文档库 最新最全的文档下载
当前位置:文档库 › AGILENT 最先进的网络分析仪

AGILENT 最先进的网络分析仪

AGILENT 最先进的网络分析仪
AGILENT 最先进的网络分析仪

超越S参数测试

-安捷伦科技最先进的矢量网络分析仪PNA-X

David Ballo

产品销售工程师,安捷伦科技

无论在研发还是在生产制造中,工程师们在测试射频元件时都面临许多重大挑战。在研发过程中,更快并以较少的重复工作来解决设计难题至关重要。生产制造过程中,需要在保持精度和最大产出率的同时,缩短测试时间和降低测试成本。

减缓压力的方法之一是使用灵活的高度综合的测试解决方案――如Agilent N5242A PNA-X微波网络分析仪。由于PNA-X的先进体系结构,它不仅提供卓越的性能和精度,而且还能针对超越与网络分析仪相关的传统散射参数(S参数)的各种测量进行配置。一些内置组件(如第二个信号源和宽带合路器)能对射频和微波器件,尤其是放大器、混频器和变频器的非线性特性进行非常精确的表征,让您对这些器件的性能有更加全面的了解。

确保精确的系统模拟

精确的幅度和相位测量对应用在现代化无线和航空/国防系统设备中的器件至关重要。在设计阶段,系统模拟需要高度精确的元件表征来保证系统满足其性能要求。在生产制造中,精确的测量验证每一个元件是否满足其公布的指标。

S参数在射频元件(如滤波器、放大器、混频器、天线、隔离器和传输线)测量中使用最为广泛。测量结果能确定射频器件在正向和反向传输信号时其以复数值(幅度和相位)表示的反射和传输性能。它们全面描述了射频元件的线性特性,这对全系统模拟来说是有很有必要的一部分,但要对全系统做更加完全的模拟时,仅仅进行S参数测试是不够的,诸如器件特性随频率变化而呈现出的幅度响应不平坦性或相位响应斜率的不恒定性等这些偏差都会引起严重系统性能下降。

器件的非线性特性也会造成系统性能的劣化。例如,如果放大器的驱动信号已经超过其线性工作的范围,则它将会出现增益压缩、调幅到调相(AM到PM)的转换及互调失真(IMD)。

核心测量概述

矢量网络分析仪(VNA)是测定元件特性最经常使用的仪器。传统VNA包含一个给被测器件(DUT)和多测量接收机提供激励的射频信号发生器,以测量信号在正向传输和反向传输时入射、反射和传输信号(图1)。信号源在固定功率电平进行扫频以测量S参数,而在固定频率上对其功率扫描,可以测量放大器的增益压缩和AM-PM转换。这些测量能测定线性和简单非线性器件的性能。

图1.传统二端口VNA框图

对于基本的S参数和压缩测试,信号源和接收器调谐到相同的频率。不过,通过使信号源和接收机频率偏移,将接收机调谐至激励频率的整数倍,也能测出放大器的谐波性能。使信号源和接收机频率偏移的能力同样可以测量频率转换器件(如混频器和变频器)的幅度、相位和群延迟性能。

上述这些测量通常是使用连续波进行激励(CW)的,而许多器件要求使用脉冲射频测试,即测试信号必须以特定脉冲宽度和重复频率进行选通。

传统VNA有两个测试端口,这在大多数射频器件只有一个或两个端口时可满足需要。随着无线通信领域的快速增长,三个或四个端口的器件已经非常普遍,因而四端口网络分析仪也和二端口网络分析仪同样会被普遍使用。

简化放大器和混频器测量

利用二端口或四端口时,PNA-X与传统VNA结构相比有四大改进:

两个信号源:第二个内部信号源与第一个信号源的频率和功率电平设置是相互独立的。第二个信号源可用于非线性放大器测试如互调失真(IMD),或用作测试混频器和变频器的快速本地振荡器(LO)。

宽带信号合路器:内部信号合路器可以在仪器的相关测试端口耦合器之前将两个源合并在

一起。这便简化了需要两个信号源的放大器测试设置。

信号切换和接入点:辅助开关和射频接入点能实现灵活的信号路径选择,并增加外部信号调理得硬件(如推动放大器)或外部测试设备(如数字信号发生器或矢量信号分析仪)。 脉冲测试能力:内部脉冲调制器和脉冲发生器提供完全一体化的脉冲S参数解决方案。

