文档库 最新最全的文档下载
当前位置:文档库 › 柔性制造系统(FMS)故障诊断技术研究综述

柔性制造系统(FMS)故障诊断技术研究综述

柔性制造系统(FMS)故障诊断技术研究综述
柔性制造系统(FMS)故障诊断技术研究综述

柔性制造系统(FMS)故障诊断技术研究综述来源:开关柜无线测温 https://www.wendangku.net/doc/0919417495.html,

摘要:分析FMS的特点及其故障诊断的困难性。在综合大量文献的基础上,对国内外在该领域的主要研究内容、发展现状以及研究成果进行归纳和总结,指出当前研究工作的特点和已有研究存在的主要问题。对今后的发展进行了展望,指出集成诊断、多传感器信息融合、多方法综合应用的集成智能决策系统,以及网络化远程诊断服务是FMS诊断系统研究和发展的方向。

关键词:柔性制造系统;故障诊断;智能诊断系统

市场环境决定着企业的生产方式,制造企业需要以最快的上市速度,最好的质量、最低的成本、最优的服务及最清洁的环境来满足不同客户对产品的需求和社会可持续发展的要求。在这一目标的驱动下,多种先进制造技术(advanced manufacturing technology,AMT)被提出,并受到重点研究和发展。柔性制造系统(flexible manufacturing system,FMS)是ATM发展的产物,受到了普遍的研究,并在制造企业得到大量应用。FMS 通常包括若干数控设备、中央刀库、物料运输装置和计算机控制系统等子设备或子系统,由控制网络将多个设备有机联合,使各设备统一调度、相互协调共同完成生产加工任务,并可以根据制造任务或生产环境的变化进行灵活调整。这种灵活性即指系统的柔性,柔性是FMS的最大特点,其具有应变性好、生产率高,适应中、小批量生产等特点。

1 FMS特点及其故障诊断的困难性

柔性制造系统(FMS)作为一类复杂的机电系统,其复杂程度、行为状态和工作环境等都与传统的制造系统有很大不同,比较明显的是:

(1)FMS是对多个异质系统在功能及结构上的有机集成,属于复杂大系统。

(2)系统强调高度自动化,智能程度要求较高。

(3)相对于自动化生产线,系统的动态行为更加复杂,刚性控制减弱,柔性更加明显。

(4)系统具有容错控制,当某一子设备或子系统发生故障时,系统的运行过程控制(即调度)可以重构,以保证系统整体功能的不失性。

(5)单一设备或系统的自身行为或故障不再局限于其自身范围内,常常会影响在功能或地域上相关、相连的设备或系统。

FMS系统所具有的上述特点,导致其故障诊断不仅有一般设备诊断的特点,而且表现的更复杂、更特殊。

(1)FMS的高度柔性,必然要求系统内部的高度灵活性和运行模式的多样性,负面的影响是增大了系统的不定因素和在模式转换过程中故障发生的高可能性。

(2)系统设备多样、复杂,加工以柔性多任务为目标,加工类型、过程、工况多样,因此,难以全面搜集各种正常与异常状态的先验样本和模式样本,即诊断知识获取困难。

(3)过程状态及故障的断续性、突发性、模糊性、关联性及时

变性更加明显,致使故障征兆信息、设备状态信息的获取比较困难,故障的快速定位难度更大。

(4)加工设备各部件间的动态联动性、离散性致使故障的传播性、故障源的分散性更加明显。

(5)工件尺寸甚至误操作等随机干扰因素影响加大,使诊断系统的误诊、漏诊的可能性更大,诊断推理的精确性、结论的可信度都有所下降。

(6)加工过程中信息量大而繁杂,适合于监控、诊断与预警的信息资源需要挖掘,对监控策略、故障特征提取、诊断知识库管理等环节提出了挑战。

(7)FMS在运行过程中,更多情况下是缺乏人的现场监视,因此,故障难以早期发现;对现场故障的瞬时信息,特别是感官信息就往往无法捕捉,而此类信息对故障的快速定位(推理)是极有价值的。

从实际的应用来看,诊断对象的复杂度增加,可能导致诊断系统的复杂度呈几何指数性增长。从多家FMS研究及应用单位的实际应用情况看,FMS的运行故障频发,且现有的诊断系统难以应付多种复杂的故障快速定位要求。

2 当前的研究内容及发展状态

作为FMS理论研究及实践应用的关键与瓶颈技术之一的故障诊断技术,受到了国内外制造领域的重点研究,并取得了一定的研究成果。分析和总结众多在不同研究方向上具有创新性的研究成果,归纳、分类形成如图1所示FMS诊断技术研究的基本方向。可以清楚的看出,围绕FMS这一具有复杂结构及组成的自

动化制造系统,诊断技术的研究主要沿如下4个方向深入开展:

(1)诊断系统架构研究。

(2)智能诊断方法研究。

(3)FMS故障机理及故障模型研究。

(4)系统集成技术研究。

基于上述4个大的研究方向,众多的研究又从不同的侧重点出发,最终形成了更细致的研究分支。整体而言,FMS诊断技术研究呈发散式向与诊断流程各个环节相关技术逐级深入。

图1FMS诊断技术的研究方向及分类

2.1 诊断系统架构

针对FMS的特点,当前的诊断系统架构设计主要有两种形式:集中式和分布式。在两种基本方式的基础上为了兼顾诊断的实时性及诊断的精密性要求,系统又出现了在线实时诊断与离线精密诊断相结合的模块式结构。

华中理工大学在诊断方法论、体系结构方面进行了开创性研究,并针对郑州纺织机械厂的FMS故障诊断开展进一步的研究;北京理工大学以长春BQ-FMS为研究对象,诊断系统采用简易实时诊断与离线精密诊断相结合的形式,该系统已应用于现场运行,但其总体架构仍是集中式结构。

基于Internet的远程故障诊断技术是复杂设备故障诊断最新的发展动态,美国的斯坦福大学、新加坡的国立大学等一些研究机构已建立了开放式远程诊断及支持中心,在设备用户、研究机构(领域专家)及设备生产商之间形成了面向多用户、多设备的动态敏捷诊断通道,实现了诊断资源共享,大大提高了诊断效率、成功率及诊断结果的可信度。西安交通大学、上海交通大学和西北工业大学已先后建立了远程故障诊断服务中心,在大型复杂设备诊断远程网络化方面迈出了可喜的一步。当前,华中科技大学也已开展分布式远程协作诊断研究,已建立了一定功能的原型测试系统。

Agent及MAS(multi-agent system)理论和方法是计算机软件工程最具革命性的成果之一,MAS理论应用于故障诊断希望解决两方面的问题,其中之一就是从分布式问题求解角度来建立分布式诊断架构。应用多Agent系统来构建具有灵活配置、高柔性、扩充性好的软件系统具有较大的优势。Maria-Athina等学者分析了在分布式设备故障管理中应用智能Agent技术的有关细节问题,并给出了简单的系统设计方法。德国的研究者在FMS的实时监测问题研究中,采用Multi-Agent机制解决了监测的分布式问题,并给出了监测Agent模型和功能封装。英国曼彻斯特大学针对典型FMS系统研究并设计了基于

Multi-Agent的集成故障诊断系统,目前的研究正在逐渐深入。加拿大Edmonton大学的智能工程实验室提出了应用于复杂化工设备故障监测及诊断的集成化分布式智能系统结构,在基于

