文档库 最新最全的文档下载
当前位置:文档库 › 4大技术如何影响着未来自动驾驶技术的发展

4大技术如何影响着未来自动驾驶技术的发展

4大技术如何影响着未来自动驾驶技术的发展

4大技术如何影响着未来自动驾驶技术的发展

摄像头、雷达、高分辨率3D 瞬动激光雷达(Flash Lidar)等各类传感设备的组合,将成为传感器套件中的关键部分,可为用户提供车辆四周的360°环视视野。

为了模仿人类驾驶员在驾驶过程中的众多行为,自动驾驶系统需要集成大量非常复杂的技术。如今,为了能够360 度观测车辆四周的情况,每辆车都需要安装一组由多个传感器组成的传感器阵列。快速网络可以将必要数据发送至电子控制单元,协助车辆在转向、制动、加速和减速方面进行决策。

为了在未来的移动出行解决方案市场占得先机,汽车厂商、一级供应商和其他供应商正在与孜孜不倦的创业公司和“行业搅局者“展开激烈竞争,其中也包括苹果(Apple) 和谷歌(Google) 等科技巨头,但有时也会选择与这些公司合作。

他们获胜的关键在于以下技术领域:

业界正朝着模块化和可扩展的多域控制器稳步前进,以便管理日益复杂的传感器数据输入和处理。

处理能力

处理器可分析传感器的数据输入,进而做出转向、制动、加速、减速等决定,未来必将取得重大进展。现阶段的安全系统主要会大量采用传统的多核处理器,具体参与的厂商包括恩智浦(NXP)、英飞凌(Infineon)、瑞萨(Renesas)、意法半导体(ST Microelectronics) 和英特尔(Intel) 等。然而,未来自动化系统带来的极端挑战,将对现有的处理技术提出更高要求。

英伟达(Nvidia) 的每个高度并行图形处理单元(GPU) 都拥有数千个小型处理内核,近些年来开始在汽车行业崭露头角。这种GPU 单元非常适合同时完成多项任务,例如同步分析来自多个传感器的像素输入。最近,英伟达推出专门针对SAE 3 级到5 级自动驾驶系统的Pegasus 多芯片平台。Pegasus 模块的尺寸与车辆牌照相仿,但却可以实现每秒320 万亿次的数据中心级处理能力。

目前已被英特尔收购的Mobileye 也开发了一款专门的图像处理器。现场可编程门阵列

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手 段。纳米技术以物理、化学的微观研究理论为 基础,以当代精密仪器和先进的分析技术为手 段,是现代科学(混沌物理、量子力学、介观物 理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于 自然界,只是以前没有认识到这个尺度 范围的性能。第一个真正认识到它的性 能并引用纳米概念的是日本科学家,他 们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。2、纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。3、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,

新型显示技术发展研究_孔彬

52?2013年7/8月号 总第102/103期? 显示技术是人机联系和信息展示的窗口,广泛应用于工业、娱乐、通讯、教育、交通、医疗、军事等社会生产,生活的各个方面。 显示产业也是年产值超过千亿美元的战略性新兴产业,是信息时代的先导性支 柱产业,产业带动力和辐射力强。为实现新型显示产业的加速创新发展,2012年8月21日,科技部组织编制了《新型显示科技发展“十二五”专项规划》(下简称“规划”),倡导新型显示技术的发展潮流。 1.概况 100余年来,世界显示技术日益呈现出技术融合化、种类多元化、应用综合化的发展态势,其发展大致经历了4个主要阶段(图1): 一是传统的显示技术阶段,主要以物理光学显示为主,包括镜片投影显示。二是现代显像管显示技术阶段,以1897年发明CRT 技术为标志。三是现代平板显示技术阶段,开始出现在20世纪60年代,现已形成了全球迅猛发展的趋势和格局。四是当代新型显示技术阶段,20世纪90年代以来,网络、数字化、多媒体技术和高清晰度电视的发展,引发了全球显示产业的一场变革。随着信息技术、新材料技术和先进制造技术的迅猛发展,新型显示技术迅速取代CRT 等传统显示技术,出现了液晶显示、等离子显示、有机发光显示等新型平板显示技术和产品互相补充、互相竞争、共同发展的局面,如图1所示。 目前,显示技术处于多种技术路线并存、产业发展迅速的黄 金阶段。其中,阴极射线管显示已基本退出显示技术历史舞台,液晶显示技术和等离子体显示已经成为显示主流技术,激光显示、3D 显示、有机发光显示、电子纸显示、场发射显示将是未来主流 新型显示技术发展研究 孔彬 显示技术。我国激光显示是最有可能领先国际水平的显示技术,3D 显示是最有生命力且终将成为显示技术共性平台的下一代显示技术,有机发光显示是最具发展潜力的新型显示技术,电子纸显示和场发射显示是值得关注的下一代显示技术。 近年来,在市场需求和技术创新推动下,我国新型显示技术得到了迅速发展,产业链中上游技术创新与国际水平差距逐步缩小,下游整机应用系统集成技术得到跨越式发展。其中,我国激光显示技术保持与国际同步,3D 显示技术与国际同行差距较小,有机发光显示、电子纸显示产业发展迅速。液晶显示和等离子体显示等主流显示技术自主产业创新步伐明显加快。目前,我国具有相对优势的激光显示技术和产业均处于蓄势待发阶段,未来显 示储备技术场发射显示的发展势头也较明显, 多种显示技术在移动互联网终端显示的集成应用得到快速发展。我国新型显示技术创新和产业发展迎来了十分难得的机遇期。 激光显示和3D 显示技术已经被人们熟知并处于大规模应用阶段,下文将重点介绍有机发光显示、电子纸显示和场发射显示等三种新型显示技术。 2.有机发光显示 有机发光显示,又称OLED(Organic Electroluminescence Display)。有机发光显示的发光原理和无机发光显示相似。当元件受到直流电(Direct Current ;DC)所衍生的顺向偏压时,外加之电压能量将驱动电子(Electron)与空穴(Hole)分别由阴极与阳极 注入元件,当两者在传导中相遇、结合,即形成所谓的电子-空穴复合(Electron-Hole Capture)。而当化学分子受到外来能量激发后,若电子自旋(Electron Spin)和基态电子成对,则为单 重态(Singlet),其所释放的光为所谓的荧光(Fluorescence);反之,若激发态电子和基态电子自旋不成对且平行,则称为三重态 (Triplet),其所释放的光为所谓的磷光(Phosphorescence)。OLED 的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如 近年来,在市场需求 和技术创新推动下,我国新型显示技术得到了迅速发展,产业链中上游技术创新与国际水平差距逐步缩小,下游整机应用系统集成技术得到跨越式发展 图1 显示技术发展总体历程