这些改进简化了测试设置过程并在测量放大器、混频器和变频器时缩短了测试时间。这些新增加的特性结合在一起极大地扩大了对被测器件(DUT)进行一次连接可以实现的测量范围。图2示出一个对放大器的S参数、增益压缩和相位压缩及固定信号IMD进行同时测量的实例。

图2.显示表对放大器的S参数、压缩和IMD进行同时测量的PNA-X实例

两个内置信号源的性能增强也会简化放大器和混频器测量。例如,测试端口可利用的最大信号功率通常为+13至+20 dBm(取决于型号和频率)。这对将放大器驱动到非线性区很有帮助,并且在把信号源用作测试混频器的LO信号时也经常要这样。这两个内置信号源的谐波成分也非常低(通常为–60 dBc 或更低),从而提高谐波和IMD测量的精度。此外,典型置为40 dB的功率扫描范围使得在表征放大器的特性时很容易就可以让放大器从线性工作范围转化到非线性工作范围。

解决各种测量问题

虽然VNA只需一个射频源就可以测量元件的S参数、压缩和谐波,但增加第二内部信号源则可以对更为复杂的非线性特性,如IMD,进行测量,特别是当这两个源与网络仪内部的信号合路器配合使用时尤其如此。

图3.针对IMD测量配置的二端口PNA-X框图

对于IMD测量,使用信号合路器将两个信号合并,然后送到被测放大器(AUT)的输入端。图3示出PNA-X如何使用内部信号源和合路器来完成此过程。

AUT的非线性会引起与被放大的输入信号一道出现的互调分量。在通信系统中,这些多余的分量将进入工作频带且不能通过滤波去除。实践中,只测三阶分量,因为它们是造成系统性能下降的最重要因素。

图4示出一个用PNA-X完成的扫描IMD测量实例。两条居中迹线显示激励信号,下方两条迹线显示IMD分量。最上方的迹线则是利用了PNA-X特别有优势的公式编辑特征计算并显示的三阶截获

点(IP3)。

图4.扫频IMD测量的PNA-X实例

在扫描状态下进行IMD测试的一个非常有用的改变是对功率电平而不是对频率进行扫描,这有助于研发工程师们建立晶体管和放大器非线性行为模型。在图5显示的测量结果中,您可以看到基频信号以及三阶、五阶和七阶互调分量的幅度和相位随输入功率的变化而变化的情况。

图5.PNA-X进行功率扫描IMD测试的实例

与其它方法相比,使用VNA进行以上测量有三个优点。首先,只用一台测试仪器,只进行一次连接便能对全部参数进行测量:S参数、增益压缩、输出谐波、IMD等等。其次,与使用频谱分

析仪相比,用功率计对VNA进行校准之后,测量精度更高。最后,如果使用一台频谱分析仪和两个独立的信号源进行同样的测试,完成测试需要花几分钟的时间,但使用PNA-X只需0.6秒。

相位与驱动的关系是用PNA-X很容易完成的另一种常见的双信号源测试。这个测试参数表征的是当在相邻通道或带外存在大信号时,放大器处理小信号的能力。测试的方法是把不同频率的一个大信号和一个小信号合在一起然后送至被测放大器(AUT),然后在改变大信号的功率时(使用功率扫描),测量小信号的S21相位。

另一种使用双信号源技术、在建立晶体管和放大器非线性行为模型时会用到的参数是“热态S参数”(准确地说是“放大器工作状态下的S参数-译者注)”,这种测试方法用来表征在某一给定频率下,当存在一个比较大的偏离于S参数测试信号的另外一个输入信号,并且被测放大器的输出因为这个大信号的存在而产生压缩时,放大器小信号S参数的特性。在进行热态S参数测试时,一定要十分小心,不要让被测放大器输出的“热信号”超出了矢量网络分析仪测试接收机的损坏电平。

测量平衡元件

平衡电路既能降低对电磁干扰的敏感度和又能降低电磁干扰的产生。平衡元件可以是在三个射频端口的平衡-单端器件或有四个端口的平衡-平衡器件。用四端口VNA很容易对这些元件进行测试,可以测量差模响应和共模响应以及模式变换项。

这些测试可以用单端激励或真实模式激励来完成。单端法是每次只测试一个DUT端口(只需要一个射频源)并对差模响应和共模响应以及交叉模式特性进行数学计算。这是最快且精确的技术,条件是外加功率电平应使AUT保持在线性或适度压缩的工作区。