MAS的集成框架下有效实现了多种诊断工具的综合利用,并对原有工具、系统可以方便集成。R.Khosla同样在电力供应系统监测中应用了Multi-Agent方法,其所提出的多层模型及多诊断算法(软件)Agent协同求解方法值得借鉴和采用。德国柏林技术大学的人机系统研究中心开发的商业化故障诊断软件ComPASS,系统完全基于Multi-Agent架构,具有良好的开放性,用户可以方便地通过API接口进行功能和知识的扩展,实现特定设备的故障诊断。新加坡国立大学的研究者提出并构建了基于Multi-Agent的远程故障诊断系统架构,给出了系统的自学习方法,并在Java环境中进行了两个案例测试。陆宝春等人建造了面向制造过程监控的分布式多Agent诊断系统结构,研究了多Agent模糊关联模型及基于此的诊断与决策问题;清华大学针对多Agent故障诊断原型系统,着重研究了基于多Agent 理论的设备诊断问题分布式任务分解与控制策略及Agent间的协调合作机制,提出诊断任务的串行与并行以及混合控制策略。

2.2 智能诊断方法

目前,开展智能诊断是诊断领域的一个研究热点,相应的成果也非常多,图2对智能诊断方法的应用情况作了归纳。FMS故障诊断技术从总体而言,以智能诊断为主,特别是专家系统(expert system,ES)、人工神经网络(artificial neural net,ANN)以及它们与模糊理论的结合,此方面的研究和应用最为常见。国际先进技术中心的V.R.Mi-lacic等人开发了EXMAX专家系统模型,实现了对FMS机械系统的故障诊断和维修。北京航空航天大学与北京航空工艺研究所等单位合作,自行设计并建造了北京柔性制造系统实验中心,并初步研究和应用了适用的诊断专家系统。但专家系统所存在的知识获取“瓶颈”、规则“组合爆炸”、推理过程的低效率、对机器系统的依赖性强等缺陷限制了其更广泛、更完善的应用。故障诊断从根本上来说仍然是一个模式识别问题,人们成功的应用神经网络解决了许多实时状态监测、故障分类、故障预报等难题。

图2智能诊断方法的应用情况

从大量的应用来看,ANN只是作为一种信息软处理的工具,在局部问题处理上优势明显,但从一切系统行为的指标上,还没有全部占优的报道。与ES一样,ANN同样也存在缺陷:推理过程的不可解释性、知识补充及修改的困难性、模型的僵化及脆弱性等等。

ES与ANN的集成应用为人们克服两者的缺陷开辟了新的途径,在具体应用中表现出更大的优越性。基于神经网络的专家系统的实现方式主要有两种:直接用神经网络构造专家系统(也称紧耦合方式)和两者以简单的功能组合形式(也称松耦合方式)。前者仍然难以克服ANN的缺点,因此,人们正把注意力放在符号推理与数值运算的更高级集成上。第二种结合方式,其本质是将整个系统中易于用符号表达的规则编码于专家系统的知识库中,而将不易于用符号或复杂逻辑表达,需要并行、模糊、实时处理的规则(知识)编码于神经网络之中,通过功能互补提高系统的整体能力。

印度S.N.Gupta开发的工况监测维修专家系统,在知识的获取

方法上,使用了神经网络以解决专家系统知识获取困难的弊端。模糊逻辑、ANN与专家系统结合的诊断模型是最具发展前景的,也是目前人工智能领域的研究热点之一,相应的诊断技术正在蓬勃开展。北京理工大学在其所开发的FMS诊断系统中将模糊数学方法与神经网络、专家系统相结合进行了综合应用,给出了具体的模糊推理算法,同时就模糊性诊断规则的归纳和总结及知识库的建立做出了较为全面的研究。

MAS理论应用于故障诊断希望解决的另一个问题就是将诊断功能模块拟人化封装,表现出社会化的群体智能,不仅使诊断系统更智能、更可靠,而且诊断决策成功的可能性大大提高。如果说,专家系统和神经网络是以实现系统单一手段的智能化为目标的话,MAS则是以提高系统整体问题求解的智能化为目标。智能体理论引入故障诊断领域已有一段时间,有关的研究正在深入进行。在应用方面,日本的T.Nagata实现了基于

Multi-Agent的供电系统监测及紧急恢复项目的实施,对多智能体的协商机制和消息通讯机制进行了实践检验。南京理工大学首先将分布式人工智能(distributed artifical intelligence,DAI)理论引入FMS智能检测与故障诊断系统研究中,并指出Agent的融合、协调和控制方法,知识表示与推理机制是实现该系统的关键;东南大学的钟秉林教授及其学生提出了基于行为的多代理(Multi-Agent)故障诊断方法,并给出了系统的实现策略,对问题求解采用“自下而上”的推理方法;南京理工大学的研究者用模糊集理论和定义决策相似度的方法建立了多监控Agent求解结果的一致性判断算法,将求解结果一致性融合问题转换为群决策环境下的梯形模糊数表示的模糊意见的综合问题。

2.3 FMS故障机理及故障模型

分析FMS故障机理,以最有效的方法获取反映FMS设备状态(静

态)、运行状态(动态)的特征量或诊断知识,并据此建立合适的故障模型是该部分的研究内容。相关的研究集中在3个方面:

(1)以FMS的具体设备或部件为对象,如刀具切削状态监测与预警、加工主轴振动监测与诊断、主轴伺服系统监测与诊断、加工工件的质量监测等等,相应的诊断方法以传感器技术、信号处理及分析技术、多传感器信息融合技术为主,通过一定的监控诊断模型(如阀值判断或神经网络模型)实现状态判定与故障预报,也有依靠数学模型来分析诊断对象的某种动态特性的尝试,但应用的并不成功。

(2)从全局制造过程出发,建立过程仿真模型,注重状态的变迁及原因和结果之间的联系,如Petri网、有限状态机、有向图模型的应用。

(3)从分析诊断对象的功能、原理、结构等方面入手,并结合人类专家经验,以建立诊断知识库为目标,诊断过程以知识推理为主,机理模型、功能模型、故障树模型是常用的方法。

Wu和Joshi就故障分类、故障知识表达及故障恢复3个方面的关键问题进行了研究,强调系统的执行故障对FMS运行的影响。Monostori对机床与制造单元提出了知识基递阶状态监控与故障诊断模型。Kuo等人从FMS运行过程的行为角度出发,使用着色赋时Petri网建模实现对FMS的状态监测及故障诊断。新加坡南洋理工大学在分析FMS子设备及设备的子部件之间的故障传播关联性的基础上,提出模糊图模型诊断方法,诊断推理沿着节点之间的最坏路径逐级搜索,该方法在缺乏先验诊断样本的情况下,能解决其它诊断模型应用的困难性,但模糊隶属函数的确定有一定的主观性。华中理工大学针对具体的FMS系统,深入研究了故障树层次诊断模型,提出扩展故障树建模方

法,并给出了基于此的框架知识表达和诊断推理策略,并采用了多模型故障诊断方法。

2.4 诊断系统集成技术

从诊断技术的发展阶段看,集成智能诊断是当前智能诊断的研究热点及将来的发展趋势。所谓集成诊断就是把涉及诊断的不同侧面的理论和方法组合起来,并以系统对问题求解的高效性、有效性、成功性为目的。集成包含多方面的内容,可以参考图1所示。从宏观角度而言,FMS诊断系统的集成技术体现在4个方面:

(1)诊断流程各个环节的集成直至向上集成至企业资源管理的一部分,可以称之为过程集成。

(2)不同诊断数据、诊断知识及其相应的表达方法的合理综合应用,可以称之为信息集成,由于监控系统中还包含硬件设备,如传感器、PLC、NC、CNC等,但其是服务于监控及诊断的底层数据获取,因此,可以把硬件集成归属于信息集成中。

(3)多种故障模型、诊断推理策略或方法的组合应用,以及系统对多种智能方法的集成,包括人的集成,可以称之为功能方法集成。

(4)从现场诊断到远程诊断服务中心的网络化、多资源共享集成,可以称之为网络化集成。从学科交叉的角度,系统集成意味着多种学科在某种目标下的交叉、衔接、渗透和综合。

由FMS特点及其故障诊断的困难性看出,要建立有效、可靠的诊断系统,集成诊断势在必行。W.Hu所提出的集成诊断系统强调模块化及可重构性,并将故障树划分为3类:功能化故障树、

