文档库 最新最全的文档下载
当前位置:文档库 › 《数学实验》实验报告——解线性方程组

《数学实验》实验报告——解线性方程组

《数学实验》实验报告——解线性方程组
《数学实验》实验报告——解线性方程组

《数学实验》实验报告

数学实验报告

《数学实验》实验报告 实验四 MATLAB 的作图功能 1、画出y=x+cosx 在[02]π,上的图形。 >> x=linspace(0,0.1,30); >> y=x+cos(x); >> plot(x,y) 1234567 2、在同一坐标系中作出两曲线y=tanx 、y=x-cosx 、2 y x =、2 1y x =-在[0]π,上的图形;要求曲线分别用虚实线表示,并注明曲线名称及适当的标注。 x=0:0.1:pi; y1=tan(x); y2=x-cos(x); y3=x.*x; y4=1-x.*x; plot(x,y1,'k-',x,y2,'k:',x,y3,'k-.',x,y4,'k--'); title('四条平面曲线'); gtext('y=tantx'); gtext('y=x-cosx'); gtext('y=x^2'); gtext('y=1-x^2 ');

0.5 1 1.5 2 2.5 3 3.5 -35-30-25-20-15-10-505 10 15四条平面曲线 3、22 2351 ,cos ,21,1 x x x y e z x u x v x +-===-=+将在同一窗口画出图形。 >> x=linspace(0,2*pi,30); >> y=exp(x); z=cos(x); u=2*x.^2-1; v=(3*x.*x+5*x-1)./(x.*x+1); >> subplot(2,2,1),plot(x,y),title('y=e^x') >> subplot(2,2,2),plot(x,z), title('y=cosx') >> subplot(2,2,3),plot(x,u), title('y=2x^2-1') >> subplot(2,2,4),plot(x,v), title('y=(3*x^2+5*x-1)/(x^2+1)')

齐次线性方程组的基础解系(PPT)_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解 系对于齐次线性方程组a11x1a12x2a1nxn0, a12x1a22x2a2nxn0, ax ax ax0. m22mnn m11 令a11a12 a21a22 , 1 2 am1 am2 a1n a2n ,,n amn 则上述方程组即为 x1 1 x2 2 xn n 0 (*) (其中 0 为零向量)。 将(*)的解视为 n 维向量,则所有解向量构成 K 中的一个向量组,记为 S。 n 命题 S 中的元素(解向量)的线性组合仍属于 S(仍是解)。 证明只需要证明 S 关于加法与数乘封闭。 设(k1,k2,,kn),(l1,l2,,ln)S,则k11k2 2 kn n 0 l1 1 l2 2 ln n 0 于是 (k1 l1) 1 (k2 l2) 2 (kn ln) n 0 故 (k1 l1,k2 l2, ,kn ln) S;又因为k K kk1 1 kk2 2 kkn n 0 所以(kk1,kk2, ,kkn) S。 证毕。 定义(线性方程组基础解系)齐次线性方程组(*)的一组解 1 / 7

向量1, 2, , s 如果满足如下条件: (1)1, 2, , s 线性无关;(2)方程组(*)的 任一解向量都可被1, 2, , s 线性表出,那么,就称1, 2, , s 是齐次线性方程组(*)的一个基础解系。 定理数域上的齐次线性方程组的基础解系中的向量个数等于变 元个数减去系数矩阵的秩。 证明记线性方程组为 x1 1 x2 2 xn n 0 其中a11a12 a21a22 , 1 2 am1 am2 a1n a2n , , n amn 设1, 2, , n 的秩为 r,无妨设1, 2, , n 为其极大线性无关部分组, 则r 1, r 2, , n 皆可被1, 2, , r 线性 表出,即存在 kij K(1 i n r,1 j r),使得r 1 k11 1 k1 2 2 k1r r r 2 k21 1 k22 2 k2r r n kn r1 1 kn r2 2 kn rr r, 即 ki1 1 ki2 2 kir r 1 r i 0, (i 1,2, n r)于是 S 中含 有向量1(k11,k12,,k1r,1,0,,0) 2 (k21,k22,,k2r,0,1,,0) n r(kn r1,kn r2, ,kn rr,0,0, ,1) 只需要证明1, 2, , n r 是解向量组的一个极大线性无关部分组即可。 易见,向量组1, 2, , n r 线性无关。 只需要再证明1, 2, , n r 能线性表出任意一个S 即