语音识别发展现状与展望

中国中文信息学会第七次全国会员代表大会 暨学会成立30周年学术会议 语音识别发展现状与展望中科院自动化研究所徐波 2011年12月4日

报告提纲 ?语音识别技术现状及态势?语音识别技术的行业应用?语音识别技术研究方向?结论与展望

2010年始语音识别重新成为产业热点?移动互联网的兴起成为ASR最重要的应用环境。在Google引领下,互联网、通信公司纷纷把语音识别作为重要研究方向 –Android系统内嵌语音识别技术,Google语音 翻译等; –iPhone4S 上的Siri软件; –百度、腾讯、盛大、华为等都进军语音识别领 域; –我国语音技术领军企业讯飞2010年推出语音云识别、讯飞口讯 –已有的QQ2011版语音输入等等

成熟度分析-技术成熟度曲线 ?美国市场调查咨询公司Gartner于2011年7月发布《2011新兴技术成熟度曲线》报告:

成熟度分析-新兴技术优先矩阵?Gartner评出了2011年具有变革作用的技术,包括语音识别、语音翻译、自然语言问答等。其中语音翻译和自然语言问答有望在5-10年内获得大幅利用,而语音识别有望在2-5年内获得大幅利用;

三十年语音识别技术发展 ---特征提取与知识方面?MFCC,PLP,CMS,RASTA,VTLN;?HLDA, fMPE,neural net-based features ?前端优化 –融入更多特征信息(MLP、TrapNN、Bottle Neck Features等) ?特征很大特点有些是跟模型的训练算法相匹配?大规模FSN图表示,把各种知识源集中在一起–bigram vs. 4-gram, within word dependencies vs. cross-word

射频识别技术在中国的发展

射频识别技术在中国的发展 2005-9-4 单片机及嵌入式系统应用射频识别作为一种新兴的自动识别技术,在中国拥有巨大的发展潜力。本文简单介绍射频识别技术及其分类,以及目前射频识别技术在我国几个代表性领域的发展情况。 射频识别技术(RFID,Radio Frequency Identification)实际上是自动识别技术(AEI,Automatic Equipment Identification)在无线电技术方面的具体应用与发展。该项技术的基本思想是,通过采用一些先进的技术手段,实现人们对各类物体或设备 (人员、物品) 在不同状态(移动、静止或恶劣环境)下的自动识别和管理。 目前,应用最广泛的自动识别技术大致可以分为光学技术和无线电技术两个方面。本文主要介绍自动识别技术在无线电技术方面的应用。 1 射频识别技术简介 20世纪80年代,由于大规模集成电路技术的成熟,射频识别系统的体积大大缩小,使得射频识别技术进入实用化的阶段,成为一种成熟的自动识别技术。 射频识别技术是利用射频方式进行非接触双向通信,以达到识别目的并交换数据。它与同期或早期的接触式识别技术不同。RFID系统的射频卡和读写器之间不用接触就可完成识别,因此它可在更广泛的场合中应用。 典型的射频识别系统包括射频卡和读写器两部分。 射频卡是将几个主要模块集成到一块芯片中,完成与读写器的通信。芯片上有EEPROM 用来储存识别码或其它数据。EEPROM容量从几比特到几万比特。芯片外围仅需连接天线

(和电池),可以作为人员的身份识别卡或货物的标识卡。卡封装可以有不同形式,比如常见的信用卡及小圆片的形式等。与条码、磁卡、IC卡等同期或早期的识别技术相比,射频卡具有非接触、工作距离长、适于恶劣环境、可识别运动目标等优点。 在多数RFID系统中,读写器在一个区域内发射电磁波(区域大小取决于工作频率和天线尺寸)。卡片内有一个LC串联谐振电路,其频率与读写器发射的频率相同。当射频卡经过这个区域时,在电磁波的激励下,LC谐振电路产生共振,从而使电容内有了电荷。在这个电容的另一端,接有一个单向导通的电子泵,将电容内的电荷送到另一个电容内储存。当所积累的电荷达到2V时,此电容可作为电源为其它电路提供工作电压,将卡内数据发射出去或接取读写器的数据。读写器接收到卡的数据后,解码并进行错误校验来决定数据的有效性,然后,通过RS232、RS422、RS485或无线方式将数据传送到计算机网络。简单的RFID产品就是一种非接触的IC卡,而复杂的RFID产品能和外部传感器接口连接来测量、记录不同的参数,甚至可与GPS系统连接来跟踪物体。工作原理如图1所示。 图1 RFID工作原理图 2 射频识别技术的分类 射频识别技术主要按以下四种方式分类。