在高驱动电平条件下测试放大器的平衡性能时,如果仍然使用单端测量的方法,非线性特性会引测量结果的严重误差,这就需要真实(差分或平衡)模式激励。这种方法将两个幅度相同的信号以180°(差模信号)或0°(共模信号)的相位差加到放大器输入端对上。理论上这很容易使用双源VNA做到,但是精确测量还需要两个条件:对两个信号源的相位差做高分辨率的调整;以及能调整信号源的相位和幅度,以抵消由源输出阻抗与AUT输入阻抗互作用所引起的输入失配。PNA-X能满足这两个要求。

图6.针对矢量混频器测量配置的四端口PNA-X框图

测试混频器和变频器

第二个内部信号源也可用于测试频率转换器件如混频器或变频器,测试时除输入激励之外还需要LO信号。第二个信号源对扫描LO测试十分有用,在测试时LO信号连同射频输入信号一起被扫描,但保证RF信号和LO信号的频率差是固定的。这个方法常用于测量宽带变频器的前端元件。与使用外部信号发生器相比,使用从VNA内部信号源引出的信号作为LO信号在测试速度上有几位明显的改善(使用PNA-X的测试速度比传统方法的测试速度最高可快35倍)。

使用PNA-X进行混频器和变频器测量的设置非常简单。为了测试端口匹配和变频损耗或变频增益,DUT的输入端、输出端和LO端口分别与PNA-X的端口1、端口2和端口3相连。增加参考混频器能对混频器或变频器的相位或群延迟进行测试。第二个信号源的两个输出可用于驱动参考混频器和DUT混频器(图6)。

结论

基于VNA的测试系统为测量无线通信和航空/国防系统中所使用的射频和微波元件提供了动力。与传统VNA相比,Agilent PNA-X微波网络分析仪的先进体系结构具有更大的灵活性,使工程师们可以通过一次连接便能测量各种各样的高性能尖端元件。PNA-X内最主要的增加项是第二个信

号源和内部宽带信号合路器,从而简化了放大器、混频器和变频器的测量。除S参数、压缩和谐

波的传统单信号源测量之外,两个信号源还可用于IMD、相位随驱动的变化、热态S参数和真实激励模式的测试。PNA-X端口上信号源的高功率输出、低谐波和宽功率扫描范围的属性完全适应当前器件的测试要求。

AGILENT 最先进的网络分析仪

超越S参数测试 -安捷伦科技最先进的矢量网络分析仪PNA-X David Ballo 产品销售工程师,安捷伦科技 无论在研发还是在生产制造中,工程师们在测试射频元件时都面临许多重大挑战。在研发过程中,更快并以较少的重复工作来解决设计难题至关重要。生产制造过程中,需要在保持精度和最大产出率的同时,缩短测试时间和降低测试成本。 减缓压力的方法之一是使用灵活的高度综合的测试解决方案――如Agilent N5242A PNA-X微波网络分析仪。由于PNA-X的先进体系结构,它不仅提供卓越的性能和精度,而且还能针对超越与网络分析仪相关的传统散射参数(S参数)的各种测量进行配置。一些内置组件(如第二个信号源和宽带合路器)能对射频和微波器件,尤其是放大器、混频器和变频器的非线性特性进行非常精确的表征,让您对这些器件的性能有更加全面的了解。 确保精确的系统模拟 精确的幅度和相位测量对应用在现代化无线和航空/国防系统设备中的器件至关重要。在设计阶段,系统模拟需要高度精确的元件表征来保证系统满足其性能要求。在生产制造中,精确的测量验证每一个元件是否满足其公布的指标。 S参数在射频元件(如滤波器、放大器、混频器、天线、隔离器和传输线)测量中使用最为广泛。测量结果能确定射频器件在正向和反向传输信号时其以复数值(幅度和相位)表示的反射和传输性能。它们全面描述了射频元件的线性特性,这对全系统模拟来说是有很有必要的一部分,但要对全系统做更加完全的模拟时,仅仅进行S参数测试是不够的,诸如器件特性随频率变化而呈现出的幅度响应不平坦性或相位响应斜率的不恒定性等这些偏差都会引起严重系统性能下降。 器件的非线性特性也会造成系统性能的劣化。例如,如果放大器的驱动信号已经超过其线性工作的范围,则它将会出现增益压缩、调幅到调相(AM到PM)的转换及互调失真(IMD)。 核心测量概述 矢量网络分析仪(VNA)是测定元件特性最经常使用的仪器。传统VNA包含一个给被测器件(DUT)和多测量接收机提供激励的射频信号发生器,以测量信号在正向传输和反向传输时入射、反射和传输信号(图1)。信号源在固定功率电平进行扫频以测量S参数,而在固定频率上对其功率扫描,可以测量放大器的增益压缩和AM-PM转换。这些测量能测定线性和简单非线性器件的性能。