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

常微分方程的解线性方程组的迭代法

实验五 解线性方程组的迭代法 【实验内容】 对1、设线性方程组 ?? ? ? ?? ? ? ?? ? ? ?? ? ? ??-=???????????????? ?????????????????? ? ?--------------------------211938134632312513682438100412029137264 2212341791110161035243120 536217758683233761624491131512 013012312240010563568 0000121324 10987654321x x x x x x x x x x ()T x 2,1,1,3,0,2,1,0,1,1*--= 2、设对称正定系数阵线性方程组 ?? ? ????? ??? ? ? ??---=????????????? ??????????????? ??---------------------4515229 23206019243360021411035204111443343104221812334161 2065381141402312122 00240424 87654321x x x x x x x x ()T x 2,0,1,1,2,0,1,1*--= 3、三对角形线性方程组

?? ? ?? ? ????? ??? ? ? ??----=???????????????? ?????????????????? ??------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000 14100000000 1410987654321x x x x x x x x x x ()T x 1,1,0,3,2,1,0,3,1,2*---= 试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。 【实验方法或步骤】 1、体会迭代法求解线性方程组,并能与消去法加以比较; 2、分别对不同精度要求,如54310,10,10---=ε由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。 程序: 用雅可比方法求的程序: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200;

小学数学实验报告

竭诚为您提供优质文档/双击可除 小学数学实验报告 篇一:小学数学课题实验总结报告 《实施合作学习,发挥优势互补的研究》 课题实验总结 在上级主管部门和学校领导关心支持下我们开展了《实施合作学习,发挥优势互补》的课题研究。在课题组全体老师两年的不懈努力下,已基本完成本课题研究任务,并取得预期成果。 开展课题实验以来,我们坚持在实践中探索,在探索中实践,取得了初步的成效,主要体现在实验促进了三个方面的转变,一个方面的提高。 一、促进教师教学观念的转变。 参加课题实验后,实验组的老师们通过边实验边学习,不断总结与反思,提升了自己的科研水平,并树立了以“教学是为了促进学生发展”为最终目标的新型教育教学观念。课堂上,老师与学生建立了和谐融洽的师生关系,在精心创设的良好的教学氛围中鼓励学生独立思考、大胆质疑、敢于

探索、勇于创新。让学生在自主、合作、探究的学习过程中,激发学习热情,养成学习习惯,提高学习能力,从而促进了学生的发展。 二、促进学生学习方式的转变。 学生正在由被动学习逐步向主动学习转变,由老师教转变为我能学,由师生间的单向性活动转变为双向性互动、多边性互动,增大了课堂信息量,学生积极主动学习,小组合作、乐于探究,他们发扬团队精神,团队之间互相竞争、优势互补,并培养学生动手、动脑、动口的能力,培养创新意识。课前,学生能积极主动地预习信息窗内容,提出问题并尝试解决。课堂上,学生能够热烈地交流预习所得,积极主动地参与课堂讨论,参与面广,讨论热烈而且有序。课后,能自觉温习知识,深化学习,拓展延伸,并加以运用。绝大部分学生善于表达,敢于提出自己的不同见解,有较强的探究精神,能够提出问题积极思考,并能够多角度思维寻找解决问题的策略,并且培养了学生良好的合作学习的习惯。 学习方式的转变促进了学生全面发展,他们乐学,善学,学有所成。随着学生自主合作探究能力的不断提高,自主性合作性探究性已多个学习层面辐射,辐射到其它学科、班级管理、文体活动等方面。实验班班风好,学风浓,学生对所有科目的学习兴趣盎然、积极主动,全面发展。 三、促进课堂教学格局的转变。

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

数值分析5-用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组

作业六:分别编写用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax=B的标准程序,并求下列方程组的解。 可取初始向量 X(0) =(0,0,0)’; 迭代终止条件||x(k+1)-x(k)||<=10e-6 (1) = (2) = Jacobi迭代法: 流程图 开 始 判断b中的最大值 有没有比误差大 给x赋初值 进行迭代 求出x,弱到100次还没到,警告不收 结束