自动化领域的最新发展趋势

自动化领域的最新发展趋势 我国工业企业,未来的十年将面临着市场和能源;清洁生产和环境保护;高效和规范;负责和协调的挑战。节能、环保、安全、高效是每一个企业必须要面对的课题,而自动化技术和这四大目标又是紧密相连,本文将就当今自动化领域内的最新发展趋势做一简述,以便为我国工业发展,搭建更为广阔的交流和沟通的平台。 一、信息技术推动自动化 以信息技术改造冶金行业,以信息化推进自动化,自动化再促使节能、环保、安全、高效四大目标的实现,已成为业界的共识。在当今自动化领域内,从工艺现场层到工厂(集团)管理层可经由以太网,基本实现信息的畅通无缝流通,所谓的“现代集成生产工艺”是将信息技术、网络技术和现代新工艺相结合,并应用于企业产品生命周期的各个阶段,通过信息的无缝集成、过程优化和资源优化,实现物流、信息流、价值流的集成,以缩短企业新产品的开发周期(T)、提高质量(Q)、降低成本(C)、改进服务(S)和改善环境(E),从而提升企业的市场的应变能力和竞争能力,与此想适应开发出一系列管理层软件,如ERP、MRP、MIS、PES等,并越来越显示其巨大的经济效益。

国内一些大冶金集团在当前竞争不断加剧的压力下,也紧跟这股信息化的潮流,推进自动化的发展,如国内某冶金集团近几年来,在新建的冶金生产线做自动化控制系统配置时,在现场级和过程控制级(PCS)的上端,还增加了制造执行系统(MES )层,并正在策划和运作ERP,即企业资源规划和管理层,它包括有生产管理系统、质量控制系统、采购管理系统、仓库管理系统、销售子系统、设备管理系统、财务管理系统、办公自动化管理系统和综合管理子系统等。 现今计算机技术、网络技术和先进的控制技术相结合,已不再停留在理论和实验阶段。如模型预测、神经元和神经网络、模糊控制、多变量控制、自适应和自寻优等先进控制算法已进入实践并用于DCS、PLC等控制器中,而且这种趋势在加快。 IT技术与自动化结合另一热点是公共数据库、局域网、互联网、无线技术等渗透控制系统使控制系统扁平化,实现了跨平台,跨地区的控制。西门子公司全集成自动化TIA的自动化新理念,Schneider公司推出的“协同自动化Collaborate Automation”,“透明就绪Transparent Ready”,“Unity 自动化平台”新概念;以及Rockwell提出的全集成的EtherNet/IP等,这些自动化新理念使得自动化控制系统更完整,也更完美。

凝固技术的发展与未来

凝固技术的发展与未来 料105 周俊峰109024404 摘要:凝固是一种极为普遍的物理现象。物质凡由液态到固态的转变一般都经历凝固过程,它广泛存在于自然界和工程技术领域。介绍几种新型的凝固技术,展望新型凝固技术的未来发展趋势。 关键词:凝固、定向凝固、快速凝固、半固态凝固 凝固是一种极为普遍的物理现象。物质凡由液态到固态的转变一般都经历凝固过程,它广泛存在于自然界和工程技术领域。从雪花凝结到火山熔岩固化,从铸锭的制造到工农业用铸件及历史文物中各类艺术铸品的生产,以及超细晶、非晶、微晶材料的快速凝固,半导体及各种功能晶体从液相的生长,均属凝固过程。可以说几乎一切金属制品在其生产流程中都要经历一次或多次的凝固过程。 快速凝固 快速凝固技术的原理:快速凝固指的是在比常规工艺过程中快得多的冷却速度下,金属或合金以极快的速度从液态转变为固态的过程。要求金属与合金凝固时具有极大的过冷度。 快速凝固的特点:1、凝固速度快,从而可以使金属在液态中的溶解度得到扩大,这样是其材料的密度有所改变,材料各部位的组织更加的紧密,改变金属中各元素的所含比例,从而可以改变该材料的性质,使其达到某种用途的需求。2、由于凝固的速度比一般铸造的快,这样得到的凝固结晶会更加的细小,晶粒的分布更加的均匀,一定程度减少了杂质的混入,提高材料的质量,由于晶粒组织的优化,该材料的力学,化学性质会得到提高,从而使其得到更广的运用。3、由于快速凝固给材料带来的溶解度的扩大,更加精细的晶粒的析出,从而赋予了材料的高强度,高韧度,以及高耐腐蚀性。这是快速凝固技术能在工业领域得到广泛运用的硬道理。4、除了金属的快速凝固,还有一种快速凝固非晶态合金。其特点和上类似,可以使材料具有极高的强度,硬度。又因为其实处于非晶态,它在具有高强度的同时也具有较好的韧性。同时,因为非晶态这种特殊形态,可以使材料具有良好的半导体性能,这是传统铸造方法所不能达到的。 快速凝固的方法及利用: 急冷凝固技术

