理:将待检测样品接种到专门的指示细胞(如:Vero细胞)中,培 养一段时间后,用DNA荧光染料(如:Hoechst 33258,DAPI)进行染色, 如果除了细胞核被染色外,细胞质也有大量的絮状核酸物质被荧光染料 染色,那么这些处于细胞质的核酸物质就是支原体DNA。 ●优点:荧光染色法也是我国药典认可的方法之一。 ●缺点:(1)该方法灵敏度太低,当检测成阳性时,细胞经常已经严重污 染;(2)需要用到专门的指示细胞(如:Vero细胞),如果不用指示细

PCR法支原体检测

PCR法支原体测定PROTOCOL 生效日期(年-月-日) 有效期至(年-月-日) 分发部门:质量部

1.目的 规范PCR法支原体检测的操作方法。 2.范围 适用于项目研发过程样品、原液、成品及中间体的分析。 3.责任 质量分析人员熟悉并遵守该标准操作规程。 4.定义 N/A 5.设备、材料和试剂 5.1设备、材料 设备名生产商型号/货号备注PCR仪Thermo ARKTIK5020 N/A VORTEX IKA GENIUS 3 N/A 小型台式冷冻离心 机Thermo HERAEUS Fresco 21 N/A 单道移液器 (10ul,20ul,100ul) Eppendorf Research plus N/A 多功能水平电泳槽Tanon HE-120 N/A 凝胶成像系统BIORAD ChemiDoc? XRS+ System N/A 5.2试剂 试剂名称生产商货号TaKaRa PCR Mycoplasma Detection Set TaKaRa 6601 TaKaRa Ex Taq? TaKaRa RR001A Regular Agarose G-10 Biowest N/A Goldview 国产N/A

10×Loading Buffer TaKaRa 9157 DL5000 DNA Marker TaKaRa 3428A 内毒素检查用水厦门鲎试剂实验厂有限公司 6.溶液配制 6.1 50× TAE Buffer 称取242.0g Tris,37.2g Na2EDTA·2H2O于1L烧杯中,向烧杯中加入约800ml 超纯水,充分混匀,加入57.1ml冰乙酸,充分溶解,加入超纯水定容至1L,室温保存。有效期6个月。 6.2 1× TAE Buffer 量取10ml 50× TAE Buffer,加入490ml超纯水,充分混匀。有效期6个月。 7.操作步骤 用于检测支原体的样品是接种后进行3-6天细胞培养的培养上清液。如果使用常用的细胞培养基时,培养上清可直接加入到PCR反应液中,如果使用细胞悬浊液作为样品,则需要提取DNA,再进行PCR反应。如果样品中含有PCR 反应阻碍物,需要对DNA进行抽提,再添加到PCR反应液中,为了确认样品中是否含有反应阻碍物,在样品中加入Control Template进行正对照反应。 7.1 1st PCR反应 7.1.1按下表顺序配制反应混合液(50ul体系) 试剂用量(ul) 内毒素检查用水37.75~38.75 10× PCR Buffer 5 dNTP Mixture 4 MCGp F1 Primer 0.5 MCGp R1 Primer 0.5

荧光探针在蛋白质研究中的应用

第13卷 第3期1998年6月荧光探针在蛋白质研究中的应用 Ξ王守业 余华明 张祖德 刘清亮 (中国科技大学化学系 合肥230026) 大学化学 摘要 荧光探针技术是研究蛋白质在水溶液中构象的一种有效方法。利用它可以测定蛋白 质分子的疏水微区内两基团的距离以及酶与底物结合过程中蛋白质构象的变化等。本文综述了荧光探针技术在蛋白质研究中的一些进展。 一、 引言 荧光探针技术是利用物质的光物理和光化学特性,在分子量级上研究在溶液中蛋白质构象的一种方法。该方法的最大特点是具有高度的灵敏性和极宽的动态响应范围。荧光探针物质之所以可被用来研究蛋白质的构象,主要是因为其具有特殊的光物理性质,如在不同极性介质中有着不同的光谱特性(即不同的峰值波长),不同的荧光量子产率和荧光寿命等。因此,测定荧光探针物质和蛋白质分子结合后荧光峰波长、位移及量子产率的变化,就可探知其所处微环境的极性及其他有关性质。利用荧光探针技术研究蛋白质在溶液中的构象有两种方法:一种是测定蛋白质分子的自身荧光,即“内源荧光”,另一种是利用荧光探测剂,即“外源荧光”。若引人的荧光探测剂为有机分子,则该分子叫做有机荧光探针;若引入的荧光探测剂为稀土离 子(如铽(Ⅲ)、铕(Ⅲ )等),则该离子叫做稀土离子荧光探针。 二、 荧光探针的某些光物理和光化学特征 1. 有机荧光探针的某些特征 最常用的有机荧光探针物质有12苯胺基萘282磺酸(ANS ),22对甲胺萘262磺酸(2062TNS )和12N 0N 2二甲胺基萘252磺酸(1052DNS )(dansyl acid ),其结构如图1:θθSO -3 N θH θθSO -3N H θ H 3C θθS O O Cl N H 3C CH 3 1,82ANS 2,62TNS 1,52DNS 2Cl 图1 1082ANS,2062TNS 和1052DNS 2Cl 的结构 这些化合物在水溶液中基本不发荧光,量子产率低(低于0.1),但在非极性溶剂中,其量子产率大增,荧光峰蓝移,且能和许多蛋白质结合。这种探针分子溶液的荧光光谱因溶剂极 Ξ本文为国家自然科学基金资助项目。