程序 clear;clc; A=[8,-1,1;2,10,01;1,1,-5]; b=[1;4;3]; e=1e-6; x0=[0;0;0]'; n=length(A); x=zeros(n,1); k=0; r=max(abs(b)); while r>e for i=1:n d=A(i,i); if abs(d)100 warning('不收敛'); end end x=x0;

程序结果(1)

(2)

Gauss-Seidel迭代法: 程序 clear;clc; %A=[8,-1,1;2,10,01;1,1,-5]; %b=[1;4;3]; A=[5,2,1;-1,4,2;2,-3,10]; b=[-12;20;3]; m=size(A); if m(1)~=m(2) error('矩阵A不是方阵'); end n=length(b); %初始化 N=0;%迭代次数 L=zeros(n);%分解A=D+L+U,D是对角阵,L是下三角阵,U是上三角阵U=zeros(n); D=zeros(n); G=zeros(n);%G=-inv(D+L)*U d=zeros(n,1);%d=inv(D+L)*b x=zeros(n,1); for i=1:n%初始化L和U for j=1:n if ij U(i,j)=A(i,j); end end end for i=1:n%初始化D D(i,i)=A(i,i); end G=-inv(D+L)*U;%初始化G d=(D+L)\b;%初始化d %迭代开始 x1=x; x2=G*x+d; while norm(x2-x1,inf)>10^(-6)

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

《线性代数》线性方程组部分练习题

一,填空题 1 已知四维向量α,β满足3α+4β=()2112T ,2α+3β=()12 31T -,则向量α=________,β=_____ 2 有三维列向两组1α=()100T ,()2110αT =,()3111αT =,()123βT =,且有112233βχαχαχα++=,则123χχχ=_____ ,=_____,=_____ 3.若向量组123,,ααα线性无关,则向量组122331,,αααααα+++是线性____。 4若n 个 n 维列向量线性无关,则由此n 个向量构成的矩阵必是______ 矩阵。 5若R )(1234,,,4αααα=,则向量组123,,ααα是线性________。 6若向量组)()()()( 12341,1,3,2,4,5,1,1,0,2,2,6,αααα===-=则此向量组的秩是______,一个极大无关组是______。 7已知向量组()()()1231,2,1,1,2,0,,0,0,4,5,2t ααα=-==--的秩为2,则t =____. 8已知方程组12312112323120x a x a x ????????????+=????????????-?????? 无解,则a =_____。 二,选择题 1.向量组()()()()12341,1,2,0,1,1,2,3,5,2,2,4αααα==-==的极大无关组为( ) (A )12,;αα (B )13,;αα (C )123,,;ααα (D )23,;αα 2.若A =12421110λ?? ? ? ??? 为使矩阵A 的秩有最少值,则λ应为( ) (A )2; (B )-1; (C)94; (D)12 ; 3. n 元齐次线性方程组AX=0有非零解时,它的每一个基础解系中所含解向量的个数等于( ) (A )R )(A -n ; (B ))(R n A + (C ))(n R -A ; (D))( n R +A 4.设123412342 34234355222χχχχχχχχχχχλ+-+=??+-+=??+-=? 当λ取( )时,方程组有解。 (A )-12 (B) 12 (C)1- (D)1

齐次线性方程组基础解系

齐次线性方程组的基础解系及其应用 齐次线性方程组一般表示成AX=0的形式,其主要结论有: (1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

Gauss-Seidel迭代法求解线性方程组

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量 ) 1(+k i x 时,用最新分量 ) 1(1 +k x , ???+) 1(2 k x ) 1(1 -+k i x 代替旧分量 ) (1 k x , ???) (2 k x ) (1 -k i x ,可以起 到节省存储空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 ) ()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=,

则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+) () 1( 其迭代格式为 T n x x x x ) ()0()0(2)0(1)0(,,,???= (初始向量), ) (1 1 1 1 1 )()1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)()1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