液晶显示器及其军事应用现状与发展趋势

一、概述 作为人机交互过程中最终获取信息的主要途径之一,显示器是信息装备的重要器件。在战场、海陆空三军的作战指挥、武器控制及信息处理系统中,无论是大型固定设施、运动机械还是便携式仪器,都必须配置显示器以便为使用者提供各种信息。例如,在飞行器座舱中,飞行员通过显示器获得关于超视距战术势态、本机状况、火控状态、导航等诸多信息。因此,显示器是现代战争中不可缺少的重要技术手段。 液晶显示器(Liquid Crystal Display,LCD)通过改变电场中液晶分子的排列来调制来自背光灯的光强,从而达到显示信息的目的,通过在像素上加滤色片即可实现彩色显示。它具有以下突出的优点: (1)低电压 (3~5V)、微功耗(工作电流仅为μA/cm2量级); (2)易于彩色化,在色谱上可准确复现,彩色失真极小; (3)工作时电磁辐射极微弱; (4)体积小、厚度薄,显示画面为纯粹的平面; (5)重量轻,相对于阴极射线管(CRT)而言具有突出的优势。 当然,液晶显示器也存在一定的不足,具体包括: (1)被动型显示,本身不发光,在黑暗环境下必须配外光源或背景光源;(2)视角较小; (3)亮度、响应速度、对比度较差; (4)多数产品工作温度范围不够宽(-30℃~+85℃)。 正因为液晶显示器独特的优点,从其问世之时起就引起了军方的关注,最早使用液晶显示器的是美国的海军航空飞行器。美国1983年就投资研制用于美国海军的轻型模块显示系统,并装备于F/A-18、F-14D战机,开创了有源矩阵液晶显示器(AMLCD)进入军用显示器件行列的先河。 不过,尽管AMLCD在平面度、重量、体积、构型等方面较之CRT具有优良的性能,但AMLCD尚不能广泛地应用,单从技术的角度看,还是因为AMLCD存在一定的不足并且尚未克服。为了使普通工业级甚至商用级的液晶显示器能够达到军用级要求。包括美国在内的世界各国军方,目前多采取对普通的十分成熟的商用AMLCD (多为薄膜晶体管液晶显示器—TFT-LCD)进行加固,有针对性地对其性能加以改善,使其满足军方对显示器的性能提出的具体要求。 不同的军种以及不同的应用场合对液晶显示器的要求各不相同,对于具体的应用场合,在满足性能要求的前提下,用户可以根据实际情况,适当考虑包括成本等在内的非技术因素,制定适宜的技术指标。 二、军事液晶显示器应用现状 按照有效显示尺寸划分,液晶显示器可分为微型液晶显示器(Micro LCD)和平板液晶显示器(Panel LCD),本文关注的是平板液晶显示器。 平板液晶显示器有效显示画面尺寸一般为5.2~19.6英寸,目前的军事显示器主

电力系统自动化未来发展方向

一、电力系统自动化技术 1.电网调度自动化。电网调度自动化主要组成部分由电网调度控制中心的汁算机网络系统、工作站、服务器、大屏蔽显示器、打印设备、通过电力系统专用广域网连结的下级电网调度控制中心、调度范围内的发电厂、变电站终端设备等构成。电网调度自动化的主要功能是电力生产过程实时数据采集与监控电网运行安全分析、电力系统状态估计、电力负荷予测、自动发电控制、自动经济调度并适应电力市场运营的需求等。 2.变电站自动化。电力系统中变电站与输配电线路是联系发电厂与电力用户的主要环节。变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备;二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。 3.发电厂分散测控系统(DCS)。 过程控制单元(PCU)由可冗余配置的主控模件(MCU)和智能l/O模件组成。MCU模件通过冗余的l/O总线与智能l/O模件通讯。PCU直接面向生产过程,接受现场变送器、热电偶、热电阻、电气量、开关量、脉冲量等信号,经运算处理后进行运行参数、设备状态的实时显示和打印以及输出信号直接驱动执行机构,完成生产过程的监测、控制和联锁保护等功能。 运行员工作站(OS)和工程师工作站(ES)提供了人机接口。运行员工作站接收PCU发来的信息和向PCU发出指令,为运行操作人员提供监视和控制机组运行的手段。工程师工作站为维护工程师提供系统组态设置和修改、系统诊断和维护等手段。 二、电力系统自动化总的发展趋势 (一)当今电力系统的自动控制技术正趋向于 1、在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 2、在设计分析上日益要求面对多机系统模型来处理问题。 3、在理论工具上越来越多地借助于现代控制理论。 4、在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (二)整个电力系统自动化的发展则趋向于 1、由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 2、由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 3、由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 4、装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 5、追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 2由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制);由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统);由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展;由单一功能向多功能、一体化发展,例如变电站综合自动化的发展;装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变;追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制;由以提高运行的安全、经济、效率为目标向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 三、具有变革性重要影响的三项新技术 (一)电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:1、电力系统是一个具有强非线性的、变参

