文档库 最新最全的文档下载
当前位置:文档库 › 低纳米Pt在介孔空心碳半球上的稳定负载及其高效氧还原催化性能

低纳米Pt在介孔空心碳半球上的稳定负载及其高效氧还原催化性能

低纳米Pt在介孔空心碳半球上的稳定负载及其高效氧还原催化性能
低纳米Pt在介孔空心碳半球上的稳定负载及其高效氧还原催化性能

低纳米Pt 在介孔空心碳半球上的稳定负载及其高效氧还原催化性能闫早学*,宗瑟凯,谢吉民

(江苏大学化学化工学院,江苏,镇江,212013,E-mail:yanzaoxue@https://www.wendangku.net/doc/1558328.html, )

低温燃料电池主要使用Pt 、Pd 等贵金属为催化剂。贵金属价格昂贵,制约了燃料电池的商业化。尤其在燃料电池阴极发生的氧还原反应,动力学速率缓慢,需要更多的活性位来加速其反应,这就进一步增加了对贵金属的需求。为解决这一问题,改善贵金属的分散性和物料传输性能,进而提高贵金属利用率,显得至关重要。

碳材料尤其是空心碳材料因其具有良好的导电性、优异的化学稳定性和高比表面积被广泛应用于分散和负载贵金属。我们开发了一种介孔空心碳半球材料(BLC)[1]:它是具有开口的空心碳球,并且球壳上含有大量的介孔,能够将空心材料内壁充分暴露,如图1所示。BET 测试结果表明该材料具有1108.3m 2g -1的比表面积,2.7cm 3g -1的孔体积和9.4nm

的平均孔直径。

图1介孔空心碳半球(BLC)的SEM 图,内嵌TEM

图。

Fig.1SEM and TEM images of mesoporous hollow

carbon hemispheres

(BLC).图2Pt 在BLC(a)和Vulcan XC-72carbon (b)上负载的TEM 图。(c),(d)为相应的P 图粒径分布图。Fig.2TEM images of Pt/BLC (a)and Pt/C (b).(c)and (d)are the corresponding Pt particle

distributions.

图3(a)Pt/BLC 和商业Pt/C (TKK)的氧还原曲线图,内嵌质量活性-电位曲线图;(b)Pt/BLC 和Pt/C (TKK)的循环稳定性比较,“阴影”为第1圈至第10,000圈扫过的面积。

Fig.3(a)The ORR on Pt/BLC and Pt/C (TKK)electrodes in O 2saturated 0.1mol L -1HClO 4solution,25o C,scan rate:5mV s -1,1600rpm,inset is the corresponding mass activity -potential plots;(b)the ORR

electrocatalytic stability comparison between Pt/BLC and Pt/C(TKK),the shadows are the cycling difference between the1th cycle and the10,000th cycle.

我们采用间歇微波加热法[2]将纳米Pt粒子负载于BLC(记为Pt/BLC)和Vulcan XC-72carbon(记为Pt/C)。图2所示为两种催化剂的TEM图和Pt粒径分布图。可以看到Pt在BLC上的平均粒径为2.7nm,在Vulcan XC-72carbon上的平均粒径为3.2nm。显然,Pt粒子在BLC上的分散性更好,粒径更小。这表明BLC的高比表面和介孔结构有利于Pt的充分分散。

图3(a)所示为Pt/BLC和商业Pt/C(TKK)在O2饱和的0.1mol L-1HClO4水溶液中的氧还原循环伏安曲线图。数据显示,Pt/BLC在0.9V电位的质量电流密度为180.6mA mg-1Pt,为商业Pt/C(TKK)的1.6倍。分析其原因,一方面是由于Pt/BLC的Pt粒子更小,活性位更多,另一方面是因为BLC的空心半球和介孔结构具有更好的物料传输性能,从而使得Pt/BLC具有优秀的氧还原活性。图3(a)所示Pt/BLC具有更高的极限电流密度,佐证了BLC优秀的物料传输性能。