完整word版最速下降法求解线性代数方程组

最速下降法求解线性代数方程组要求:对于给定的系数矩阵、右端项和初值,可以求解线性代数方程组 一、最速下降法数学理论 PP?tX?Xf(X)的负梯中,在基本迭代公式每次迭代搜索方向取为目标函数kk1kkk?t)X??f(P?取为最优步长,由此确定的算法称为最速度方向,即,而每次迭代的步长kkk下降法。 X)Xminf(kk。现在次,获得了第,假定我们已经迭代了为了求解问题个迭代点k X出发,可选择的下降方法很多,一个非常自然的想法是沿最速下降方向(即负梯度方从k X邻近的范围内是这样。因此,去搜索方向为 )进行搜索应该是有利的,至少在向k P???f(X). kk P k?1进行一维搜索,由此得到第为了使目标函数在搜索方向上获得最多的下降,沿k个跌带点,即 X?X?t?f(X),kk1k?k t按下式确定其中步长因子k f(X?t?f(X))?minf(X?t?f(X)), kkkkkk X?ls(X,??f(X)). ( 1) k1k?k X X,XX,, ,,?k0,12是初始点,由计算就可以得到一个点列,显然,令其中0210{X}f)X(X)(f 的满足一定的条件时,由式()所产生的点列必收敛于者任意选定。当1k极小点。 二、最速下降法的基本思想和迭代步骤 ???,)(Xf(X)g. ,终止限已知目标函数及其梯度和321Xf?f(X),g?g(X)k?0. ,计算;置(1)选定初始点00000X?ls(X,?g)f?f(X),g?g(X). (2)作直线搜索:;计算 k?1kk1?k1k?kk?1?1(X,f(X))k?k?1,置,结束;用终止准则检验是否满足:若满足,则打印最优解否则,1k?1?k转(2) (3)最速下降法算法流程图如图所示.

数学实验报告反思与总结

数学实验报告反思与总结 教学情境,是学生参与学习的具体的现实环境。知识具体情境性,是在情境中通过活动而产生的。生动有趣的教学情境,是激励学生主动参与学习的重要保证;是教学过程中的一个重要环节。一个好的教学情境可以沟通教师与学生的心灵,充分调动学生的既有经验,使之在兴趣的驱动下,主动参与到学习活动中去。那么在数学课堂教学中,创设一个优质的情境是上好一堂课的重要前提。 一、创设实际生活情境,激发学生学习兴趣 数学来源于生活,生活中又充满数学。著名数学家华罗庚说过:"人们对数学早就产生了枯燥乏味、神秘、难懂的印象,原因之一便是脱离了实际。"因此,教师要善于从学生熟悉的实际生活中创设教学情境,让数学走进生活,让学生在生活中看到数学,接触数学,激发学生学习数学的兴趣。如:在教学《分类》时,我首先让学生拿出课前已准备的自己最喜爱的东西[玩具(汽车、火车、坦克、手枪……),图片(奥特曼、机器人、孙悟空、哪吒……),水果(苹果、梨子、香蕉、桔子……)],提问:"同学们都带来了这么多好玩、好看、好吃的东西,应该怎样分类摆放呢?"学生兴趣盎然,各抒己见。生1:把这些东西都放在一起。生2:摆整齐。生3:把好玩的放在一起,好看的放在一起,好吃

的放在一起。生4:把同样的东西放在一起。教师抓住这个有利时机导入课题,探求新知。然后通过小组合作把学生带来的东西进行分类,并说明分类理由,总结分类的方法。各小组操作完后,小组代表汇报结果,生1:我们组整理玩具有:汽车、火车、手枪……生2:我们组整理图片有:奥特曼、机器人、哪吒……生3:我们组整理水果有:苹果、梨子、香蕉……(学生回答分类理由和方法时,教师适时引导,及时地给予肯定和评价。)师:各小组再按不同标准把东西分类细化。各小组操作完后,小组代表汇报结果,生1:我们把汽车放一起,把火车放一起……生2:我们把奥特曼放一起,把机器人放一起……生3:我们把梨子放一起,把苹果放一起…… 这样将知识与实际生活密切联系起来,巧妙地创设教学情境,激发了学生的学习兴趣和求知欲望,放飞了学生的思维,学生把自己好玩、好看、好吃的东西通过动手实践、自主探索、合作交流、体验,参与知识的形成过程和发展过程,理解掌握了分类的思想方法,获取了学习数学的经验,成为数学学习活动中的探索者、发现者、创造者,同时也提高了学生的观察能力,判断能力和语言表达能力。 二、创设质疑情境,引发自主探究 创设质疑情境,就是在教师讲授内容和学生求知心理之间搭建一座"桥梁",将学生引入一种与问题有关的情境中,

