文档库 最新最全的文档下载
当前位置:文档库 › 最新精品高中数学数列复习试题教师版(含答案)

最新精品高中数学数列复习试题教师版(含答案)

最新精品高中数学数列复习试题教师版(含答案)
最新精品高中数学数列复习试题教师版(含答案)

高中数学数列复习试题

重庆理1

若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( A )

A .3

B .4

C .5

D .6

安徽文3

等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )

A .12

B .10

C .8

D .6

辽宁文5

等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )

A .12

B .10

C .8

D .6

福建文2

等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( B )

A .12

B .10

C .8

D .6

广东理5

已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( B )

A .9

B .8 C. 7 D .6 在等比数列{}n a (n ∈N *)中,若11a =,418a =

,则该数列的前10项和为( B ) A .4122- B .2122- C .10122- D .11

122-

湖北理8

已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n n

a b 为整数的正整数n 的个数是( D )

A .2

B .3

C .4

D .5

已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( B ) A.3 B.2 C.1 D.2-

宁夏理4

已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( D ) A.2

3- B.1

3- C.13 D.2

3

陕西文5

等差数列{a n }的前n 项和为S n ,若2462,10,S S S ==则等于( C )

A .12

B .18

C .24

D .42

四川文7

等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( B )

A .9

B .10

C .11

D .12

上海文14

数列{}n a 中,22211100010012n n n a n n n n ???=???-?,≤≤

,≥,

则数列

{}n a 的极限值( B ) A.等于0 B.等于1 C.等于0或1 D.不存在

陕西理5

各项均为正数的等比数列{}n a 的前n 项和为S n ,若S n =2,S 30=14,则S 40等于( C )

A .80

B .30

C .26

D .16

天津理8

设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( B )

高三数学数列专题复习题含答案

高三数学数列专题复习题含答案 一、选择题 1.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---L ,则()'0f =( ) A .62 B. 92 C. 122 D. 152 【答案】C 【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x 项均取0,则()' 0f 只与函数()f x 的一次项 有关;得:412 123818()2a a a a a a ??==L 。 2、在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12 【答案】C 3、已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为 (A ) 158或5 (B )3116或5 (C )3116 (D )15 8 【答案】C 【解析】本题主要考查等比数列前n 项和公式及等比数列的性质,属于中等题。 显然q ≠1,所以3639(1q )1-=121-q 1q q q q -?+?=-,所以1{}n a 是首项为1,公比为1 2 的等比数列, 前5项和5 51 1()31211612 T -= =-. 4、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 【答案】A

【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,3 7897988()a a a a a a a ===g 10,所以 13 2850a a =, 所以13 3 3 64564655 28()()(50)52a a a a a a a a a =====g 5.已知等比数列{m a }中,各项都是正数,且1a , 321 ,22 a a 成等差数列,则91078a a a a +=+ A.12+ B. 12- C. 322+ D 322- 6、设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是 A 、2X Z Y += B 、()()Y Y X Z Z X -=- C 、2 Y XZ = D 、()()Y Y X X Z X -=- 【答案】 D 【分析】取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算,只有选项D 满足。 8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 A .6 B .7 C .8 D .9 【答案】A 【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=?-+=-,解得2d =, 所以22(1) 11212(6)362 n n n S n n n n -=-+ ?=-=--,所以当6n =时,n S 取最小值。 9、已知等比数列{}n a 满足0,1,2,n a n >=L ,且25252(3)n n a a n -?=≥,则当1n ≥时, 2123221log log log n a a a -+++=L A. (21)n n - B. 2 (1)n + C. 2n D. 2 (1)n -

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列复习题型归纳解题方法整理

数列 典型例题分析 【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数 列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an } 的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812d d ++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n. (Ⅱ)由(Ⅰ)知2m a =2n ,由等比数列前n 项和 公式得 S m =2+22+23+…+2n =2(12) 12 n --=2n+1-2. 小结与拓展:数列{}n a 是等差数列,则数列}{n a a 是 等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。(a>0且a ≠1).