原理性故障树和规则化故障树,在诊断过程中三者紧密联系,共同实现故障推理过程,并基于PLC监控信号提出了逻辑诊断和控制命令序列诊断模型。Abdoul等人将FMS的故障诊断及故障情况下加工任务的重新调度联系在一起进行研究,建立了FG (functional graph)及OAG(operation alaccessibility graph)模型,系统以FG模型为基础进行故障推理,以OAG模型为基础实现生产任务的重新调度,这一过程是紧密联系、协作完成的。国内,国防科技大学在“863”计划项目中,对FMS 监控系统的总体设计和关键技术作了大量的预研工作,研究了系统安全、工件流、刀具流、加工设备等检测监控子系统的初步集成及统一协调处理问题。为了实现多种诊断方法的综合应用和集成,从软件设计方法上就要求一种更好的适用机制,多种信号检测、处理及分析方法、诊断方法、知识处理方法通过智能Agent封装,实现系统的总体集成。

3 研究的特点及存在的问题

3.1 研究的特点

(1)监控及诊断系统多为集中式结构,诊断系统总体架构按FMS的层次结构设计,呈递阶控制方式;考虑监控及诊断的实时性需要,采用简单的阀值判定和推理迅速的简易专家系统,并利用神经网络数值运算的快速性,来处理局部信息的状态识别问题;诊断系统结构由集中式向分布式、网络化方向发展,相关的研究已经起步。

(2)相关学科的新技术、新方法迅速应用于FMS诊断,但更多的是针对FMS的子设备或某一设备的子部件进行试验性研究,偏重于原理性探讨和应用的试探,特别是围绕知识处理问题,采用新型信息处理技术,力求建造实用性更高的专家系统;诊断方法、策略不断智能化,如模糊数学、人工智能的应用,智

能诊断方法逐渐占据主导地位。

(3)软硬件系统的模块化、可扩展、可重构式结构已逐步得到采用,系统的组建以图形化组态方式进行。用户可以运用基本的、标准的部件(模块),各模块单元根据诊断对象的不同,经特征优化及细节设计实现通用而又专业的系统;监控系统的体系与布局与复杂制造系统的结构相适应,采取不同的系统层对应不同的监控与诊断模块,即故障诊断的层次模型,形成分布式信息拾取与处理,并逐级向上集成形成全局的状态检测与故障诊断系统,即“万能”、“柔性”、“可集成”系统。

(4)集成诊断开始受到重视,如多信息、诊断技术及方法的综合运用与集成,但显得零零散散,更多研究的出发点是就某一局部问题,将几种诊断方法相结合加以应用。

3.2 存在的问题

从国内外研究现状可以看出,现有的研究仍有许多不足:

(1)集成化诊断思想还不成熟,缺乏合理的集成架构,基于MAS理论建造诊断系统,已有的研究不够深入,表现在Agent 功能角色划分不明确,粒度太粗,以及缺乏如何从系统的角度去实现这一集成架构等等方面;状态监控与故障诊断系统的通用型智能化设计与实施方法研究还未形成明确的研究目标。

(2)诊断信息的传递及共享缺乏一个通用化、标准化的交互机制,传统的方法是通过应用程序接口(API)按一一对应的关系进行参数传递,该方法僵硬死板,其协议的不透明性导致系统的开放性受限制。已应用的诊断系统缺乏开放性和柔性,功能子模块之间采用“紧耦合”方式,表现为:当监测环境改变时,诊断系统难以适应;对诊断系统作局部调整时,牵扯的改动面

太大,开发性是现代软件系统的发展方向;软件的重用、重构性不理想导致开发和维护困难。

(3)实时监测、故障诊断、趋势预报有脱节形象,特别是在FMS实时运行过程中,忽视了应用设备内部的信息,对PLC、CNC 内部实时数据没有开发利用,而此类信息对故障的早期发现及“事后”诊断极有价值。

(4)就多种智能诊断方法的集成应用还需要作进一步的深入研究,有限的研究与实际应用还有一定的距离,特别体现在国内该领域的发展状况上。总体而言,由于国内FMS的发展和应用相对滞后于国外,导致FMS故障诊断技术的研究也相对粗浅和缺乏。

4 发展趋势

(1)多传感器信息拾取与融合的综合智能决策系统。诊断系统的智能程度、决策方法更加趋近于人类专家在处理诊断问题时的综合决策方式。

(2)自动地对未遇到过的或无法预计的加工状态及异常、故障状态进行分析、处理、监控;敏锐的捕获突发故障的能力。

(3)先进的组态化、高度“柔性”的诊断系统结构。这是诊断系统灵活性、易用性的要求,状态监控与故障诊断系统的通用型智能化设计与实施系统研究。

(4)监控设备的“积木式”组合方式,同时提供软件的通用化标准接口(如:OPC)及监测设备的自诊断、自适应功能模块。用户可以运用基本的、标准的各模块单元简单而快速的搭建适用的诊断系统,并最终实现软硬件系统的高度集成应用。

(5)面向领域问题的特点,进一步分析、探讨FMS诊断系统的体系结构、原理、组成、监控策略、功能要求等问题,并引入相关学科的新观点、新方法、新思维、新技术不断提高诊断系统的可靠性、灵活性、易用性、实用性、实时性及精确性。

(6)远程网络化诊断服务中心的建设,这是实现“产校联合”,推进应用与研究共同发展的有效途径;服务中心的仿真教学为企业培养急需的高素质维修人员,同时,通过广阔的信息来源丰富诊断数据库和教学素材。

先进制造技术论文

先进制造技术论文 学院:xxx 班级:xxx 姓名:xxx 学号:xxx 目录 ? ? ? ? ? ? ? 概述 摘要:随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。介绍了先进制造技术和先进制造模式的内容和发展情况,从两种角度解释其结构特征和关系,并从各种不同角度展望先进制造技术和先进生产模式的发展前景及其趋势特征。 先进制造技术AMT(AdvancedManufacturingTecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。 当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。 可基本归纳为以下五个方面:

一、先进的工程设计技术 二、先进制造工艺技术 三、制造自动化技术 四、先进生产管理技术、制造哲理与生产模式 五、发展。 一、先进的工程设计技术 先进的工程设计技术包括众多的现代设计理论与方法。包括CAD、CAE、CAPP、CAT、PDM、模块化设计、DFX、优化设计、三次设计与健壮设计、创新设计、反向工程、协同产品商务、虚拟现实技术、虚拟样机技术、并行工程等。 (1)产品(投放市场的产品和制造产品的工艺装备(夹具、刀具、量检具等))设计现代化。以CAD为基础(造型,工程分析计算、自动绘图并提供产品数字化信息等),全面应用先进的设计方法和理念。如虚拟设计、优化设计、模块化设计、有限元分析,动态设计、人机工程设计、美学设计、绿色设计等等; (2)先进的工艺规程设计技术与生产技术准备手段。在信息集成环境下,采用计算机辅助工艺规程设计、即CAPP,数控机床、工业机器人、三坐标测量机等各种计算机自动控制设备设备的计算机辅助工作程序设计即CAM等。 二、先进制造工艺技术 (1)高效精密、超精密加工技术,包括精密、超精密磨削、车削,细微加工技术,纳米加工技术。超高速切削。精密加工一般指加工精度在10~μm(相当于IT5级精度和IT5级以上精度),表面粗糙度Ra值在μm以下的加工方法,如金刚车、金刚镗、研磨、珩磨、超精研、砂带磨、镜面磨削和冷压加工等。用于精密机床、精密测量仪器等制造业中的关键零件加工,如精密丝杠、精密齿轮、精密蜗轮、精密导轨、精密滚动轴承等,在当前制造工业中占有极重要的地位。 超精密加工是指被加工零件的尺寸公差为~μm数量级,表面粗糙度Ra值为μm 数量级的加工方法。此外,精密加工与特种加工一般都是计算机控制的自动化加工。 (2)精密成型制造技术,包括高效、精密、洁净铸造、锻造、冲压、焊接及热处理与表面处理技术。 (3)现代特种加工技术,包括高能束流(主要是激光束、以及电子束、离子束等)加工,电解加工与电火花(成型与线切割)加工、超声波加工、高压水加工等。电火花加工(Electricaldischargemachining(EDM)电火花加工electricsparkmachining)是指在一定介质中,通过工具电极和工件电极之间脉冲放电的电蚀作用对工件进行的加工。能对任何导电材料加工而不受被加工材料强度和硬度的限制。可分为电火花成型加工(EDM)和电火花线切割加工(电火花线切割加工electricaldischargewire–cutting--EDW) 两大类。一般都采用CNC控制。 (4)快速成型制造(RPM).快速成形技术是在计算机控制下,基于离散堆积原理采用不同方法堆积材料最终完成零件的成型与制造的技术。从成型角度看,零件可视为“点”或“面”的叠加而成。从CAD电子模型中离散得到点、面的几何信息,再与成型工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 (5)先进制造工艺发展趋势 1)采用模拟技术,优化工艺设计; 2)成形精度向近无余量方向发展; 3)成形质量向近无“缺陷”方向发展; 4)机械加工向超精密、超高速方向发展; 5)采用新型能源及复合加工,解决新型材料的加工和表面改性难题; 6)采用自动化技术,实现工艺过程的优化控制;