图3(b)通过循环伏安法比较了Pt/BLC和Pt/C(TKK)的电化学稳定性。结果表明,Pt/C(TKK)的质量电流密度在第10,000圈为94.2mA mg Pt-1,比第一圈降低了18.9%;而Pt/BLC在第10,000圈的质量电流密度为168.1mA mg Pt-1,仅比第一圈降低了6.9%。究其原因,BLC的介孔结构抑制了Pt粒子在其表面的脱落或团聚,因而Pt/BLC显示出更好的电化学稳定性。

本研究为中国博士后科学基金面上项目(2012M521011)和江苏省高校自然科学基金项目(12KJB150007)资助。

参考文献:

[1]Zaoxue Yan,Mingmei Zhang,Jimin Xie,Hongen Wang,Wei Wei.Journal of Power Sources,2013,243:48-53.

[2]Zhiqun Tian,Fangyan Xie,Peikang Shen.Journal of Material Science,2004,39:1509-1511.

Smaller Pt Particles Supported on Mesoporous Hollow Carbon Hemispheres for

Efficient and Stable Oxygen Reduction Reaction

Zaoxue Yan,Sekai Zong,Jimin Xie

(School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang,Jiangsu,212013E-mail:

yanzaoxue@https://www.wendangku.net/doc/1558328.html,)

黑磷详细性能参数

黑磷性能参数 黑磷性能参数,这是大家很关心的内容。科学研究从未停止对于新材料的研究,比如石墨烯材料,自发现以来就被应用于多种电子产品的生产,被称之为奇迹材料。而如今,科学家们又发现黑鳞,与石墨烯相比,特点就是低成本的制造工艺,在生产生活中有很多优势,也被预测也会取代石墨烯。下面就由先丰纳米简单的介绍黑磷性能参数。 二维晶体是由几层单原子层堆叠而成的纳米厚度的平面晶体,比如石墨烯。但是石墨烯没有半导体带隙,也就是说它难以完成导体和绝缘体之间的转换,不能实现数字电路的逻辑开与关。而同样由单原子层堆叠而成的黑磷,则具有一个半导体带隙。 研究人员把黑磷做成纳米厚度的二维晶体后,发现它有非常好的半导体性质,这样就有可能用在未来的集成电路里。黑磷二维晶体有良好的电子迁移率,还有非常高的漏电流调制率,是石墨烯的10000倍,与电子线路的传统材料硅类似。 除了电性能外,黑磷的光学性能同包括硅和硫化钼在内的其他材料相比也有优势。它的半导体带隙是直接带隙,即电子导电能带底部和非导电能带顶部在同一位置,实现从非导到导电,电子只需要吸收能量,而传统的硅或者硫化钼等都是间接带隙,不仅需要能量,还要改变动量。这意味着黑磷和光可以直接耦合,这个特性让黑磷成为未来光电器件的一个备选材料。可以检测整个可见光到近红外区域的光谱。 这些初步的研究结果,远没有达到黑磷性能的极限,还有极大的拓展空间。黑磷还只是一个刚刚被发现的材料,现在其前景作任何的推断都还太早。这个材料的很多特性还有待发掘。

如果想要了解更多关于黑磷的内容,欢迎立即咨询先丰纳米公司。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米材料在电化学传感器中的应用