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

迭代法解线性方程组

迭代法解线性方程组作业 沈欢00986096 北京大学工学院,北京100871 2011年10月12日 摘要 由所给矩阵生成系数矩阵A和右端项b,分析系数矩阵A,并用Jacobi迭代法、GS迭代法、SOR(逐步松弛迭代法)解方程组Ax=b 1生成系数矩阵A、右端项b,并分析矩阵A 由文件”gr900900c rg.mm”得到了以.mm格式描述的系数矩阵A。A矩阵是900?900的大型稀 疏对称矩阵。于是,在matlaB中,使用”A=zeros(900,900)”语句生成900?900的零矩阵。再 按照.mm文件中的描述,分别对第i行、第j列的元素赋对应的值,就生成了系数矩阵A,并 将A存为.mat文件以便之后应用。 由于右端项是全为1的列向量,所以由语句”b=ones(900,1)”生成。 得到了矩阵A后,求其行列式,使用函数”det(A)”,求得结果为”Inf”,证明行列式太大,matlaB无法显示。由此证明,矩阵A可逆,线性方程组 Ax=b 有唯一解。 接着,判断A矩阵是否是对称矩阵(其实,这步是没有必要的,因为A矩阵本身是对称矩阵,是.mm格式中的矩阵按对称阵生成的)。如果A是对称矩阵,那么 A?A T=0 。于是,令B=A?A T,并对B求∞范数。结果显示: B ∞=0,所以,B是零矩阵,也就是:A是对称矩阵。 然后,求A的三个条件数: Cond(A)= A ? A?1 所求结果是,对应于1范数的条件数为:377.2334;对应于2范数的条件数为:194.5739;对应 于3范数的条件数为:377.2334; 1

从以上结果我们看出,A是可逆矩阵,但是A的条件数很大,所以,Ax=b有唯一解并且矩阵A相对不稳定。所以,我们可以用迭代方法来求解该线性方程组,但是由于A的条件数太大迭代次数一般而言会比较多。 2Jacobi迭代法 Jacobi迭代方法的程序流程图如图所示: 图1:Jacobi迭代方法程序流程图 在上述流程中,取x0=[1,1,...,1]T将精度设为accuracy=10?3,需要误差满足: error= x k+1?x k x k+1

高斯-赛德尔迭代法解线性方程组精选.

数值分析实验五 班级: 10信计二班 学号:59 姓名:王志桃 分数: 一.实验名称 高斯-赛德尔迭代法解线性方程组 二.实验目的 1. 学会利用高斯赛德尔方法解线性方程组 2. 明白迭代法的原理 3. 对于大型稀疏矩阵方程组适用于迭代法比较简单 三.实验内容 利用Gauss-Seidel 迭代法求解下列方程组 ?????=++=-+=+-36123633111420238321 321321x x x x x x x x x , 其中取→=0)0(x 。 四、算法描述 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i x 时,用最新分量)1(1+k x ,???+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,???)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(11111)()1( ) 1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者写为 ?? ???--=???=???==?+=∑∑-=-+=+++)(1)210i 210(1111)( )1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 五、 编码 #include #include

数学实验综合实验报告

一、实验目的: 1、初步认识迭代,体会迭代思想的重要性。 2、通过在mathematica 环境下编写程序,利用迭代的方法求解方程的根、线性方程组的解、非线性方程组的解。 3、了解分形的的基本特性及利用mathematica 编程生成分形图形的基本方法, 在欣赏由mathematica 生成的美丽的分形图案的同时对分形几何这门学科有一个直观的了解。从哲理的高度理解这门学科诞生的必然性,激发读者探寻科学真理的兴趣。 4、从一个简单的二次函数的迭代出发,利用mathematica 认识混沌现象及其所 蕴涵的规律。 5、.进一步熟悉Mathematic 软件的使用,复习总结Mathematic 在数学作图中的应用,为便于研究数学图像问题提供方便,使我们从一个新的视角去理解数学问题以及问题的实际意义。 6、在学习和运用迭代法求解过程中,体会各种迭代方法在解决问题的收敛速度上的异同点。 二、实验的环境: 学校机房,mathematica4环境 三、实验的基本理论和方法: 1、迭代(一)—方程求解 函数的迭代法思想: 给定实数域上光滑的实值函数)(x f 以及初值0x 定义数列 1()n n x f x +=, ,3,2,1,0=n , (1) n x , ,3,2,1,0=n ,称为)(x f 的一个迭代序列。 (1)方程求根 给定迭代函数)(x f 以及初值0x 利用(1)迭代得到数列n x , ,3,2,1,0=n .如果数列收敛到某个*x ,则有 )(**x f x =. (2)