是德科技keysight n9320b射频频谱分析仪使用手册说明书技术指标,原安捷伦agilent

Keysight N9320B RF Spectrum Analyzer 9 kHz to 3.0 GHz Data Sheet

The spectrum analyzer will meet its specifications when: It is within its calibration cycle It has been turned on at least 30 minutes. It has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on; if it has been stored previously at a temperature range inside the allowed storage range, but outside the allowed operating range. “Specifications” describe the performance of parameters covered by the product warranty and apply to the full temperature range of 5 to 45 °C, unless otherwise noted.“Typical” values describe additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty. “Nominal” values indicate expected performance, or describe product performance that is useful in the application of the product, but are not covered by the product warranty. Definitions and Conditions

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

频谱仪 Gate使用步骤

频谱仪 Gate使用步骤 安捷伦射频应用工程师王创业 在脉冲雷达信号或者是Bluetooth等时变信号测试时,需要对脉内信号进行频谱进行分析,这时就需要用到频谱仪或信号分析仪的时间门的功能。具体详细说明可以参考《5952-0292CHCN频谱仪分析基础》第44页。 下面主要描述如何正确使用频谱仪的Gate功能。 测试信号:脉冲调制信号,中心频率2GHz,幅度0dBm,脉冲宽度10us,重复周期30us。 1.首先要设置频谱仪中心频率2GHz,扫频范围100MHz,这时候可以看到仪表默认RBW为 910KHz,需要设置成1Mhz。由于Free run没有触发,所以频谱在不断的跳动。

2.接着要去设置Gate View,也就是选取所要分析的脉内信号。 a.按Sweep/control→Gate b.Gate View选择on,这时仪表进入zero span模式。为了获得时域的脉冲包络,要 把RBW设置大于0.35倍的脉冲上升时间的倒数,也就是RBW尽可能要大。同时 频谱仪的扫描时间也要大于一个完整重复周期,最好设置3倍的重复周期。 c.按BW→RBW: 1MHz,这时可能还没有信号或得到的信号是不断抖动,需要设置 Gate触发源。 d.按Sweep/control→Gate→More→Gate source→RF Burst 3.设置Gate View Setup,该步骤要设置好参考位置和选取Gate时间段,选取的时间段一定 要在参考位置(蓝线)外面。如果参考段涵盖的范围很宽,则需要在增加Gate View Start Time,这里设置80us。设置Gate View Sweep Time 100us约为重复周期的3倍。 再进入到Gate设置界面。 a.Sweep/control→Gate→Gate View Setup,Gate View Sweep Time:100us, Gate View Start Time:80us。 b.设置Gate Delay :120us,Gate Length:5us。 4.关掉Gate View,打开Gate,即可看到门选后的频谱。要注意在Gate和Gate View下面的 RBW要设置成同样的带宽1MHz。

便携式网络测试仪选购必读

便携式网络测试仪器选购必读 伴随着网络的兴起,网络测试仪器市场发展的也是如火如荼,这是一个新兴市场,行业规范和产品标准还有待完善,如果从百度中搜索“网络测试仪”关键字,你会发现从几元的测线器到几十万元的数据分析仪都叫这个名字,有测网线的,有测网络的,有测无线的,有测光纤的,还有测电缆的,着实令人一头雾水,为了便于大家选择需要的产品,根据个人长时间的使用和对市场的了解,在这里按功能和用途我为大家整理介绍几款便携式网络检测仪器,为了增强针对性,该文章不包括光纤检测设备和无线测试仪器,如果大家想了解光纤和无线检测仪器,有时间我会为大家单独整理一篇文章,希望我的工作能为网络维护管理人员和做工程的施工人员提供点帮助,略尽绵薄之力。 一线缆检测仪器 线缆检测仪器是个很宽泛的行业,我这里只介绍网络线缆检测仪器,在这里我从低端到高端为大家介绍三款产品,主要以便捷性和高性价比为主。 1 网络测线器 网络测线器是一种廉价而实用型工具,它的主要功用就是测线缆通不通,原理是通过二极管发光,以闪灯的方式确认线缆连接方式,属于低端产品,没有技术含量,关注点是产品质量问题。市面上常见的产品通常可以测双绞线、电话线和同轴电缆,电子市场均有销售,价格在十几元到几十元不等。常见品牌中的能手、三保等产品都中规中矩,品质不错。 2 美国理想NTF700通信线缆验证测试仪 美国理想的产品我接触的不多,在国内,该品牌的知名度还没有福禄克的高,价格相对便宜,我向大家介绍的是NTF700这款产品,这是一款中端的线缆验证仪器,双绞线精确测量可以达到700多米,可以满足绝大多数工程人员的使用。美国理想NFT700系列、NFT710系列和增强版NTF720系列是美国理想工业公司为商用与民用通信网络工程施工、管理及维护人员提供的网线测试仪,对语音线缆、数据线缆及同轴电缆进行验证测试的便携仪器。 用户可通过它完成接线图测试、获得线缆长度(断点所在位置)、音调寻线、识别信息端口、识别集线器等任务。 功能和特点 1 使用远端模块后,可对双绞线进行检测:屏蔽层连续性、短路、开路、错接、反接和分岔线对(互绕),识别信息端口。 2 使用同轴电缆远端模块(8个不同颜色)可显示10Base-T和令牌环网的接线图。 3 单端不接远端模块可测试:短路、开路和分岔线对(互绕)。 4 主机的第2插孔可实现远端模块的功能,只用主机即可完成跳线测试。 5 测试结果以界限图方式显示,并明确提示“短路”和“分岔线对”。