机械故障诊断技术课后复习资料

机械故障诊断技术 (第二版张建)课后答案 第一章 1、故障诊断的基础是建立在能量耗散的原理上的。 2、机械故障诊断的基本方法课按不同观点来分类,目前流行的分类方法有两种:一是按机械故障诊断方法的难易程度分类,可分为简易诊断法和精密诊断法;二是按机械故障诊断的测试手段来分类,主要分为直接观察法、振动噪声测定法、无损检测法、磨损残余物测定法、机器性能参数测定法。 3、设备运行过程中的盆浴曲线是指什么? 答:指设备维修工程中根据统计得出一般机械设备劣化进程的规律曲线(曲线的形状类似浴盆的剖面线) 4、机械故障诊断包括哪几个方面内容? 答:(1)运行状态的检测根据机械设备在运行时产生的信息判断设备是否运行正常,其目的是为了早期发现设备故障的苗头。 (2)设备运行状态的趋势预报在状态检测的基础上进一步对设备 运行状态的发展趋势进行预测,其目的是为了预知设备劣化的速度,以便生 产安排和维修计划提前做好准备。 (3)故障类型、程度、部位、原因的确定最重要的是设备类型的确定,它是在状态检测的基础上,确定当机器已经处于异常状态时所需进一步解决的问题,其目的是为了最后诊断决策提供依据。 5、请叙述机械设备的故障诊断技术的意义? 答:设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备的故障诊断可以保证整个企业的生产系统设备的运行,减少经济损失,还可以减少某些关键机床设备因故障存在而导致加工质量降低,保证整个机器产品质量。 6、劣化曲线沿横、纵轴分别分成的三个区间分别是什么,代表什么意义? 答:横轴包括1、磨合期 2、正常使用期 3、耗损期纵轴包括1、绿区(故障率最低,表示机器处于良好状态)2、黄区(故障率有抬高的趋势,表示机器

柔性制造自动化概述复习资料

柔性制造自动化概述复习资料

————————————————————————————————作者:————————————————————————————————日期:

柔性制造自动化概述复习资料 一、填空题: 1、柔性制造系统的管理软件有、、、 、等功能。 2、作业规划软件中,、、、是作业计划制订的四个步骤。 3、按柔性制造系统承担的制造任务,可以把柔性制造系统分成、 、。 4、、、、、 是影响柔性制造系统布局的技术因素。 5、精良生产的特征是、、 、、、。 6、柔性制造自动化系统开放的目的是突出子系统的特点、长期应付市场的急剧变化。 二、简答题: 1、简要指出柔性制造系统的基本组成、主要功能、适用范围。 2、以机器人为核心设备的柔性装配系统,其控制系统有什么特色?试阐述其主要功能和实现方法。 3、试说明人机协调的柔性装配系统的特点。 答:(1)由人和机器组成:装配系统有两个不可缺一的两个结构要素,即自动化机械设备和使该设备发挥作用的人;(2)人机互相学习:装配系统运行时,人和机器处于相互学习的状态。机器不断地把自身的运行状态和运行环境的变化告诉人,而人根据各种信息和自己的经验想出一些处理方法,在向机器学习的过程中进一步寻找处理方法,并把这些方法不断地传授给机器。(3)人机协调工作:在通信技术支持下,人机互相学习、共同进步,不断地提高自身的能力,协调一致地完成装配作业。

4、在柔性装配系统中,人与机器有何互补性? 答:(1)生产效率:作业速度、工作持久性、故障,是影响装配效率的主要因素。机器能够以较高的作业速度持久地运行,但是会发生突发性的故障,从而使装配系统停止工作。与机器人完全不同,人不能保持恒定的工作速度,为了恢复体能需要工间休息,但是一般不会出现突发性的差错。(2)装配质量:能否专注工作,能否分析判断出有哪些因素决定装配的质量,这直接关系到装配的质量。机器能“专心致志”地工作,但是机器只能按照人们给出的模式来分析装配质量。与机器完全不同,人的注意力不能长时间的集中,但是人有能力对突发的质量事故进行综合判断。(3)对新产品的支持:柔性、智力、运算处理能力,直接影响新产品的开发与生产。机器只具备有限的柔性和一定的逻辑推理能力,但是具有高速准确的运算处理能力。与机器完全不同,人具有很高的柔性和卓越的思维预测能力,但是运算处理速度慢,并且容易产生差错。 5、普通加工中心为什么不能满足柔性制造系统的要求? 答:作为单机使用的普通加工中心是在操作人员的管理下运行的,操作人员不仅要装夹和校正工件、输入数控程序、配备切削刀具,还要密切注视加工过程中的机床运行状态、刀具状态、加工质量状态。普通加工中心要求操作人员进行这类干预,因此,不适应柔性制造自动化系统的需要。 6、试简述车削中心的主要工艺特点。 答:(1)多轴数控加工。普通数控机床只有一个主轴、一个刀架,只有X轴和Z轴两个数控轴,只能完成X轴与Z轴联动的数控加工。对车削中心来说,它最少有X轴、Z轴、C轴三个数控轴,可以完成X轴、Z轴、C轴三轴联动的数控加工,以及X轴、Z轴、C轴任意两轴联动的数控加工。(2)加工综合化。除具备普通车床的车削功能外,车削中心还有很强的综合加工能力。车削中心的Z轴与C轴联动,可以铣削螺旋槽;X轴与C轴联动,可以铣削端面凸台;控制C轴,可以加工端面沟槽。此外,车削中心还能加工横孔、侧平面、偏心孔、横偏心孔等特殊表面。(3)加工节奏快。要加快制造节奏,只能使工序集中,尽量减少上下工件的次数。车削中心有很强的综合加工能力,能够以工序高度集中的特长来完成回转体零件的切削加工,因此,它拥有很快的加工节奏。 7、试说明多级分布式控制系统中各级控制系统的主要职能。 答:可以把多级分布式控制系统的层次结构分成四个控制级,即公司级、工厂级、车间级、设备级。公司级职能:位于公司级的中央计算机管理着整个公司的运营状态。在综合数据库的支持下,它收集并处理市场和销售的信息,制定中长期生产计划,收集并积累产品制造数据。工厂级的职能:位于工厂级的主计算机承担着一个工厂的计划管理工作,即(1)根据中央计算机制订的生产计划,制订制造资源计划,管理生产进度和交货日期;(2)向单元计算机下达日作业指令,从单元计算机采集制造进度和完成状态的数据;(3)保存CAD/CAM系统生成的数控程序,或者把数控数据传送给单元计算机;(4)定期向中央计算机传送每日作业进度数据。车间级的职能:(1)接纳并管理制造命令;(2)编制作业调度计划;(3)统计设备的运行业绩;(4)与单元控制器一道监视并控制各设备的运行状态;(5)制造完成后向主计算机传送有关数据。设备级的职能:设备级被称为柔性制造自动化系统的“底层”,在各自控制装置的操纵下,位于底层的设备最终把产品制造计划变成现实的产品。 8、刀具预调采用什么设备?试简述刀具预调的步骤。 答:采用的设备:测量头、测量架、刀架。预调的步骤:(1)把刀具装夹在刀架主轴上;(2)