碳纳米材料在电化学传感器中的应用研究 摘要由于碳纳米材料具有良好的力学、电学及化学性能而被人们广泛研究,特别是对于具有大比表面积、高的电导率和良好生物相容性的碳纳米管、碳纳米纤维和石墨烯更是研究的热点。这些新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域,特别是在电化学领域中显示出其独特的优势。本文主要阐述了碳纳米材料在电化学传感器领域的应用。 关键词碳纳米管石墨烯电化学传感器 1电化学传感器概述 电化学传感器主要由两部分组成:识别系统;传导或转换系统。 识别系统与待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,电化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。电化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。 最早的电化学传感器可以追溯到 20 世纪 50 年代,当时用于氧气监测。到了 20 世纪80 年代中期,小型电化学传感器开始用于检测 PEL 范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。 2 碳纳米材料——碳纳米管和石墨烯 随着科学技术的进步,研究者发现空间尺寸在0.1-100 nm之间的物质拥有很多宏观状态下没有的特性[1]。我们把这些具有一定功能性、三维空间尺寸至少有一维介于0.1-100 nm 之间的一类物体统称为纳米材料。它是由纳米微粒、原子团簇、纳米丝、纳米管、纳米薄膜或由纳米粒子组成的块体。由于具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的量子尺寸效应[2, 3]、体积效应[4]、表面效应[5]和量子隧道效应[6]等特性,纳米材料在光学、热学、催化、光化学以及敏感特性等方面具有一系列特殊的性质,因此它具备其它一般材料所没有的优越性能,可广泛应用于电子、医药、化工、生物、军事、航空航天等众多领域,在整个新材料的研究应用方面占据着核心的位置。 碳是一种非金属元素,位于元素周期表的第二周期IV A族。作为地球上最容易得到的元素之一,碳元素以多种形式广泛存在于大气和地壳之中。碳单质很早就被人认识和利用,它在常温下的化学性质比较稳定,不溶于水、稀酸、稀碱和有机溶剂。利用现代科技的不同制备方法,我们可以制备出不同独特空间结构和特异性能的碳纳米材料,其中包括零维的富勒烯、一维的碳纳米管、二维的石墨烯和三维的石墨或金刚石。依靠独特的空间结构和优异的化学性能,它们可以应用于各个领域中。接下来我们主要介绍一下碳纳米管和石墨烯。 2.1碳纳米管 CNTs是1991 年日本电镜学家Iijima在高分辨透射电子显微镜下检验石墨电弧中产生

纳米磁性空心微球及其与碳纳米管复合材料的制备及性能研究

目录 1前言 (1) 1.1纳米磁性空心微球概述 (2) 1.1.1纳米磁性空心微球研究现状 (2) 1.1.2纳米磁性空心微球的制备方法 (2) 1.1.3纳米磁性空心微球的应用 (8) 1.2稀土掺杂铁氧体吸波材料的研究现状 (10) 1.3碳纳米管的研究现状 (10) 1.4磁性碳纳米管复合材料的研究现状 (11) 1.5论文选题目的及意义 (12) 1.5.1论文选题目的及意义 (12) 1.5.2论文主要研究内容 (13) 2实验药品与仪器设备 (14) 2.1实验药品 (14) 2.2实验仪器 (15) 2.3样品的表征手段及条件 (15) 2.3.1X射线衍射分析(XRD) (15) 2.3.2扫描电镜分析(SEM) (16) 2.3.3透射电镜分析(TEM) (16) 2.3.4振动样品磁强计(VSM) (16) 2.3.5矢量网络分析仪 (16) 3钴铁氧体空心微球的制备及性能研究 (18) 3.1钴铁氧体空心微球的制备 (18) 3.1.1以聚苯乙烯(PS)球为模板法 (18) 3.1.2以碳微球为模板法 (18)

3.1.3溶剂热法 (19) 3.2钴铁氧体空心微球的表征与分析 (19) 3.2.1XRD分析 (19) 3.2.2形貌和粒径分析 (21) 3.2.3磁性能研究 (24) 3.2.4吸波性能研究 (26) 3.3本章小结 (27) 4钴锌、钴镍铁氧体空心微球的制备及性能研究 (28) 4.1钴锌、钴镍铁氧体空心微球的制备及性能研究 (28) 4.1.1钴锌铁氧体空心微球的制备 (28) 4.1.2钴镍铁氧体空心微球的制备 (28) 4.2钴锌、钴镍铁氧体空心微球的表征与分析 (28) 4.2.1XRD分析 (28) 4.2.2形貌和粒径分析 (29) 4.2.3磁性能研究 (31) 4.2.4吸波性能研究 (34) 4.3本章小结 (37) 5稀土掺杂钴锌铁氧体微球的制备及性能研究 (38) 5.1稀土掺杂钴锌铁氧体微球的制备 (38) 5.1.1镧掺杂钴锌铁氧体微球的制备 (38) 5.1.2铈掺杂钴锌铁氧体微球的制备 (38) 5.1.3钕掺杂钴锌铁氧体微球的制备 (38) 5.2稀土掺杂钴锌铁氧体微球的表征与分析 (38) 5.2.1XRD分析 (38) 5.2.2形貌和粒径分析 (39) 5.2.3磁性能研究 (40) 5.2.4吸波性能研究 (44)