荧光探针的发展和应用

Supplementary materials for: Perylene diimide based “turn-on” fluorescence sensor for detection of Pd2+ in mixed aqueous media Hai-xia Wang a, b,*, Yue-he Lang a, Hui-xuan Wang a, Jing-jing Lou a, Hai-ming Guo a, b, Xi-you Li c,* a School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Henan Normal University, Xinxiang 453007, China b School of Environmental Science, Henan Normal University, Xinxiang 453007, China email: hxwang5270@https://www.wendangku.net/doc/0b18952951.html, (H. Wang) c School of Chemistry an d Chemical Engineering, Shandong University, Jinan 250100, China email: xiyouli@https://www.wendangku.net/doc/0b18952951.html, (X. Li) Contents Page S1: Title of the paper, authors along with the contents. Page S2-S4: Copy of the 1H and 13C NMR spectra of PDI-1, PDI-2 and PDI-3. Page S5:Photophysical properties of PDI-1, PDI-2and PDI-3derivatives in different solvents at room temperature; Fluorescence spectra change of PDI-2and PDI-3 upon addition of different metal(8.0 equiv) ions; UV-vis spectra of PDI-1 (6.0 μM) in the presence of different metal ions (8.0 equiv). Page S6: Job’s plots in DMF/H2O (v/v, 7/1) and acetonitrile; Fluorescence spectra changes of PDI-1 (5.0 μM) in the presence of Pd2+in acetonitrile and chloroform;ESI mass spectra of PDI-1 in the presence of 1.0 equiv PdCl2 in CH3CN. Page S7: Job’s plots of PDI-1 (5.0 μM)in the presence of Pd2+in chloroform; Influence of pH on fluorescence intensity of PDI-1 (5.0 μM) in the absence and presence of 1.0 eq Pd2+; Benesi-Hildebrand analysis results.

环糊精

环糊精的研究进展 环糊精(CD)是一种由D型吡喃葡萄糖通过α-1,4糖苷键首尾相连而成的环状糖,具有疏水的空腔和亲水的表面,可以作为主体与无机、有机和生物等客体分子相结合形成超分子配合物,不仅能提供用于研究超分子领域中相互作用和分子组装的模型[1],同时也可以作为很好的酶模型,因此其在超分子化学研究中成为继冠醚之后的第二代主体化合物而得到广泛重视[2]。 1 环糊精单体的识别作用 分子识别是指主体(受体)对客体(底物)选择性结合并产生某种特定功能的过程,它们不是靠传统的共价键力,而是通过分子间作用力(如范德华力、疏水作用力和氢键等弱作用力)的协同作用[3]。 作为环状主体分子,CD对客体识别主要有两种方式:一种是“内识别”(Endo-recognition),作用力主要有范德华力、疏水作用力、色散力等。另一种是“外识别”(Exo-recognition),作用力主要是氢键力。相应于两种识别方式,CD与客体形成两种超分子:包络物和表面作用产物,其结构类型有二种:a.笼型[4],CD分子非同轴排列,被包含的客体分子充塞于CD腔内:b.管道型[5],CD分子沿轴向排列,空腔形成大约0.5~0.8 nm的隧道,客体分子寄宿于隧道内。 2 环糊精分子识别作用的应用 目前环糊精单体分子识别研究热点集中在富勒烯(C60)[6,7]上。富勒烯能有效抑制癌细胞的增殖,促进细胞分化,有望成为治疗癌症的

新药。但由于它的非极性而难溶于水,无法与人体内“靶分子”作用。通过空腔大小适合的CD的识别作用,将富勒烯包结为水溶性物质,这将使富勒烯在生物化学领域内的应用得到突飞猛进的发展,具有深远意义。由于γ-CD空腔较大,且具有一定的水溶性,故成为包结球形C60的良好主体。如Matsubara等[7]利用γ-CD的分子识别作用将C60包结为稳定的水溶性1∶2的包络物,这项工作对药学研究意义重大。 3 修饰性环糊精的分子识别作用 由于环糊精母体缺少酶那样的有效功能团,为增加其分子模式识别(PatternRecognizatin,PR)能力,使之具有酶功能,通常在CD分子中引入一定功能团修饰成CD衍生物,同时,修饰性CD衍生物往往比单体具有更大的水溶性,因此修饰性环糊精的研究工作一直方兴未艾,目前已有大量的文献报道[8,9]。

相关文档