机械故障诊断考试题目

机械故障诊断考试--题库 (部分内容可变为填空题) 第一章: 1、试分析一般机械设备的劣化进程。 答:1)早期故障期 阶段特点:开始故障率高,随着运转时间的增加,故障率很快减小,且恒定。 早期故障率高的原因在于:设计疏忽,制造、安装的缺陷,操作使用差错。 2)偶发故障期 阶段特点:故障率恒定且最低,为产品的最佳工作期。 故障原因:主要是使用不当、操作失误或其它意外原因。 3)耗损故障期 阶段特点:故障率再度快速上升。 故障原因:零件的正常磨损、化学腐蚀、物理性质变化以及材料的疲劳等老化过程。 2、根据机械故障诊断测试手段的不同,机械故障诊断的方法有哪些? 答:1′直接观察法-传统的直接观察法如“听、摸、看、闻”是最早的诊断方法,并一直沿用到现在,在一些情况下仍然十分有效。 2′振动噪声测定法-机械设备在动态下(包括正常和异常状态)都会产生振动和噪声。进一步的研究还表明,振动和噪声的强弱及其包含的主要频率成分和故障的类型、程度、部位和原因等有着密切的联系。 3′无损检验-无损检验是一种从材料和产品的无损检验技术中发展起来的方法 4′磨损残余物测定法(污染诊断法 5′机器性能参数测定法-机器的性能参数主要包括显示机器主要功能的一些数据 3、设备维修制度有哪几种?试对各种制度进行简要说明。 答:1o事后维修 特点是“不坏不修,坏了才修”,现仍用于大批量的非重要设备。 2o预防维修(定期维修) 在规定时间基础上执行的周期性维修 3o预知维修 在状态监测的基础上,根据设备运行实际劣化的程度决定维修时间和规 模。预知维修既避免了“过剩维修”,又防止了“维修不足”;既减少了 材料消耗和维修工作量,又避免了因修理不当而引起的人为故障,从而 保证了设备的可靠性和使用有效性。 第二章: 1、什么是故障机理? 答:机械故障的内因,即导致故障的物理、化学或机械过程,称为故障机理。 2、什么是机械的可靠性?机械可靠性的数量指标有哪两个?他们之间互为什么关系?

第二章 自动化制造系统的人机一体化设计与评价

第二章自动化制造系统的人机一体化设计与评价 第一节自动化制造系统的人机一体化基本概念 自动化制造系统的实质是现代制造技术、计算机信息技术、自动化技术、电子、通信及人工智能等高新技术有机结合的产物。因此,制造系统的高度自动化曾一度成为人们研究的核心,并期望建立一种全盘自动化的无人工厂。 所谓人机一体化制造系统,就是人与具有适度自动化水平的制造装备和控制系统共同组成的一个完整系统,各自执行自己最擅长的工作,人与机器共同决策、共同作业,从而突破传统自动化制造系统将人排除在外的旧格局,形成新一代人机有机结合的适度自动化制造系统。 该定义的核心内容是强调人在制造系统中的重要作用,人机功能的最优匹配,以实现制造系统经济高效、安全可靠地运行,使整个制作系统取得最佳的社会经济效益。 自动化制造系统的人机一体化总体结构 在人机一体化制造系统定义下的自动化制造系统应该在三个层面上实现一体化,即感知和信息交互层面、控制层面(对输入制造系统的加工信息进行识别、判断、推理、决策和维护)和执行层面。 1.感知层面上的人机联合作用 2.控制层面上的人机共同决策 3.执行层面上人机交互协作、取长补短,充分发挥各自优势 第二节自动化制造系统的人机一体化总体设计 为了更好地设计出人机一体化的自动化制造系统,有必要对人和机器系统

在感知、控制和执行方面的特征进行对比分析。 人机一体化制造系统的目的,就是在总体上、系统级的最高层次上正确解决好人机功能分配、人机关系协调、人机界面匹配三个基本问题,以求得令人满意的人机系统方案,获得安全、舒适、高效的综合效益。 人机系统设计要求 人机系统设计的内容

机械故障诊断技术的现状及发展趋势

机械故障诊断技术的现状及发展趋势 摘要:随着机械行业的不断发展,机械故障诊断的研究也不断提出新的要求,进20年来,国内外的故障诊断技术得到了突飞猛进的发展,对机械故障诊断的发展现状进行了详细的论述,并对其发展趋势进行了展望。 关键词:故障诊断;现状;发展趋势 引言 机械故障诊断技术作为一门新兴的科学,自二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段,现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究其重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本锣鼓后语国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研究的系统与实际情况相差甚远,往往是从高等院校或者科研部门开始,在进行到个别企业,而国外的发展则是从现场发现问题进而反应到高等院校或者科研单位,是的研究有的放矢。 记过近二十年的努力,我国自己开发的故障诊断系统已趋于成熟,在工业生产中得到了广泛应用。但一些新的方法和原理的出现,使得故障诊断技术的研究不断向前发展,正逐步走向准确、方便、及时的轨道上来。 1.故障诊断的含义及其现状 故障诊断技术是一门了解和掌握设备运行过程中的状态,进而确定其整体或者局部是否正常,以便早期发现故障、查明原因,并掌握故障发展趋势的技术。其目的是避免故障的发生,最大限度的提高机械地使用效率。 1.1设备诊断技术的研究内容主要包括以下三个环节: (1)特征信号的采集:这一过程属于准备阶段,主要用一些仪器测取被测仪器的有关特征值,如速度、湿度、噪音、压力、流量等。 现在信号的采集主要用传感器,在这一阶段的主要研究基于各种原理的传感技术,目标是能在各种环境中得到高可靠、高稳定的传感测试信号。国内传感器类型:电涡流传感器、速度传感器、加速度传感器和湿度传感器等;最近开发的传感技术有光导纤维、激光、声发射等。(2)信号的提取与处理:从采集到的信号中提取与设备故障有关的特征信息,与正常信息只进行对比,这一步就可以称之为状态检测。目前,小波分析在这方面得到广泛应用,尤其是在旋转机械的轴承故障诊断中。基于相空间重构的GMD数据处理方法也刚刚开始研究,此方法对处理一些复杂机械的非线性振动,从而进一步预测故障的发展趋势非常有效。(3)判断故障种类:从上一步的结果中运用各种经验和知识,对设备的状态进行识别,进而做出维修决策。这一步关键是研究系统参数识别和诊断中相关的实用技术,探讨多传感器优化配置问题,发展信息融合技术、模糊诊断、神经网络、小波变换、专家系统等在设备故障诊断中的应用。 1.2故障诊断及时的发展历程· 故障诊断技术的大致三个阶段: (1)事后维修阶段;(2)预防维修阶段;(3)预知维修阶段。现在基本处于预知维修阶段,预知维修的关键在于对设备运行状态进行连续监测或周期检测,提取特征信号,通过对历史数据的分析来预测设备的发展趋势。 1.3故障诊断的发展现状 目前,国内检测技术的研究主要集中在以下几个方面:

柔性制造系统

柔性制造/自动化物流系统方案 一、概述 随着科学技术的迅速发展,新产品不断涌现,产品的复杂程度也随之增加,而产品的市场寿命日益缩短,更新换代加速,中、小批量生产占有越来越重要的地位。面临这—新的局面,必须大幅度提高制造柔性和生产效率,缩短生产周期,保证产品质量,降低能耗,从而降低生产成本,以获得更好的经济效益。柔性制造系统正是在这种形势下应运而生的。 柔性制造系统是由数控加工设备、物料运储装置和计算机控制系统等组成的自动化制造系统。它包括多个柔性制造单元,能根据制造任务或生产环境的变化迅速进行调整,以适宜于多品种、中小批量生产。它通过简单地改变软件的方法能够制造出多种零件中任何一种零件。 系统主要由八个单元模块组成: 自动化立体仓库、码垛机单元 CCD形状识别单元; 柔性制造加工单元; 上下料搬运机器人单元; CCD工件尺寸检测及颜色识别单元; 气动分拣及条码打印扫描检测单元; 自动化输送线系统单元; 气动分拣搬运机器人单元。 所有模块单元通过工业总线控制联接。即还包含系统总控单元。 为了促进相关专业的学生对机器人、柔性制造系统等先进制造技术有一个全面的深入了解和体会,我们立足于自己的技术优势,结合实际教学的需求,开发了一套完全模拟工业现场实际应用的柔性制造教学实训系统,并配备了相应的实验指导书。 通过该系统,使学生可通过实验了解柔性制造系统的基本组成和基本原理,为学生提供一个开放性的,创新性的和可参与性的实验平台,让学生全面掌握机电一体化技术的应用开发和集成技术,帮助学生从系统整体角度去认识系统

各组成部分,从而掌握机电控制系统的组成、功能及控制原理。可以促进学生在机械设计、电气自动化、自动控制、机器人技术、计算机技术、传感器技术等方面的学习,并对电机驱动及控制技术、PLC控制系统的设计与应用、计算机网络通信技术和现场总线技术、高级语言编程等技能得到实际的训练,激发学生的学习兴趣,使学生在机电系统的设计、装配、调试能力等方面均能得到综合提高。该系统设计有漏电保护、短路保护、急停保护、限位保护、隔离保护等多种保护功能。 二、系统特点 ●高度集成 通过Profibus-DP工业现场总线及开发型组态软件等网络通讯技术将系统中的所有单机模块设备进行高度的集成。与工业现场形式完全相同。 ●标准化 按工业标准设计,并可全面兼容标准工业级设备。 ●单元模块化 系统中的单元设备具有“联机/单机”两种操作模式。所有的单元设备的软硬件均可以脱离系统独立操作,可用单机设备为平台,进行单项技术的研发,易扩展。即方便教学又最大程度的满足了教师进行科研、学生进行创新的需要。●机器人嵌入式系统控制 六自由度串联机器人及六自由度并联机器人等关键设备采用嵌入式系统控制。系统紧凑小巧,对实时和多任务有很强的支持能力,能完成多任务并且有较短的中断响应时间。具有功能很强的存储区保护功能,便于学生动手操作和系统维护。 ●开放性 开放具有自主知识产权的软件源代码。此外,系统中以运动控制技术为主的单元装备需具有良好的硬件开放性,可以和工业上众多装备接口,进行系统集成。软件系统采用开放式源代码和通用软件开发平台(MS VC++和Borland C++),用户可以进行深层次的软件系统二次开发,以便于开发出适合用户需求的系统调度程序和单机运行程序,很大程度上方便了老师和同学课题研究工作。 ●网络化视频监控(选配)

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

柔性制造系统及其应用

柔性制造系统及其应用 随着经济一体化,竞争全球化时代的到来,需求多样化、竞争差异化,传统的制造系统已不能满足市场对多品种小批量产品的需求。迫使传统的大规模生产方式发生改变,批量生产时代正逐渐被适应市场动态变化的生产系统所替换,这就使制造系统的柔性越来越重要。柔性制造系统是一个由计算机集成管理和控制、高效率地制造某一类中小批量多品种零部件的自动化制造系统。能根据制造任务或生产环境的变化迅速进行调整,以适宜于多品种、中小批 随着经济一体化,竞争全球化时代的到来,需求多样化、竞争差异化,传统的制造系统已不能满足市场对多品种小批量产品的需求。迫使传统的大规模生产方式发生改变,批量生产时代正逐渐被适应市场动态变化的生产系统所替换,这就使制造系统的柔性越来越重要。柔性制造系统是一个由计算机集成管理和控制、高效率地制造某一类中小批量多品种零部件的自动化制造系统。能根据制造任务或生产环境的变化迅速进行调整,以适宜于多品种、中小批量生产。当制造对象发生变化时,它通过简单地改变软件、工装、刀具就够制造出所需的零件。 1 柔性制造系统概述 随着经济一体化,竞争全球化时代的到来,需求多样化、竞争差异化,传统的制造系统已不能满足市场对多品种小批量产品的需求。迫使传统的大规模生产方式发生改变,批量生产时代正逐渐被适应市场动态变化的生产系统所替换,这就使制造系统的柔性越来越重要。柔性制造系统是一个由计算机集成管理和控制、高效率地制造某一类中小批量多品种零部件的自动化制造系统。能根据制造任务或生产环境的变化迅速进行调整,以适宜于多品种、中小批量生产。当制造对象发生变化时,它通过简单地改变软件、工装、刀具就够制造出所需的零件。 它主要由三部分组成: (1)多台数控加工设备; (2)可以在装夹工位、加工设备、交换工作站之间运送及储存工件的运储系统;

机械故障诊断综述

中国自动化学会中南六省(区)2010年第28届年会?论文集 机械故障诊断综述 Survey on Faults Diagnosis of Machine 赵宏伟1,2,张清华1,夏路易2,邵龙秋1(1广东石油化工学院 计算机与电子信息学院,广东 茂名525000;2太原理工大学 信息工程学院,山西 太原030024)摘要:本文较系统的介绍了故障诊断的基本过程、原理,在此基础上对故障诊断方法做了详细、系统的论述,并进一步对故障诊断技术的发展做了展望。 关键词:故障诊断;诊断原理;维修制度 Abstract: In this paper, the basic process and principle of fault diagnosis are introduced. On that basis, the main method of fault diagnosis isintroduced in detail. Finally, the development on technique of faults diagnosis is looked forward. Key Words: Faults Diagnosis; Diagnosis Principle; maintenance 1 引言 七十年代以来,计算机和电子技术飞跃发展,促使工业生产向现代化、机器设备向大型化、连续化、高速化、自动化发展。与此同时,现代化机械设备的应用一方面大大促进了生产的发展;另一方面也潜伏着一个很大的危机,即一旦发生故障所造成的直接和间接的损失将是十分严重。为解决这一问题,机械故障诊断技术孕育而出。这门新技术也是一门以高等数学、物理、化学、电子技术、机电设备失效学为基础的新兴学科。它的宗旨就是运用当代一切科技的新成就发现设备的隐患,以期对设备事故防患于未然。如今它已是现代化设备维修技术的重要组成部分,并且成了设备维修管理工作现代化的一个重要标志。 2 设备维修制度 目前,与故障诊断技术紧密相关的设备维修制度共有三种: (1)事后维修制度(POM):这是一种早期的维修制度。主要特点是“不坏不修,坏了再修。”这种维修制度对发生事故难以预料,并往往会造成设备的严重损坏,既不安全且又延长了检修时间。 (2)预防维修制度(PM):又称以时间为基础的设备维修制度(TBM)或计划维修制度。这是一种静态维修制度,主要特点是当设备运行达到计划规定的时间或吨公里时便进行强制维修。它比前一种维修制度大大前进了一步,对于保障设备和人身安全,起到了积极作用。同时,这种维修制度也存在明显的缺陷,即过剩维修和失修的问题。以滚动轴承为例,同一型号的滚动轴承,其实际的使用寿命有时相差达数十倍。在预防维修制度行监测与诊断故障的方法,具体包括声音监听法、频谱分析法和声强法。 温度信号监测诊断技术包括物体温度的直接测量和热红外分析技术。实际工业中不恰当的温度变化往往意味着热故障的发生。从被测设备的某一部分的温 130