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

安捷伦AgilentE精编B频谱分析仪使用说明简介

AgilentE4402B ESA-ESeriesSpectrumAnalyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 AgilentESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。

该产品采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.FrequencyChannel(频率通道)、SpanXScale(扫宽X刻度)和AmplitudeYscale(幅度Y刻度) 三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.AmptdRefOut,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶 瓷封装)。探头实物:

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

安捷伦综合测试仪

安捷伦综合测试仪 安捷伦综合测试仪可直接测量构件应力、应变、压力、位移、温度、水位等物理量,广泛用于水利、交通、铁路、建筑等岩土工程行业。 关于安捷伦 安捷伦科技有限公司是一家多元化的高科技跨国公司,它于1999年从惠普研发有限合伙公司分离出来,主要致力于通讯和生命科学两个领域内产品的研制开发、生产销售和技术服务等工作。 安捷伦科技有限公司是世界最大的测试测量公司,是全球通讯、电子和生命科学的领导者,其产品正在化学、环保、食品、医药和生命科学领域中广泛使用。安捷伦具有世界最先进的化学分析仪器,丰富的法规适应性和专业技术经验,以及优良的支持服务系统,这些都能够帮助您的实验室超前应对分析的挑战。 安捷伦N4903A综合测试仪 Agilent J-BERT N4903A高性能串行BERT为表征串行千兆位设备提供独一无二的完整抖动容限测试解决方案。通过全面、集成且经过校准的抖动合成,J-BERT能够对12.5 Gb/s 的接收机进行强化眼图测试。 自动执行一致性抖动容限测试,快速精确地针对常见的串行总线标准,如PCIeTM、SATA、FB-DIMM、光纤通道、CEI、千兆位以太网和XFP/XFI等进行表征。 J-BERT与最新的串行总线接口完全匹配,能够分析不确定性流量,生成复杂的码型序列和进行亚速率时钟输出,还可以测试无时钟和差分接口。 J-BERT是一个面向未来的可扩展、BERT平台,所有选件均可按目前测试需求进行配置,并可在需求改变时进行升级。 它是研发和验证团队的理想选择,能够帮助他们对串行I/O端口频率高达12.5 Gb/s的芯片和收发信机模块进行表征和强化测试。 安捷伦N5106A PXB MIMO综合测试仪 基带性能 120 MHz 调制带宽 每个基带发生器(BBG)配备512 Msa 的回放存储器 多达4 个BBG,可执行分集测试和基带相加 标准一致性信号生成 可在熟悉的Windows?环境中运行PXB 上的Signal Studio 软件 LTE、Mobile WiMAX?、W-CDMA、GSM/EDGE 即将提供:数字视频、802.11n WLAN、3GPP LTE-TDD 等 先进的通道仿真,适用于MIMO 测试

Lab1 Spectrum Analyzer频谱分析仪的使用

LAB # 1 – ANALYZING SIGNALS IN THE FREQUENCY DOMAIN INTRODUCTION You have probably connected various equipment to an oscilloscope in order to test various characteristics; if so, you know that the oscilloscope display shows the user a graph of amplitude (voltage) vs. time. Amplitude is on the vertical axis and time is on the horizontal axis. In telecommunications, when dealing with radio frequency (RF) waves, it is often beneficial to view signals in the frequency domain, rather than in the time domain. In the frequency domain, the vertical axis is still amplitude (usually power), but the horizontal axis is frequency instead of time. TIME DOMAIN: Amplitude vs. Time FREQUENCY DOMAIN: Amplitude vs. Frequency In this experiment, we will look at the characteristics of an RF signal using an oscilloscope (time domain) and using a spectrum analyzer (frequency domain). This will prepare you for future labs that deal with frequency-domain signals. MATERIALS & SETUP ? 1 MHz Signal Generator ? Oscilloscope ?HP Spectrum Analyzer ?BNC T-Connector ? Coaxial Cables ?RF adapters Fig. 1-1