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

低纳米Pt在介孔空心碳半球上的稳定负载及其高效氧还原催化性能

低纳米Pt 在介孔空心碳半球上的稳定负载及其高效氧还原催化性能闫早学*,宗瑟凯,谢吉民 (江苏大学化学化工学院,江苏,镇江,212013,E-mail:yanzaoxue@https://www.wendangku.net/doc/1558328.html, ) 低温燃料电池主要使用Pt 、Pd 等贵金属为催化剂。贵金属价格昂贵,制约了燃料电池的商业化。尤其在燃料电池阴极发生的氧还原反应,动力学速率缓慢,需要更多的活性位来加速其反应,这就进一步增加了对贵金属的需求。为解决这一问题,改善贵金属的分散性和物料传输性能,进而提高贵金属利用率,显得至关重要。 碳材料尤其是空心碳材料因其具有良好的导电性、优异的化学稳定性和高比表面积被广泛应用于分散和负载贵金属。我们开发了一种介孔空心碳半球材料(BLC)[1]:它是具有开口的空心碳球,并且球壳上含有大量的介孔,能够将空心材料内壁充分暴露,如图1所示。BET 测试结果表明该材料具有1108.3m 2g -1的比表面积,2.7cm 3g -1的孔体积和9.4nm 的平均孔直径。 图1介孔空心碳半球(BLC)的SEM 图,内嵌TEM 图。 Fig.1SEM and TEM images of mesoporous hollow carbon hemispheres (BLC).图2Pt 在BLC(a)和Vulcan XC-72carbon (b)上负载的TEM 图。(c),(d)为相应的P 图粒径分布图。Fig.2TEM images of Pt/BLC (a)and Pt/C (b).(c)and (d)are the corresponding Pt particle distributions. 图3(a)Pt/BLC 和商业Pt/C (TKK)的氧还原曲线图,内嵌质量活性-电位曲线图;(b)Pt/BLC 和Pt/C (TKK)的循环稳定性比较,“阴影”为第1圈至第10,000圈扫过的面积。 Fig.3(a)The ORR on Pt/BLC and Pt/C (TKK)electrodes in O 2saturated 0.1mol L -1HClO 4solution,25o C,scan rate:5mV s -1,1600rpm,inset is the corresponding mass activity -potential plots;(b)the ORR

碳纳米材料简介

碳纳米材料简介 第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切 生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%碳元素是元素周期表中IV A族中最轻的元素。它存在三种同位素:12C、13C、14c。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯( fullerenes ),一维的碳纳米管(carb on nano tubes ),二维的石墨烯(graphe ne),三维的金冈寸石(diam ond) 和石墨(graphite )等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子一一C6。。这一发现使得他们赢得了1996年的诺贝尔化学奖。G。由60个原子组成,包含20个六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备出来。G。的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多

优良的物理和化学性质(表1-1 ) 表 60的一些基本物理和化学性质 碳纳米管(carbon nano tubes )是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nano tubes ,MWNTs其直径从几百皮米到几十纳米, 而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引 起了科学界的广泛兴趣。1991年日本的Iijima 在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993 年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图 1-1 )。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管 被称为锯齿形(zigzag )单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形 (armchair )单壁碳纳米管;其他的均被称为手性(chiral )碳纳米管。单壁碳纳米管 的直径可以通过两个指数算出来。