RFID的应用现状及未来发展趋势

RFID的应用现状及未来发展趋势 RFID是英文Radio Frequency Identification的缩写,即无线射频识别技术。它是一种非接触式自动识别技术。RFID系统一般由电子标签、阅读器和信息处理软件系统三部分组成。电子标签中储存有商品的基本信息,当标签进入阅读器射频磁场中时,标签被激发产生感应电流,将标签中储存的信息发射到阅读器中,阅读器通过解码系统识别标签,并可将识别信息进一步传递到信息处理系统进行分析处理。按照RFID标签的能量供给方式,RFID标签可分为有源标签和无源标签;按照RFID工作时使用的无线电频率,RFID系统可分为低频、高频、超高频和微波系统。 与我们目前最常见的条形码相比,RFID具有很多优势。如信息存储量大,非接触识别、识别距离长、快速方便,信息可更新,标签可重复使用,标签能适应不同工作环境等。 RFID的基本技术原理起源于二战时期,最初盟军利用无线电数据技术来识别敌我双方的飞机和军舰。战后,由于较高的成本,该技术一直主要应用于军事领域,并未很快在民用领域得到推广应用。直到上世纪八九十年代,随着芯片和电子技术的提高和普及,欧洲开始率先将RFID技术应用到公路收费等民用领域。到二十一世纪初,RFID迎来了一个崭新的发展时期,其在民用领域的价值开始得到世界各国的广泛关注,特别是在西方发达国家,RFID技术大量应用于生产自动化、门禁、公路收费、停车场管理、身份识别、货物跟踪等民用领域中,其新的应用范围还在不断扩展,层出不穷。 本世纪初,RFID已经开始在中国进行试探性的应用,并很快得到政府的大力支持, 2006年6月,中国发布了《中国RFID技术政策白皮书》,标志着RFID的发展已经提高到国家产业发展战略层面。到2008年底,中国参与RFID的相关企业达数百家,已经初步形成了从标签及设备制造到软件开发集成等一个较为完整的RFID产业链,据专家估计,2008年中国RFID相关产值达到80亿元左右,并将在未来5-10年保持快速发展。

自动化专业发展趋势

1.自动化专业简介 自动化是指装置在无人干预的情况下按规定的程序或指令自动地进行操作或运行。广义地讲,自动化还包括模拟或在现人的智能活动。自动化技术广泛应用于工业、农业、国防、科学研究、交通运输、商业、医疗、服务以及家庭等各方面。采用自动化技术不仅可以把人从繁重的体力、部分脑力劳动以及恶劣、危险的工作环境中解放出来,而且能扩展、放大人的功能和创造新功能,极大地提高了劳动生产率,增强人类认识世界和改造世界的能力。因此自动化是一个国家或社会现代化水平的重要标志。 总的来说,自动化专业是一个口径宽,适应面广的专业,具有明显的跨学科的特点,对实现我国工业、农业、国防和科学技术现代化,对迅速提升我国综合国力具有重要和积极的作用。 2.自动化发展历史 1946年,美国福特公司的机械工程师D.S.哈德最先提出“自动化”一词,并用来描述发动机汽缸的自动传送和加工的过程。 50年代,自动调节器和经典控制理论的发展,使自动化进入到以单变量自动调节系统为主的局部自动化阶段。 60年代,随着现代控制理论的出现和电子计算机的推广应用,自动控制与信息处理结合起来,使自动化进入到生产过程的最优控制与管理的综合自动化阶段。 70年代,自动化的对象变为大规模、复杂的工程和非工程系统,涉及许多用现代控制理论难以解决的问题。这些问题的研究,促进自动化的理论、方法和手段的革新,于是出现了大系统的系统控制和复杂系统的智能控制。 3.自动化技术展望 自动化技术发展至今应经达到了一个相当高的水平,然而它从未停下发展的脚步它的未来仍然在不断地开拓者。展望自动化的未来,虽然不能完全预测出以后的自动化技术将会发展成什么样,但是它的一些发展方向还是比较明确的。首先,机器人技术将会是自动化技术发展的前沿,从上个世纪机器人的产生,到如今,机器人的发展可谓日新月异,它已经成为先进制造业不可缺少的自动化装备,

纳米科技的发展及未来的发展方向

纳米科技的发展及未来的发展方向 论文 理学院 08光信息科学与技术 张箐 0836017

纳米科技的发展及未来的发展方向 一:纳米科技的起源: 纳米是长度度量单位,一纳米为十亿分之一米。纳米科技这一初始概念是已故美国著名物理学家、诺贝尔物理学奖得主费恩曼(R.Feynman)于1959年在美国加州理工学院作题为“在低部还有很大空间”的讲演中提出的。费恩曼指出:如果人类能够在原子或分子尺度上来加工材料、制备装置,则将会有许多激动人心的新发现。他还强调:人们需要新型的微型化仪器来操纵纳米结构并测定其性质。费恩曼憧憬说:试想,如果有一天,人们可以按自己的意志来安排一个个原子,将会产生怎样的奇怪现象。 与所有的天才假想一样,费恩曼的科学思想起初并未被接受。然而科技的迅猛发展很快证明了费恩曼是正确的。继费恩曼之后,许多科学家又尽情发挥想像力,从不同角度继续编织纳米技术的神奇梦想。 纳米科技的迅速发展是在1980年代末1990年代初。1980年代初,宾尼希(C.Binnig)和罗雷尔(H.Rohrer)等人发明了费恩曼所期望的纳米科技研究的重要仪器--扫描隧穿显微镜(scanning tunneling microscopy,STM)。STM 不仅以极高的分辨率揭示出了“可见”的原子、分子微观世界,同时也为操纵原子、分子提供了有力工具,从而为人类进入纳米世界打开了一扇更加宽广的大门。 与此同时,纳米尺度上的多学科交叉迅速形成了一个有广泛学科内容和潜在应用前景的研究领域。1990年,纳米技术获得了重大突破。美国IBM公司阿尔马登研究中心(Almaden Research Center)的科学家使用STM把35个氙原子移动到各自的位置,组成了“IBM”三个字母,这三个字母加起来不到3纳米长。 1990年7月,第一届国际纳米科学技术大会和第五届国际扫描隧穿显微