频谱分析仪 安捷伦E4403B

产品名称:频谱分析仪安捷伦E4403B 型号:安捷伦E4403B 价格: 品牌: 产品介绍:频谱分析仪安捷伦E4403B ★频率范围:9 KHz~1.5 GHz,3.0 GHz和26.5 GHz ★±1.1dB的绝对幅度精度 ★坚固,便于携带的机箱适于在实验室、工厂以及维修现场使用 ★>28次测量/秒以及经GPIB为>19次测量/秒 ★价格适中 HP E4411B/E4403B/E4408B HP公司扩大了ESA-L系列,新型、低成本、全合成式频谱分析仪能工作到3.0和26.5 GHz。它能以适中的价格随时快速获得精确的结果。该仪器具有高档频谱分析仪的性能和能适应维修现场使用的坚固机箱。 测量速度快 HP ESA-L系列具有>28次测量/秒以及经GPIB为>19次测量/秒的显示更新速率和先进5ms扫描时间,从而能缩短测试时间并提高生产效率。 测试结果精确 连续锁相合成器提高了频率测量的稳定性和重复性,而自动的辅助调节则提供了连续校准。此外,只需开机5分钟之后便达到规定的性能。 便携运用 可选用的弹性卡入式电池消除了电源线的限制。可选用的12Vdc电源电缆允许直接利用汽车电池进行工作。 封装和结构牢固 HP ESA-L系列具有密封的前面板、百叶窗或通风孔,并在侧面安装了风扇,以在各种各样的气候条件下对仪器进行保护,因而特别适于维修现场环境使用。嵌入橡胶的前、后机架能承受运输过程中的剧烈振动。 使用方便 机内帮助按钮可以提供若干关键功能命令和远地编程命令,从而无需携带用户手册。此外,测试由于采用内置极限线和合格/不合格信息而得到进一步简化。内置磁盘驱动器可以对测量结果进行贮存,并能迅速方便地传送到您的PC机上。 成本低 以适中的价格提供所有的上述特点,全球3年的标准保修期。 用于HP ESA-L系列的PC软件 新型HP BenchLink频谱分析仪PC软件在PC与HP ESA-L系列频谱分析仪之间提供便于使用的通信联系。充分利用Windows界面,就很容易将屏面图象或示迹数据经GPIB或RS-232接口传送,进而非常便于在PC机中对测量结果进行获取、分析和记录。 频率技术指标 频率范围 E4411B:50Ω9 kHz~1.5 GHz E4411B:75Ω(选件1DP):1 MHz~1.5 GHz

几款网络分析仪的介绍

ENA射频网络分析仪 Agilent E5071C 9 KHz至8.5 GHz 详细说明: Agilent E5071C ENA系列网络分析仪 频率范围: 频率范围端口选件 E5071C 9KHz-4.5GHz 2/4 240/440 9KHz-8.5GHz 2/4 280/480 100KHz-4.5GHz 2/4 245/445 100KHz-8.5GHz 2/4 285/485 系统动态范围: 频率IF 带宽技术指标 SPD

主要特性: ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 选件: E5071C—008 频率偏置模式 E5071C—010 时域分析能力 E5071C—790 测量向导助手软件 E5071C—1E5 高稳定度时基 E5071C—240 双端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—245 双端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—440 4端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—445 4端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—280 双端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—285 双端口测试仪100KHz-8.5GHz 带偏置T型接头 E5071C—480 4端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—485 4端口测试仪100KHz-8.5GHz 带偏置T型接头 附件: 校准件 HP85033D/E (3.5mm) 校准件HP85032B (N型) ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 ?提供频率选件:从9 kHz/100 kHz(带有偏置T型接头)到4.5 GHz/8.5 GHz E5071C网络分析仪具有广泛的频率范围和众多功能,在同类产品中具有最高的射频性能和最快的测试速度。它是制造工程师和研发工程师测量9 kHz至8.5 GHz射频元器件和电路的最佳工具。