空心纳米球的制备方法及其研究进展

空心纳米球的制备方法及其研究进展 摘要: 空心纳米球作为一种新的纳米结构, 其特有的核-壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能, 从而在医学、制药学、材料学、染料工业等领域具有很好的应用前景。本文综述了微乳液聚合法、模板法和由模板法发展而来的L-b-L 自组装法制备无机材料空心纳米球的一般过程及原理, 最后总结了空心纳米球材料的研究进展。 1 引言 探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一。如今已问世的纳米结构有准一维纳米材料包括纳米管、纳米线、纳米棒和纳米电缆等, 而且这些纳米结构材料的制备技术已日趋成熟并逐步实用化。 空心纳米球作为一种新的纳米结构, 其一个明显的特征就是具有很大的内部空间及厚度在纳米尺度范围内的壳层。这种特殊结构使它可作为客体物质的载体, 从而在医学和制药学领域应用范围很广。此外, 空心球的特殊空心结构还使得这种材料与其块体材料相比具有比表面积大、密度小等很多特性, 因此空心纳米球的应用范畴不断扩大, 已扩展到材料科学、染料工业等众多领域。可作为轻质结构材料[ 1] 、隔热、隔声和电绝缘材料[ 2] 、颜料、催化剂载体[ 3] 等。 由于空心纳米球材料的优异性能及广阔应用前景, 其开发研究引起了人们的广泛关注, 现已形成制备空心纳米球的多种方法, 如模板法[ 4, 5] 、吸附技术[ 5] 、喷雾高温分解法[ 6, 7] 、超声化学法[ 8] 、水热法[ 9] 等。用这些方法已成功制备出CdS[ 10] 、ZrO2[ 11] 、金属Ag[ 12, 13] 、TiO2[ 14] 、Si[ 15] 、SnO2[ 1 6] 等多种无机材料空心纳米球,及聚合物空心纳米球, 如PSt [ 17, 18] 、聚甲基丙烯酸甲酯[ 19] 等。 目前关于空心纳米球的报道多局限于空心球的制备, 而对具体制备方法的阐述则比较少。模板法作为最常用的一种制备方法被广泛地用于各种材料的空心纳米球的制备中, 而其在聚合物空心纳米球制备中的应用已有文献综述报道[ 20] , 且技术已相对成熟。因此本文将综述使用微乳液聚合法、模板法和由模板法发展而来的L-b-L 自组装法制备无机材料空心纳米球的一般过程及原理。 2.1 Microemulsion method Microemul sion technology was applied to produce polymer in the 1980s. Stoffer et al[ 45] fir stly polymerized the methyl methacrylate (MMA) and methacrylate (MA) by microemulsion technology. Since then , the microemul sion technology as a roused widespread concern. And now it has become an important approach to prepare the hollow nanospheres , especially for those that the diameter is small (minimum 10 ~60nm) . The preparation process has three steps[ 46] : firstly ,precur sors of target product s hydrolyze and generate oxide with aquifer or hydroxides on the surface of the droplet of microemul sion ; afterwards , the stable colloidal particles that is produced by polycondensation coat and form the core-shell structure of emul sion and gel ; at last , water or organic solvent are used to separate the product f rom the microemulsion. Then hollow nanospheres can be prepared. The process is shown in Fig. 1.