自动识别技术发展现状

自动识别技术发展现状 班级:物流 学号: 姓名: 指导老师: 2015年10月20日

目录 1、自动识别概念 (3) 2、自动识别技术简介 (3) 3、自动识别技术分类 (3) 4、自动识别技术特点 (4) 5、常见的自动识别技术 (4) 5.1、条码技术 (4) 5.2、磁条(卡)技术 (4) 5.3、IC卡技术 (5) 5.4、生物识别技术 (5) 5.4.1语音识别技术 (6) 5.4.2视觉识别技术 (6) 5.4.3人脸识别技术 (6) 5.4.4指纹识别技术 (7) 5.5图像识别技术 (7) 5.6.光学字符识别技术(OCR) (7) 5.7.射频识别技术(RFID) (8) 6、自动识别技术在经济发展中的作用 (8) 6.1、自动识别技术是国民经济信息化的重要基础和技术支撑 (8) 6.2、自动识别技术已成为我国信息产业的有机组成部分 (10) 6.3、自动识别技术可提升企业供应链的整体效率 (10) 7、自动识别技术的应用 (11) 8、自动识别技术的发展趋势 (11) 8.1、多种识别技术的集成化应用 (12) 8.2、无线通讯相结合是未来自动识别产业发展的重要趋势 (13) 8.3、自动识别技术将越来越多地应用于控制,智能化水平在不断提高 (14) 8.4、自动识别技术的应用领域将继续拓宽,并向纵深发展 (15) 8.5、新的自动识别技术标准不断涌现,标准体系日趋完善 (16)

1、自动识别概念 自动识别系统是现代工业和商业及物流领域中,生产自动化、销售自动化、流通自动化过程中所必备的自动识别设备以及配套的自动识别软件所构成的体系。 自动识别包括:条码识读、射频识别、生物识别(人脸、语音、指纹、静脉)、图像识别、OCR光学字符识别 自动识别系统几乎覆盖了现代生活领域中的各个环节,并具有及大的发展空间。其中比较常见应用有:条形码打印设备和扫描设备,手机二维码的应用,指纹防盗锁,自动售货柜,自动投币箱,POS机等. 2、自动识别技术简介 自动识别技术是将信息数据自动识读、自动输入计算机的重要方法和手段,它是以计算机技术和通信技术为基础的综合性科学技术。近几十年内自动识别技术在全球范围内得到了迅猛发展,目前已形成了一个包括条码、磁识别、光学字符识别、射频识别、生物识别及图像识别等集计算机、光、机电、通信技术为一体的高新技术学科。 3、自动识别技术分类 按照国际自动识别技术的分类标准,自动识别技术可以有两种分类方法: 1.按照采集技术进行分类,其基本特征是需要被识别物体具有特定的识别 特征载体(如标签等,仅光学字符识别例外),可以分为光存储器、磁存 储器和电存储器三种; 2.按照特征提取技术进行分类,其基本特征是根据被识别物体的本身的行 为特征来完成数据的自动采集,可以分为静态特征、动态特征和属性特 征。

自动化领域的发展趋势

自动化领域的最新发展趋势 我国工业企业,未来的十年将面临着市场与能源;清洁生产与环境保护;高效与规范;负责与协调的挑战。节能、环保、安全、高效就是每一个企业必须要面对的课题,而自动化技术与这四大目标又就是紧密相连,本文将就当今自动化领域内 的最新发展趋势做一简述,以便为我国工业发展,搭建更为广阔的交流与沟通的平台。 一、信息技术推动自动化 以信息技术改造冶金行业,以信息化推进自动化,自动化再促使节能、环保、安全、高效四大目标的实现,已成为业界的共识。在当今自动化领域内,从工艺现场层到工厂(集团)管理层可经由以太网,基本实现信息的畅通无缝流通,所谓的“现代集成生产工艺”就是将信息技术、网络技术与现代新工艺相结合,并应用于企业产品生命周期的各个阶段,通过信息的无缝集成、过程优化与资源优化,实现物流、信息流、价值流的集成,以缩短企业新产品的开发周期(T)、提高质量(Q)、降低成本(C)、改进服务(S)与改善环境(E),从而提升企业的市场的应变能力与竞争能力,与此想适应开发出一系列管理层软件,如ERP、MRP、MIS、PES等,并越来越显示其巨大的经济效益。 国内一些大冶金集团在当前竞争不断加剧的压力下,也 紧跟这股信息化的潮流,推进自动化的发展,如国内某冶金集