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

BT测试方案_Agilent经典射频测试方案

BT测试方案_Agilent经典射频测试方案 1.1. 蓝牙的无线单元 蓝牙被定义为一种用于无线连接的全球性规范。由于它要取代电缆,所以成本要低、操作要直观而且要稳定可靠。对蓝牙的这些需求带来了许多挑战。蓝牙技术通过多种方式满足这些挑战性的需求。首先,蓝牙选择无需执照的ISM频段;其次,蓝牙的设计强调低功率和极低成本。为了在干扰非常强的ISM频段正常工作,蓝牙采用跳频技术。 蓝牙设备采用的框图有很多种。对于发射而言,在末级射频结构中采用的技术包括直接VCO 调制和IQ混合技术。在接收机中,主要采用了传统的鉴频器或与模数转换结合的IQ下变频器。有许多设计可以满足蓝牙无线规范,但如果不小心行事,每种设计都会有所差异。蓝牙系统由无线单元、基带链路控制单元和链路管理软件组成。另外,还包括高层应用软件。 图1是蓝牙系统的框图,图中显示了基带、射频发射机、射频接收机等不同部分。 图1. 1.2. 蓝牙链路控制单元和链路管理 蓝牙链路控制单元,或称链路控制器,决定蓝牙设备的状态。它不仅负责功率的有效管理、

数据纠错和加密,还负责建立网络连接。 链路管理软件和链路控制器一起工作。蓝牙设备之间通过链路管理器进行通信。蓝牙设备可以工作成主设备(Master Unit)或者从设备(Slave Unit)。从设备间建立连接,同时决定从设备的省电模式。主设备可以主动与最多7个从设备同时进行通信;同时,另外200多个从设备可以登记成非通信、省电的模式。这样的一个控制区域定义成一个匹克网(piconet)。同样,不同匹克网的主设备可以同时控制一个从设备。这时,匹克网组成的网络称为散射网(scatternet)。图2描述了由两个匹克网组成的一个散射网。不属于任何一个匹克网的设备处于待机模式Standby Mode) 链路管理器在主蓝牙无线技术是一种针对无线个人区域网(PAN)的公开规范。它为信息设备之间的声音和数据传送提供有限范围内的无线连接。蓝牙无线技术使得设备之间无需电缆便可实现相互连接。与大多数无线通信系统所不同的是,蓝牙设备之间可以实现即时组网,而不需要网络设施如基站或接入点(AP)的支持。 本测试建议书描述了用来验证蓝牙射频设计的收发信机测试方法。测试过程既有手动控制和软件自动控制,又有方便的单键测试。安捷伦科技关于蓝牙测试的解决方案清单请见附录D。本建议书适用于对射频测试有基本了解的读者。若想更多了解射频测试的基础知识,请参阅附录C推荐的阅读清单。

矢量网络分析

矢量网络分析 CKBOOD was revised in the early morning of December 17, 2020.

矢量网络分析(Vector Network Analyzer ,VNA)是通过测量元件对频率扫描和功率扫描测试信号的幅度和相位的影响来精确表征元件特征的一种方法。网络分析是指对较复杂系统中所用元件和电路的电器性能进行测量的过程。这些系统传送具有信息内容的信号时,我们最关心的是如何以最高效率和最小失真使信号从一处传到另一处。矢量网络分析仪是微波毫米波测试仪器领域中最为重要、应用最为广泛的一种高精度智能化测试仪器,在业界享有“微波/毫米波测试仪器之王”的美誉,主要用于被测网络散射参量双向S参数的幅频、相频及群时延等特性信息的测量,广泛应用于以相控阵雷达为代表的新一代军用电子装备研制、生产、维修和计量等领域,还可以应用于精确制导、隐身及反隐身、航空航天、卫星通信、雷达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领域。国内生产矢量网络分析仪的厂家主要有:中国电子科技集团41所、天津德力、成都天大仪器等单位。国产矢量网络分析仪中,仅41所有与国外同类先进产品相对应的频率上限覆盖至170GHz的系列化产品。在世界范围内矢量网络分析仪生产厂商主要有美国安捷伦、日本安立和德国罗德施瓦茨等,其中以美国安捷伦代表着最高水平,其推出产品最高频率上限已达500GHz。 矢量网络分析仪可测量的器件: 无源器件(滤波器) 有源器件(放大器) 单端口器件(天线)