碳纳米管的性能综述

碳纳米管的性能综述 摘要 碳纳米管因为性能多方面并且应用广泛而受到很多研究员的关注,本文将对碳纳米管的几个性能的研究进行综述,包括碳纳米管的碳纳米管/FeS类Fenton催化剂催化性能、纳米连接性能、碳纳米管增强复合材料风机叶片性能、碳纳米管稳定性能分析、碳纳米管机械强度、碳纳米管吸附特性的综述。 关键字:碳纳米管性能催化剂催化性能连接性能稳定性能纤维的性能吸附特性 碳纳米管/FeS类Fenton催化剂催化性能 杨明轩等以浮动催化热分解法制备碳纳米管( CNTs) ,采用氧化-还原-硫化的方法制备了CNTs /FeS催化剂,采用X射线衍射( XRD) 透射电子显微镜( TEM) 和热重( TG) 分析等技术对催化剂进行了结构表征。将CNTs /FeS作为类Fenton催化剂用于水中环丙沙星的去除,研究了降解过程中H2O2 浓度CNTs /FeS催化剂的投加量环丙沙星浓度及pH等因素对催化降解性能的影响。结果表明,CNTs /FeS类Fenton催化反应在H2O2 浓度为20mmol /L和CNTs /FeS催化剂的投加量为10 mg的条件下具有最优的降解效果,其催化反应过程符合一级动力学方程,且具有更加宽泛的pH适应范围( pH=3 ~8) ,同时,CNTs /FeS类Fenton 催化剂在使用寿命方面也具有一定的优势.结论是采用碳纳米管原始样品制备了CNTs /FeS 类Fenton催化剂,并应用于环丙沙星的催化降解反应中,在pH=3 ~8范围内可保持较高去除率( 可达89%) ; 当H2O2 浓度为20mmol /L时,去除率最高( 可达90%) ; CNTs /FeS催化剂催化降解环丙沙星反应过程符合表观一级动力学方程。CNTs /FeS类Fenton催化反应在固液比1 ∶2的情况下,循环使用4次后仍然保持较高的催化降解效率。 碳纳米管的连接性能 2002年,Derycke等采用恒定的电流施加于Au电极结果表明,在焦耳热作用下,单壁碳纳米管( SWCNTs) 与金电极接触处的氧气等吸附物发生脱附,并获得了较低的接触电阻。 2006年,Chen等提出一种新颖的超声纳米焊接技术该技术使用超高频微幅振动的压头,成功地将CNTs压焊到金属电极上,形成可靠的电接触结果表明,焊接后的结构具有较高的机械强度和较低的接触电阻采用这种超声纳米焊接技术,能极大地改善基于CNTs的场效应晶体管性能。目前的纳米连接技术主要包括局部焦耳热法高温退火法电子束焊接法超声纳米焊接和原子力显微镜操纵法。 2011年,Karita等研究了多壁碳纳米管( MWCNTs) 和金电极间的电接触,并在接触处施加电流结果表明,当电流密度达到108A /cm2时,金表面沿着MWCNTs端开始熔化当电流密度提高2倍时,观察到接触区域的金表面结构发生显著性改变,从而减少了接触阻抗该研究组还针对开口和封口CNTs与金电极的纳米连接进行了研究发现,在与Au电极接触的区域中,采用开口CNTs所获单位面积电导率约为封口CNTs电导率的4倍但同时观测到,采用局部焦耳热法时,所产生的大电流引起连接区域材料过度熔化及表面形貌的改变,进而影响器件的性能。 碳纳米管的稳定性能

碳球的制备进展

碳球的制备进展 1引言 微球是一种形态可控的微粒材料,在研究与工业生产均具有很大的价值。碳球是一种碳元素所构成的微球,球型碳材料是在20世纪60年代被发现的,人们在研究焦炭的形成过程中发现沥青类化合物在热处理过程中会生成中间相小球[1]。与普通微球相同,碳球分为实心碳球、中空碳球、多孔碳球三种。实心碳球因其不存在内部空间,在纳米级材料的研究应用方面有着重要的作用。中空材料的形成机理、结构、制备及其应用是近年来的研究热点。可控的中空碳球与多孔碳球因其高比表面积、高化学稳定性、高吸附性等优良的性质,在电学领域、能源领域、催化、吸附等方面有着重要的作用。 鉴于碳球制备技术的迅速发展和应用需求的急剧增加,本文对近年来实心、空心、多孔三种碳球的制备方法、成型机理与发展的研究做一综述。 2碳球的制备与应用 就目前国内外的研究状况,根据碳球的结构特点将其分为3种:实心碳球,即整个球是密实的;中空碳球,球的中心部分是空的;多孔碳球,球的表面有许多孔洞。下面对这3种不同类型碳球制备的方法进行阐述,介绍其制备方法、成型机理与发展。 2.1实心碳球 2.1.1实心碳球的制备 实心碳球的制备方法主要有St?ber法、水热合成和热裂解法等。 2.1.1.1St?ber法 制备球形SiO2常用的方法是St?ber法,该方法通过烧结硅酸盐球形前驱体得到球形的SiO2[17]。Lu等采用这种方法,以PR为前驱体,成功合成实心碳球[18]。以间苯二酚、甲醛和1,2-乙二胺为原料,F127为表面活性剂合成PR,经过高温烧结,顺利得到实心碳球。 2.1.1.2水热合成采用水或有机溶剂作为反应介质,通过对反应容器加热,在一定的温度和自生压力下,原料混合进行反应。这可使一些在常温常压下反应速率很慢的热力学反应,在溶剂热条件下可实现反应快速化。Wang等[19]在190℃水热条件下处理蔗糖溶液,再把所得到的产物置于管式炉中在氩气保护下进行高温碳化,即可制得单分散的实心碳球。吝亚南[21]将间苯二酚溶解在去离子水中,加入F127、甲醛溶液、1,2-己二胺(DAH),发生聚合反应。反应结束后,离心分离聚合产物,水洗、干燥后即得到碳球前驱体;最后,在氮气气氛中,煅烧聚合物前驱体,得到实心碳球。朱玲玲等人[22]采用溶剂热技术,以四氯化碳为碳源,金属钠为还原剂,在四氢呋喃中反应,产物仅为由碳纳米片构成的实心碳球。 2.1.1.3 热裂解法