【题型2】与“前n项和Sn与通项an”、 常用求通项公式的结合 例 2 已知数列{a n}的前三项与数列{b n}的前 三项对应相同,且a1+2a2+22a3+…+2n-1a n= 8n对任意的n∈N*都成立,数列{b n+1-b n}是等 差数列.求数列{a n}与{b n}的通项公式。 解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n -1)(n∈N*) ② ①-②得2n-1a n=8,求得a n=24-n, 在①中令n=1,可得a1=8=24-1, ∴a n=24-n(n∈N*).由题意知b1=8,b2=4, b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N * 或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,…,简记为{},其中是数列{}的第 项. 2.数列的通项公式 一个数列{}的 与 之间的函数关系,如果可用一个公式=f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{}中,前n 项和与通项的关系为: =n a ?? ???≥==2 1n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴ - 3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解: ⑴ =(-1) n ) 12)(12(1 2+--n n n ⑵ =)673(2 12+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,--1=1+3(n -2)=3n -5.各式相加得

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学数列复习题

1 已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2 n -1a n =8n 对任意的n∈N *都成立,数列{b n +1-b n }是等差数列.求数列{a n }与{b n }的通项公 式。 2 在等比数列{a n }中,a n >0 (n ∈N *),公比q ∈(0,1),且a 1a 5 + 2a 3a 5 +a 2a 8=25,a 3与a s 的等比中项为2。(1)求数列{a n }的通项公式;(2)设b n =log 2 a n ,数列{b n }的前n 项和为S n 当1212n S S S n ++???+最大时,求n 的值。 3 (数列{}n a 中,11a =,且点1(, )n n a a +()n *∈N 在函数()2f x x =+的图象上. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在数列}{n a 中,依次抽取第3,4,6,…,122n -+, …项,组成新数列{}n b ,试求数列{}n b 的通项n b 及前n 项和n S . 4 已知数列{}n a 的前n 项和为n S ,11a =,141n n S a +=+,设12n n n b a a +=-.(Ⅰ)证明数列{}n b 是等比数列; (Ⅱ)数列{}n c 满足21log 3 n n c b =+*()n ∈N ,求1223341n n n T c c c c c c c c +=++++L 。 5 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 6 已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 7 已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 8 在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。 9 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422 =+成立,求{}n a 的通项n a . 解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式。 10 设{}n a 是首项为1的正项数列,且01212=-----n n n n na na a a ,(n ∈N*),求数列 的通项公式an. 11 数列{}n a 中,2 11= a ,前n 项的和n n a n S 2=,求1+n a . 12 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.

(完整版)高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2 = 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 3 22111=== a S b , ∴ 21 2 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 212)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3n n n a (1)(2)n n =≥,1 2)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ΛΛ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n Λ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n Λ 例5.A 例6. 解:1324321-+++++=n n nx x x x S ΛΛ①()n n n nx x n x x x xS +-++++=-132132ΛΛ② ①-②()n n n nx x x x S x -++++=--1211ΛΛ, 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111∴()() 21111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++=ΛΛ 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+2732354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918=== a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列 ∴ b 1b 3=b 22,∴ b 23=81,∴ b 2=21,∴ 1312178 14 b b b b ? +=????=??,∴ 13218b b =???=??或 12182b b ?=?? ?=? ∴ 13212()24n n n b --== 或 1251 428n n n b --=?= ∵ 1 ()2n a n b =,∴ 12 log n n a b =,∴ a n =2n -3 或 a n =-2n +5 例20. 2392 n n +