双端口器件(衰减器) 多端口器件(混频器,耦合器,功分器) 平衡器件(平衡滤波器等) 网络分析仪有标量网络分析仪和矢量网络分析仪之分。 标量网络分析仪:只测量幅度信息,不支持相位的测量。接收机采用二极管检波,没有选频特性,动态范围小。 矢量网络分析仪:可同时测量被测网络的幅度信息和相位信息。接收机采用调谐接收,具有选频特性,能够有效抑制干扰和杂散,动态范围大。通过测量被测网络(被测件)对频率扫描和功率扫描测试信号的幅度与相位的影响,来表征被测网络的特性。 网络分析的基本原理 网络有很多种定义,就网络分析而言,网络指一组内部相互关联的电子元器件。网络分析仪的功能之一就是量化两个射频元件间的阻抗不匹配,最大限度地提高功率效率和信号的完整性。每当射频信号由一个元件进入另一个时,总会有一部分信号被反射,而另一部分被传输,这就好比光源发出的光射向某种光学器件,例如透

安捷伦网络分析仪使用手册

网络分析仪使用手册 目录 ACTIVE CH/TRACE Block: Channel Prev:选择上一个通道 Channel Next:选择下一个通道 Trace Prev:选择上一个轨迹 Trace Next:选择下一个轨迹RESPONSE Block: Channel Max: 通道最大化 Trace Max: 轨迹最大化 Meas: 设置S参数 Format: 设置格式 Scale: 设置比例尺 Display: 设置显示参数 Avg: 波形平整 Cal: 校准 STIMULUS Block: Start: 设置频段起始位置 Stop: 设置频段截止位置 Center: 设置频段中心位置 Span: 设置频段范围 Sweep Setup: 扫描设置 Trigger: 触发 NAVIGATION Block: Enter: 确定 ENTRY Block: Entry off: 取消当前窗口 Back space: 退格键 Focus: 窗口切换键 +/-: 正负切换键 G/n, M/,k/m: 单位输入 INSTR STATE Block: Macro Setup: Macro Run: Macro Break: Save/Recall: 程序载入载出键 System: 系统功能键 Preset: 预设置键 MKR/ANALYSIS Block: Marker: 标记键 Marker Search: 标记设置键 Marker Fctn: 标记功能 Analysis: 分析 部分按键详细功能: ------------------------------------------------------------ System: (系统功能设定) Print: 将显示屏画面打印出来 Abort printing: 终止打印 Printer setup: 配置打印机 Invert image: 颠倒图象颜色 Dump screen image: 将显示屏画面保存到硬盘中 E5091A setup: 略 Misc setup: 混杂功能 Beeper: 发声控制 Beeper complete: 开/关提示音 Test beeper complete: 测试开/关提示音 Beep warning: 开/关警告音 Test beep warning: 测试开/关警告音 Return: 返回 GPIB setup: 略 Network setup: 略 Clock setup: 时钟设定 Set date and time: 设置日期和时间 Show clock: 开/关时间显示 Return: 返回 Key lock: 锁定功能 Front panel & keyboard lock: 锁定前端面板和键盘 Touch screen & mouse lock: 锁定触摸屏和鼠标

安捷伦 E4402B频谱分析仪使用操作说明书

频谱分析仪使用方法简介 1简介 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、频谱度、频谱稳定度和交调失真等信号参数的测量,可用于测量放大器和滤波器等电路系统的某些参数,分析信号频率分量(频率和功率),是一种多用途的电子测量仪器。频谱分析仪是对无线电信号测量的必备手段,是从事电子产品研发、生产、检验的常用工具。因此被称为工程师的射频万用表 2.面板

2.1 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y刻度)三个键,可以激活主要的调节功能(频率、X轴、Y 轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有 File菜单键所访问对话框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC(卡口配合性连接器)电缆, 探头上必须串联一隔直电容(30PF左右,陶瓷封装)。 18.Next Window键,可用来选择在支持分屏显示方式功能中(如区域标记)的 有效窗口,在这样的方式下,按下Zoom键将允许在有效窗口的分屏显示与全屏显示间进行转换。 19.Help键,按下后屏幕会提示按面板或菜单上的键,按后会显示相应说明。 20.射频输出(50Ω),是内部跟踪发生器的源输出,只适用与选件1DN或1DQ。 如果跟踪发生器的输出功率过大,则有可能损坏被测器件,不要超过被测器件所能容许的最高功率。 21.I(电源开)键,接通分析仪电源。O(备用)键,断开分析仪多数电路的电 源。实际适用中,用I键开机,O键关机,拔掉电源线才能完全断电。开机后需5分钟时间预热,以保证分析仪满足器全部技术指标。 22.数字键盘区。

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

相关文档
相关文档 最新文档