团近几年来,在新建的冶金生产线做自动化控制系统配置时,在现场级与过程控制级(PCS)的上端,还增加了制造执行系统(MES )层,并正在策划与运作ERP,即企业资源规划与管理层,它包括有生产管理系统、质量控制系统、采购管理系统、仓库管理系统、销售子系统、设备管理系统、财务管理系统、办公自动化管理系统与综合管理子系统等。 现今计算机技术、网络技术与先进的控制技术相结合, 已不再停留在理论与实验阶段。如模型预测、神经元与神经网络、模糊控制、多变量控制、自适应与自寻优等先进控制算法已进入实践并用于DCS、PLC等控制器中,而且这种趋势在加快。 IT技术与自动化结合另一热点就是公共数据库、局域网、互联网、无线技术等渗透控制系统使控制系统扁平化,实现了跨平台,跨地区的控制。西门子公司全集成自动化TIA的自动化新理念,Schneider公司推出的“协同自动化Collaborate Automation”,“透明就绪Transparent Ready”,“Unity 自动化平台”新概念;以及Rockwell提出的全集成的EtherNet/IP等,这些自动化新理念使得自动化控制系统更完整,也更完美。 二、自动化技术的互补与渗透 DCS,PLC,IPC就是自动控制领域的三大支柱,它们之间竞争激烈,但又取长补短与相互渗透,相互融合,因而形成了具有混合控制策略的PLC/DCS混合系统HCS,某咨询集团把其称

材料加工的发展与未来(作业一)

材料加工的发展与未来 摘要:材料技术是科技革命的重要物质基础,而多学科科技革命又导致了材料加工的科技进步与变革。文章概述了材料加工的作用与地位,该学科的总体发展趋势“过程综合、技术综合、学科综合”,它的主要发展方向“高效化、高精度化”、“材料设计制备与成形加工一体化”、“计算机模拟与过程仿真技术”、“材料智能化制备加工技术”等,以及金属控制凝固与控制成形。 关键词:材料加工、模拟仿真、控制凝固、控制成形 前言 材料是人类赖以生存和发展的物质基础,现代技术和产业中的物质、能量、信息转换以及人与自然的协调发展,都要以材料为基础。材料一直是人类发展的里程碑。当代新材料技术是现代文明的重要支柱,也是现代科技革命的重要物质基础。 1. 材料加工的地位与作用 材料加工行业是制造业的重要组成部分,材料加工技术是汽车、电力、石化、造船及机械等支柱产业的基础制造技术,新一代材料加工技术也是先进制造技术的重要内容。但是,我国的材料加工技术与工业发达国家相比仍有很大差距。举例说, 重大工程的关键铸锻件如长江三峡水轮机的第一个叶轮仍从国外进口。因此,在振兴我国制造业的同时,要加强和重视材料加工制造技术的发展。 2. 材料加工的发展趋势 随着科技进步,它其趋势是过程综合、技术综合、学科综合。【1】过程综合就是设计、制备与成形加工的一体化和短流程化;技术综合就是计算机技术、信息技术、先进控制技术的综合;学科综合就是将我们的三级学科综合,二级学科的综合,甚至将我们的各个一级学科也综合起来使各个学科相互渗透。 3. 材料加工的主要发展方向 (1)美国在新一代制造计划(Next Generation Manufacturing)中指出未来的制造模式将是:批量小、质量高、成本低、交货期短、生产柔性、环境友好。因此未来材料加工技术要高效化和高精度化。 (2)发展材料设计、制备与成形加工一体化技术,可以实现先进材料与零部

纳米技术与未来生活

纳米技术与未来生活 “正像七十年代微电子技术引发了信息革命一样,纳米科学技术将成 为下世纪信息时代的核心。” ——IBM的首席科学家Amotro ●纳米技术的起源与发展 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后甚至可以根据人类的意愿,逐个排列原子或分子,制造超晶态产品,这是关于纳米技术最早的梦想。 七十年代,科学家开始从不同角度提出有关纳米技术的构想,1974年,科学家唐尼古奇最早使用纳米技术(Nano-technology)一词描述精密机械加工。1982年,科学家发明观察纳米结构的重要工具--扫描隧道显微镜(STM),揭示了一个可直接探测的原子、分子世界,对当时称为“介观物理”(Mesoscopic Physics)的研究和发展产生了积极的促进作用。并且,只有在介观体系中才显得那么重要的表面和界面问题也开始发展成为科学。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 ●纳米与纳米技术 所谓纳米,它仅仅是一个长度单位,一个纳米相当于十亿分之一米,是人类毛发直径的一万分之一,是可见光最短波长的四百分之一。如果做一个纳米的小球,把它放在一个乒乓球上,就好像把乒乓球放在地球上。纳米一个比微观尺度(原子大小为0.1纳米)大,又比宏观尺度(光学显微镜分辨极限的微米尺度)小的世界。这个世界里的研究工作是从基础物理学对这个尺度上的结构(纳米结构——Nano-structure)所表现出的奇异特性开始的。如果考察电子通过纳米圆环所组成电路,它的行为将不遵守欧姆定律,而表现出彼此之间的关联性(AB效应)。在这个尺度上的物质,表面原子或分子占了相当大的比例,已经无法区分它们是长程有序(晶态)、短程有序(液态),还是完全无序(气态)了,而成为物质的一种新的状态——纳米态。并且,人们很早就注意到这种纳米态的性质不主要取决于其体内的原子或分子,而是主要取决于表面或界面上分子排列的状态。由于它们具有量子力学上的强关联性而表现出完全不同于宏观和微观世界的介观性质,这就是纳米材料。 而通常讲的纳米科技就是对待这样一个数量级的微观世界的科学技术。其精髓是从对原子分子的精确控制出发,构建具有全新分子、全新排列形式的人造结构。也就是说,纳米技术希望能够操纵一个一个原子、一个一个分子,并用这种办法来做成一些材料和器件。1959年,加州理工学院的一位教授就提出了这样一种设想:做一种万能制造机,一面放上各样的分子、原子,另一面想出来什么东西,就通过原子的组排,轻松实现。而从原理上讲,利用纳米技术,是有可能的。可见纳米技术的神奇了。 作为纳米技术,本身它并不神秘,实际上从微米技术到纳米技术,应该说啊是科学发展的一个自然的结果。我们现在生活在微米时代。在微米时代,我们用计算机,录像机、电视,都是微米技术的结晶。比如奔腾芯片已经做到了0.17-0.18个微米,相当于几百个纳米。也就是说,从尺度上来讲,微米技术已经逐渐进入到纳米尺度。所以从某种意义上讲,从诶米科技到纳米科技是科学发展的必然结果。 然而,纳米技术不仅仅是微米技术的简单延伸,实际上纳米技术是建立在人们对纳米世