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

高中数学专题复习数列训练题

高中数学专题复习数列训练题 1.已知递增的等差数列满足11 =a ,4223-=a a ,则=n a (A )12-=n a n 或n a n 23-= (B) 12-=n a n (C) 12+=n a n (D) n a n 23-= 2。设等比数列{}n a 的公比为q ,前n 项和为n S ,若1+n S 、n S 、2+n S 成等差数列,则q 的值为 (A )1或2- (B) 2- (C)2 (D)1或2 3。首项为正数的数列{}n a 满足)3(4 121+=+n n a a ,*∈N n ,若对一切*∈N n 都有 n n a a >+1,则1a 的取值范围是 (A )),3()1,0(+∞Y (B) ),3()1,(+∞-∞Y (C) )1,0( (D) )3,0( 4。在项数为12+n 的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于 (A )9 (B)10 (C)11 (D)12 5。已知两个等差数列{}n a ,{}n b ,它们的前n 项和为n S 和n T ,若325++=n n T S n n ,则=5 5b a (A )1245 (B) 947 (C) 1247 (D) 21 47 6。已知数列{}n a 的通项公式为)34()1(--=n a n n ,n S 是其前n 项和,则33178S S S -+的值为 (A )48 (B)49 (C)50 (D)47 7。已知数列 {}n a 的前n 项和为n S ,且1-=n n n S S a )2(≥n ,921=a ,则=10a (A )74 (B) 94 (C) 634 (D) 63 5 8。设等差数列 {}n a 的前n 项和为n S ,且65S S <,876S S S >=,则下列结论错误的是 (A )0 (D) 6S 与7S 均为n S 的最大值 9。设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n S T n n -=,*∈N n ,则=n a (A )22 3-?n (B) 2231-?-n (C) 2231-?+n (D) 1231+?-n 10。数列{}n a 满足12)1(1-=-++n a a n n n ,则{}n a 的前60项的和为 (A )1820 (B)1830 (C)1846 (D)1849 二.填空题:

(推荐)高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形

3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法 可以利用不等式组? ?? ?? a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组? ?? ?? a n -1≥a n , a n ≤a n +1,找到 数列的最小项. [例3] 已知数列{a n }.(1)若a n =n 2 -5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值. (2)若a n =n 2 +kn +4且对于n ∈N * ,都有a n +1>a n 成立.求实数k 的取值范围. 考点二:等差数列和等比数列 等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a n a n -1=常数(n≥2) 通项公式 a n =a 1+(n -1)d a n =a 1q n -1 (q≠0)

(完整版)高中数学全国卷数列专题复习

数列专题复习(1) 一、等差数列和等比数列的性质 1、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = (A ) 172 (B )19 2 (C )10 (D )12 2、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = 3、设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A 5 B 7 C 9 D 11 4、已知等比数列{}n a 满足114a =,()35441a a a =-,则2a = A.2 B.1 1C.2 1 D. 8 5、等比数列{a n }满足a 1=3, 135a a a ++ =21,则357a a a ++= A21 B42 C63 D84 6、等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = (A ) ()1n n + (B )()1n n - (C ) ()12 n n + (D) ()12 n n - 7、设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m = A .3 B .4 C .5 D .6 8、等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1= (A ) 13 (B )13 - (C ) 19 (D )1 9 - 9、已知{n a }为等比数列,472a a +=,568a a =-,则110a a += A7 B5 C -5 D -7 10、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 11、如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 12、等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________. 13、等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =___________。 14、设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k = (A)8 (B)7 (C) 6 (D) 5 15、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1= 2n n c a +,c n +1=2 n n b a +,则( ).

最新-高中数学数列知识点总结 精品

数列 一、数列的概念 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数称为该数列的项,记作a n 。排在第一位的项叫第一项(或首项),排在第二位的项叫第二项......,排在第n 位的项叫第n 项。 数列的一般形式:a 1,a 2,a 3,.....,a n ,....简记为{}n a 。 注意:⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”。因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列。 ⑵在数列中同一个数可以重复出现。 ⑶项a n 与项数n 是两个根本不同的概念。 ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数,当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列。 例:判断下列各组元素能否构成数列 (1)a ,-3,-1, 1,b ,5,7,9 (2)2010年各省参加高考的考生人数。 2.通项公式:如果数列{}n a 的第n 项与序号n 之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 例:(1)1,2,3,4,5,... (2)1, 21,31,41,5 1 ,... 注意:(1){a n }表示数列,a n 表示数列中的第n 项,)(n f a n =表示数列的通项公式。 (2)同一个数列的通项公式的形式不一定唯一,例如: (3)不是每一个数列都有通项公式。例如:1, 1.4, 1.41, 1.414,..... 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或

相关文档
相关文档 最新文档