柔性制造系统

柔性制造系统 摘要:本文旨在介绍柔性制造系统的组成,工作原理,优势以及其面临的困惑,并简单介绍它的发展情况和发展趋势,为以后进一步地学习打下基础。 关键词:柔性制造系统、FMS 引言:随着科学技术的迅速发展,新产品不断涌现,产品的市场寿命日益缩短,更新换代加速,中、小批量生产占有越来越重要的地位。面临这一新的局面,必须大幅度提高制造柔性和生产效率,缩短生产周期,保证产品质量,降低生产成本,以获得更好的效益。柔性制造系统正是这种形势下应运而生的。 一、概述 柔性制造系统(英文全称为Flexible Manufacturing System,简称FMS)是由数控加工设备,物料贮运装置和计算机控制等系统等组成的自动化系统。它包括多个柔性制造单元(FMC),是一种集多种高新技术于一体的现代化制造系统。 二、FMS的一般组成 柔性制造系统是一个很复杂的系统,可概括为下列三部分: 1、加工系统。加工系统的功能是以任意自动化加工各种工件,并能自动地更换工件和刀具通常由若干台对工件进行加工的数控机床和所使用的刀具构成。 2、物流系统。工件、工具流统称为物流,物流系统,即物料贮运系统,是柔性制造系统中一个重要组成部分。 物流系统一般由下列三部分组成: / 输送系统建立各加工设备之间的自动化联系。它与传统的自动生产线

或流水线不同,FMS的工件输送系统可以不按固定节拍,固定顺序运送 工件,甚至是几种工件混杂在一起输送。 贮存系统具有自动存取机能,用以调节加工节拍的差异,使用的是自 动化存储仓库。 操作系统建立加工系统和贮存系统之间的自动化联系。 3、信息系统。包括过程控制和过程监控个系统。过程控制系统进行加工系统及物流系统的自动控制;过程监控系统进行在状态数据自动采集和处理。 三、FMS的工作原理 FMS工作过程:柔性制造系统接到上一级控制系统的有关生产计划信息和加工信息后,由其信息系统进行数据信息的处理,分配,并按照所给程序对物流系统工程进行控制。 物料库和夹具库根据生产的品种及调度计划信息提供相应品种的毛坏,选出加工所需要的夹具。毛坏的随行夹具由输送系统送出。工业机器人或自动装卸机按照信息系统的指令和工件及夹具的编码信息,自动识别和选择所装卸的工件及夹具,并将其安装在相应机床上。 机床的加工程识别装置根据送来的工件及加工程序编码,选择加工所需的加工程序,并进行检验。全部加工完毕后,由装卸及运输系统送入成品库,同时把加工质量、数量信息送到监视和记录装轩置,随行夹具被送回夹具库。 当需要改变加工产品时,只要改变传输给信息系统的生产计划信息、技术信息和加工程序,整个系统即能迅速、自动地按照新的要求来完成新产品的加工。 中央计算机控制着系统中物料的循环,执行进度安排、调度和传送协调等功能。它不断收集每个工位上的统计数据和其它制造信息,以便让统作出控制决策。

柔性制造系统技术概述

柔性制造系统技术概述 一、柔性制造系统的产生和特点 1、产生背景: (1)市场变化导致中小批量、多品种生产方式成为需要。 市场竞争的加剧及顾客需求的多样化,导致传统的以规模效应带动成本降低的刚性生产线不再适应市场的变化。 ?刚性生产线忽略了可能增加的库存而带来的成本的增加; ?1973年石油危机,使大批量生产的缺点暴露。 (2)科学技术的进步推动了自动化程度和制造水平的提高。 ?NC、CNC、DNC ?CAD、CAM ?GT、CAPP ?ROBOT 2、柔性自动化制造技术的产生 ?世界上公认的第一条柔性制造系统是英国莫林(Molin)机床公司1967年建成的“Molin System-24”;

?20世纪70年代末和80年代初,计算机辅助管理物料自动搬运,刀具管理和计算机网络、数据库技术的发展以及CAD/CAM技术的成熟,出现了更加系统化、规模更加扩大的柔性制造系统。 ?20世纪80年代末,FMS已经成为一项成熟的技术,并在世界范围得到广泛应用。 3、我国FMS的研究状况 我国采取引进和开发相结合的方针,引进箱体类零件、旋转体件及钣金件加工FMS的全部或部分硬件技术。 ?1984是我国研制FMS的起步时间,比国外晚了17年。我国第一套FMS系统是由北京机床研究所于1985年10月开发完成的(JCS-FMS-1),用于加工数控机床直流伺服电机中的主轴、端盖、法兰盘、壳体和刷架体等,它由5台国产加工中心、日本富士电机公司的AGV(自动导引车)及4台日本产的机器人组成,其控制系统由FANUC提供,据分析它的投资回收期约为两年半。 ?1983年-1985年,在国家的支持下北京第一机床厂、湖南江麓机床厂、郑州纺织机械厂、广西柳州开关厂等一些单位分别率先从德国、日本进口了国内第一批FMS。 ?1985年后在国家机电部“七五”重点科技攻关项目的支持和国家863高技术发展计划自动化领域的工作的带动下,FMS得到极大的重视和发展,进入了自行开发和部分进口的交叉阶段。

汽车底盘的故障诊断及分析

陕西交通职业技术学院 毕业设计(论文) 题目:汽车底盘的故障及诊断 院、系(站): 学科专业:汽修 学生:李阳 学号: 指导教师:吕波 二〇一三年三月

汽车底盘的故障及诊断 摘要 随着汽车工业的发展,汽车已成为人们出行的必要交通工具。汽车制动系统以成为汽车维修人员必会的技术。制动系统的作用是使行驶中的汽车能够按照驾驶员的要求进行强制减速甚至停车,使已经停止的汽车能够在各种道路条件下稳定驻车,使下坡行驶的汽车速度保持稳定。以保证汽车行驶的安全性。汽车制动系直接关系到人们的安全,所以我们在维修这方面时应该更加谨慎。 关键词:制动系作用安全稳定

Fault diagnosis of automobile chassis Abstract With the development of automobile industry, the automobile has become the necessary means of transport people travel. Automobile brake system to become car repair personnel will technology. The braking system is the role of the running automobile are forced to slow down or even stop according to the driver's demand, which has stopped car is able to stabilize the parking in various road conditions, makes the downhill speed stability. In order to ensure the running safety of the automobile. Automobile brake system is directly related to people's safety, so we in the repair should be more cautious. Key word:The security and stability of the braking system

《机械故障诊断》课程教学大纲

《机械故障诊断》课程教学大纲 一、课程的性质、任务和基本要求 《机械故障诊断》课程是海船轮机工程技术(船机修造)专业的主要专业选修课。研究的内容为机械系统动态信号处理与分析及以上内容在典型机械零部件运行过程中的状态分析与识别。在本课程中,培养学生利用所学知识正确分析与判断典型机械零部件运行过程中的状态的技能,并了解掌握故障诊断知识的更新及发展动向。本课程是为了学习好现代化新技术并熟悉和了解船机修造的基本要求而设置的。 本课程的任务是: 近年来,随着传感技术、电子技术、信号处理与计算机技术的突破性进展,《机械故障诊断》课程从理论、方法到应用领域都发生了很大的改变。要求本课程的讲授要知识面广、实践性强,结合新理论、新方法及新的使用领域,使学生了解前沿动态。增强船舶修造人员对船机设备维修基本知识的了解和实践应用。 本课程应达到的基本要求是: (1)机械系统动态信号处理与分析方法 (2)转轴组件的振动特性的描述及故障分析方法。 (3)滚动轴承的振动特性的描述及故障分析方法。 (4)齿轮箱的振动特性的描述及故障分析方法。 (5)红外检测技术。 (6)润滑油样分析。 二、课时分配 本课程教学总时数为42学时,具体课时分配见课时分配表 三、课程内容