即*x 是方程)(x f x =的解。由此启发我们用如下的方法求方程0)(=x g 的近似解。 将方程0)(=x g 改写为等价的方程 )(x f x =, (3) 然后选取一初值利用(1)做迭代。迭代数列n x 收敛的极限就是方程0)(=x g 的解。 为了使得迭代序列收敛并尽快收敛到方程0)(=x g 的某一解的条件是迭代函数)(x f 在解的附近的导数将的绝对值尽量小,因此迭代方程修订成 x x f x h x )1()()(λλ-+== (4) 选取λ使得|)(|x h '在解的附近尽量小. 为此, 我们可以令 ,01)()(=-+'='λλx f x h 得 ) (11 x f '-= λ. 于是 1 )()()(-'-- =x f x x f x x h . 特别地,如果取x x g x f +=)()(, 则可得到迭代公式 .,1,0,) () (1 ='- =+n x g x g x x n n n n (5) (2)线性方程组的数值解的迭代求解理论与矩阵理论 给定一个n 元线性方程组 ??? ??=++=++, ,1 111111n n nn n n n b x a x a b x a x a (6) 或写成矩阵的形式

实验解线性方程组的基本迭代法实验

数值分析实验报告

0 a 12 K a 1,n 1 K a 2,n 1 U O M 则有: 第一步: Jacobi 迭代法 a 1n a 2n M , 则有: A D L U a n 1,n Ax b A A x D b L U (D L U)x b Dx (L U)x b x D (L U)x D b 令 J D (L U) 则称 J 为雅克比迭代矩阵 f D b 由此可得雅克比迭代的迭代格式如下: x (0) , 初始向量 x (k 1) Jx (k) f ,k 0,1,2,L 第二步 Gauss-Seidel 迭代法 Ax b (D L U )x b (D L)x Ux b x (D L) Ux (D L) b A D L U a 11 a 12 L a 1n a 11 A a 21 a 22 L a 2n a 22 M MM MO a n1 a n2 L a nn a 11 得到 D a 22 O a nn 由 a 21 0 M M O a n 1,1 a n 1,2 L 0 a nn a n1 a n2 L a n,n a 21 L M M O a n 1,1 a n 1,2 L a n1 a n2 L a n,n 1 a 12 K a 1,n 1 a 1n 0 K a 2,n 1 a 2n O M M a n 1,n 10

令 G (D L) U ,则称G 为Gauss-Seidel 迭代矩阵 f (D L) b 由此可得 Gauss-Seidel 迭代的迭代格式如下: x (0) , 初始向量 第三步 SOR 迭代法 w0 AD L U 1 ( D 1 wL ((1 w)D wU )) (D 1 wL) ((1 w)D wU ) w w w 令M w 1 (D wL), N 1 ((1 w)D wU )则有:A MN w w Ax b AM L W N M (M N )x b Mx Nx b x M Nx M b N M, 令W f Mb 带入 N 的值可有 L W ((1 w)D wU) (D wL) 1((1 w)D wU) (D wL) f 1 b w 1(D wL) 1b 1 (D wL) w 称 L W 为 SOR 迭代矩阵,由此可得 SOR 迭代的迭代格式如下: x (0) ,初始向量 二、算法程序 Jacobi 迭代法的 M 文件: function [y,n]=Jacobi(A,b,x0,eps) %************************************************* %函数名称 Jacobi 雅克比迭代函数 %参数解释 A 系数矩阵 % b 常数项 % x0 估计解向量 x (k 1) Gx (k) f ,k 0,1,2,L (k 1) f,k 0,1,2,L

相关文档
相关文档 最新文档