全息技术在显示领域的应用与发展前景

全息技术在显示领域的应用与发展前景 摘要:全息显示技术突破了传统声、光、电局限,将美轮美奂的画面带到观众面前,给人一种虚拟与现实并存的双重世界感觉。本文将从全息显示的理论基础、现代显示技术的全息应用以及全息显示的发展潜力与趋势三个方面来探讨全息显示。未来全息显示技术市场发展潜力将是无可估量的。 关键词:全息技术3D投影全息照相全息印刷 Holographic T echnology in the Application of the Display and Development Prospects Abstract:Holographic display technology breaks through the traditional limitations of sound, light, electricity,and will bring magnificent picture to the audience, give us a kind of virtual reality coexist with the double world feel. This text will discuss holographic display from three aspects that the holographic display theory basis, modern display technology of holographic application and holographic display development potential and trend in this show. The development potential of future holographic technology market will be invaluable. Keywords:Holographic 3D projection hologram Holographic Printing 引言: 全息技术其实就是实现真实的三维图像的记录和再现。记录的难题早在1947 年就被攻克。伦敦大学帝国理工学院的丹尼斯?伽伯博士发明了全息立体摄像,并因此获得1971年的诺贝尔物理学奖。一般的三维图只是在二维的平面上通过构图及色彩明暗变化实现人眼的三维感觉,而全息立体摄影产生的全息图则包含了被记录物体的尺寸、形状、亮度和对比度等信息,能提供“视差”。观察者可以通过前后、左右和上下移动来观察图像的不同形象——如同有个真实的物体在那里一样。 经过近十几年的发展,全息技术在实际中的应用已相当广泛。目前,计算全息的主要应用范围是:二维和三维物体像的显示;此外,在安全方面也有独特的优点。随着大容量、高速度计算机的不断出现,以及激光扫描器、电子束、粒子束等成像技术的发展,计算全息必将显示更大的优越性,展宽更多的应用领域。全息技术的产品正越来越多地走向市场,而且这种新技术正以极大的魅力吸引着众多的科技人员致力研究, 其发展前景无限美好。

计算机图像识别技术的发展现状与展望

计算机图像识别技术的发展现状与展望 摘要:计算机图像处理技术与国民经济发展有着密切的关系,在这一领域我们要力争赶上直至超过发达国家,在计算机图像处理技术的研发方面,必须随时掌握国际动态,才能把握好方向。 关键词:计算机图像识别 前言:人类在社会实践活动中,是通过身体各感觉器官来接受信息,感知世界的,其中80%左右的信息是通过视觉系统获取的,人眼将获得的图像送大脑处理后并据此作出反映。在已经进入信息时代的今天,如何快速有效地获得所需要的信息,将直接影响到人们的思维和决策。毫无疑问,通过图像是我们获得信息的重要途径,而对图像的处理技术先进与否将决定其价值,利用计算机进行图像处理可以使我们快速准确地获得所需信息。可喜的是,随着计算机技术的不断发展,图像处理技术已经发生了很大发展,让我们的生产生活进入了丰富多彩的时代,我国在计算机图像处理技术上还需要下很大的力气,才能赶上时代的步伐。本文将就计算机图像处理技术的发展历程及趋势作些探讨。 1 计算机图像处理 计算机图像处理是将图像信号转换成数字信号并利用计算机对其进行处理。由于计算机的处理速度及快,且数字信号具有失真小、易保存、易传输、抗干扰能力强等特点,因而计算机图像处理的应用十分广泛,包括航空、航海、航天、遥测技术、工业自动化检测、安全识别、娱乐等各大领域。 2 计算机图像处理技术的发展历程 二十世纪20年代 Bartlane电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到3个小时之内。50年代,在美国出现了以电子管计算机配合滚筒式、平板式绘图仪等仅具有输出功能的设备的图像处理。60年代至70年代,计算机图像处理技术得到了快速发展,计算机图像处理已经可以用来改善图像质量,或是从图像中获得有效信息,并且能对图像进行体积压缩,便于传输和保存。此时的计算机图像处理已经就用到了卫星遥感、医学等方面。1964年美国喷气推进实验室对航天探测器徘徊者7号发回的月球照片由计算机进行图像处理,成功地绘制出月球表面地图,为人类探索宇宙奥妙奠定

相关文档
相关文档 最新文档