课题一:概述 课程的内容、方法。诊断信息的来源、获取,典型故障示例,学习方法。 课程二:信号分析方法及应用 1、时域分析与频域分析。 2、时域与频域的转换。 3、时、频域信号中蕴涵的信息分析。 课程三:机械故障诊断依据的标准 1、故障诊断的绝对判断标准 2、故障诊断的相对判断标准 3、故障诊断的类比判断标准 4、几种判断标准的选用及判断实例。 课程四:转轴组件的振动特性描述及故障分析 1、转轴组件的振动机理 2、转轴组件的振动原因识别 3、现场平衡技术 课程五:滚动轴承的振动特性的描述及故障分析 1、滚动轴承失效的基本形式 2、滚动轴承的振动机理 3、滚动轴承的振动监测及故障判别 课程六:齿轮箱的振动特性的描述及故障分析 1、齿轮及齿轮箱的失效形式与原因 2、齿轮及齿轮箱的振动机理 3、齿轮及齿轮箱的故障诊断 课程七:红外检测技术振动测试 1、基本原理 2、应用之一—温度监测 3、应用之二—无损探测 课题八:润滑油样分析 1、油样分析的原理与步骤 2、铁谱分析与光谱分析 四、说明 1、本课程是一门理论性很强的课程,尽可能安排在柴油机、辅机等相关专业课程之后 开设。 2、本课程也具有很强的实践性,建议在理论教学中采用理论加强实例分析和现场参观 等教学方法。 3、本教学大纲适用于高中后三年制轮机工程技术(船机修造)专业毕业生。

#第一章 现代汽车故障诊断技术概述作业题库

第一章现代汽车故障诊断技术概述 第一章现代汽车故障诊断技术概述 1、发动机工作需要具备三个环节:________,_______,________。 2、检查燃烧室密闭性和发动机基本工作的最佳方法是进行_______试验。 3、检查点火系统的最佳方法是进行_______分析。 4、OBD-Ⅱ诊断系统有_________类型失火。 5、汽车制造厂商主要根据_________来监控引擎失火。 6、OBD-Ⅱ诊断系统EV AP系统监控用来检测活性碳罐的________和_______。 7、蓄电池的开路电压不应小于12.5V。 8、开启点火钥匙而不发动发动机,故障指示灯不会亮。 9、搭铁线路测得的电压降大于0.2v,表明接头良好。 10、电控系统线路图是故障诊断检修不可缺少的工具。 11、一般可以用指针式万用表测试电脑和传感器。 12、模拟式和数字式示波器主要区别为描述电流轨迹的方式。 13、解码器最有用的功能就是能记录路试时的故障码。 14、名词解释:解码器 15、简述进行故障诊断和排查的步骤? 16、OBD-Ⅱ系统作用与特点? 17、OBD-Ⅱ诊断系统的目的有哪两个? 18、OBD-Ⅱ诊断系统的连续监控和非连续监控包括哪些? 19、氧传感器的监测项目有哪些? 第二章现代汽车故障诊断设备 1、L型电控汽油喷射系统的电动燃油泵的工作除受_______外,还受_______或电脑控制。 2、电喷发动机系统驾驶员指令的唯一装置是________。 3、就诊断而言,数据流中最重要的参数是_________。 4、DTC故障码通常可分为_______和______。 5、硬故障和软故障码都可分为_______、______和______。 6、汽车控制系统的典型阶梯信号包括________、________和________。 7、点火系统的电压信号可以分为三个周期:_______、_______和________。 8、次级点火元件由于磨损形成的故障通常造成_______。 9、速度传感器三种基本形式有_______、_______和_______。 10、霍尔开关的工作的需要三条线端_______、_______和_______。 11、电位计需要三条接线包括_______、_______和_______。 12、压电式传感器需要三条线包括_______、_______和_______。 13、怠速时将回油管夹住时的油压,应为供油压力的2-3倍。 14、当引擎运转时,不同的传感器对其它传感器没有优先权。 15、OBD-Ⅱ诊断系统的诊断目的能减少汽车废气对大气的污染。 16、EGR系统监控能够连续监控发动机的工况。 17、OBD-Ⅱ诊断系统只能够连续测试和监控引擎的控制系统。 18、系统依靠触媒后的加热式氧传感器的信号来检测触媒转换器的工作效率。 19、对于示波器不需要初始设定,直接使用即可。 20、当示波器的两个探头线靠的越近,干扰就越大。 21、示波器的主要优点是查找间隙性故障。

设备故障诊断原理技术及应用

设备故障诊断原理技术及应用 机械设备故障诊断技术随着近十多年来国际上电子计算机技术、现代测量技术和信号处理技术的迅速发展而发展起来,是一门了解和掌握机械设备在使用过程中的状态,确定其整体或局部是否正常,早期发现故障及原因,并预报故障发展趋势的技术。 1.机械设备故障诊断的发展过程 设备故障诊断是指在一定工作环境下,根据机械设备运行过程中产生的各种信息判别机械设备是正常运行还是发生了异常现象,并判定产生故障的原因和部位,以及预测、预报设备状态的技术,故障诊断的实质就是状态的识别。 诊断过程主要有3 个步骤: ①检测设备状态的特征信号; ②从所检测的特征信号中提取征兆; ③故障的模式识别。其大致经历以下3 个阶段: ①基于故障事件原故障诊断阶段,主要缺点是事后检查,不能防止故障造成的损失; ②基于故障预防的故障诊断阶段; ③基于故障预测的故障诊断阶段,它是以信号采集与处理为中心,多层次、多角度地利用各种信息对机械设备的状态进行评估,针对不同的设备采取不同的措施。 2.开展故障诊断技术研究的意义 应用故障诊断技术对机械设备进行监测和诊断,可以及时发现机器的故障和预防设备恶性事故的发生,从而避免人员的伤亡、环境的污染和巨大的经济损失。应用

故障诊断技术可以找出生产设备中的事故隐患,从而对机械设备和工艺进行改造以 消除事故隐患。状态监测及故障诊断技术最重要的意义在于改革设备维修制度,现在多数工厂的维修制度是定期检修,造成很大的浪费。由于诊断技术能诊断和预报设备的故障,因此在设备正常运转没有故障时可以不停车,在发现故障前兆时能及时停车。按诊断出故障的性质和部位,可以有目的地进行检修,这就是预知维修—现代化维修 技术。把定期维修改变为预知维修,不但节约了大量的维修费用,而且,由于减少了许多不必要的维修时间,而大大增加了机器设备正常运转时间,大幅度地提高生产率,产生巨大的经济效益。因此,机械状态监测与故障诊断技术对发展国民经济有相当重要的作用。 3.机械故障诊断的研究现状 机械故障诊断作为一门新兴的综合性边缘学科,经过30 多年的发展,己初步形成了比较完整的科学体系。就其技术手段而言,已逐步形成以振动诊断、油样分析、温度监测和无损探伤为主,其他技术或方面为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最具生机与活力。目前,对振动信号采集来说, 计算机技术足以胜任各种场合的需要。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅立叶变换、Wign2er 分布和小波变换等。就诊断方法而言,除了单一参数、 单一故障的技术诊断外,目前多变量、多故障的综合诊断已经兴起。 人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不

相关文档
相关文档 最新文档