六方氮化硼微片详细性能参数

六方氮化硼微片性能参数 六方氮化硼微片性能参数,大部人可能都不大了解。那什么是氮化硼?氮化硼是由氮原子和硼原子所构成的晶体(BN),其化学组成为43.6%的硼和56.4%的氮。氮化硼按晶型分,氮化硼被分为六方氮化硼、立方氮化硼、菱方氮化硼和纤锌矿氮化硼。下面就由先丰纳米简单的介绍六方氮化硼微片性能参数。 六方氮化硼性能参数: 1、高耐热性:3000℃升华,其强度1800℃为室温的2倍,1500℃空冷至室温数十次不破裂,在惰性气体中2800℃不软化。 2、高导热系数:热压制品为33W/M.K和纯铁一样,在530℃以上是陶瓷材料中导热最大的材料。 3、低热膨胀系数:2×10-6的膨胀系数仅次于石英玻璃,是陶瓷中最小的,加上其具有高导热性,所以抗热震性能很好。 4、优良的电性能:高温绝缘性好,25℃为1014Ω-cm,2000℃还可以达到103Ω-cm,是陶瓷中的高温绝缘材料,介电常数为4,可透微波和红外线。 5、良好的耐腐蚀性:与一般金属(铁、铜、铝、铅等)、贵重金属,半导体材料(锗、硅、砷化钾),玻璃,熔盐(水晶石、氟化物、炉渣)、无机酸、碱不反应。 6、低的摩擦系数:U为0.16,高温下不增大,比二硫化钼,石墨耐高温,氧化气氛可用到900℃,真空下可用到2000℃。 7、高纯度含硼高:其杂质含量小于10PPM,而含硼大于43.6%。

8、可机械加工性:其硬度为莫氏2,所以可用一般机械加工方法加工成精度很高的 零部件制品。 如果想要了解关于更多的六方氮化硼内容,欢迎立即咨询先丰纳米公司。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米材料简介

碳纳米材料简介

第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%。 碳元素是元素周期表中ⅣA族中最轻的元素。它存在三种同位素:12C、13C、14C。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯(fullerenes),一维的碳纳米管(carbon nanotubes),二维的石墨烯(graphene),三维的金刚石(diamond)和石墨(graphite)等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, 。这一Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子——C 60 发现使得他们赢得了1996年的诺贝尔化学奖。C 由60个原子组成,包含20个 60 六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,出来。C 60 对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多优良的物理和化学性质(表1-1) 表1-1 C 的一些基本物理和化学性质 60

碳纳米管 碳纳米管(carbon nanotubes)是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nanotubes,MWNTs)。其直径从几百皮米到几十纳米,而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引起了科学界的广泛兴趣。1991年日本的Iijima在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图1-1)。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管被称为锯齿形(zigzag)单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形(armchair)单壁碳纳米管;其他的均被称为手性(chiral)碳纳米管。单壁碳纳米管的直径可以通过两个指数算出来。 图1-1 单壁碳纳米管结构示意图 由于其特殊的结构,碳纳米管具有许多优良的性质。从电学性质来看,碳纳米管可分为金属型(metallic,带隙为零)和半导体型(semiconducting,带隙可达2eV)。单壁碳纳米管的一些重要性质如表1-2。

葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 广州华南农业大学理学院09材化(2)班林勋,200930750211 引言 炭微球材料由于其具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已经引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 mol·L-1 的葡萄糖溶液在低于140 C 或反应时间小于1h 时不会形成炭球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5 mol·L-1、160℃、3h 时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500 nm。 由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,制备得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。 图1 水热法形成炭球的结构变化示意图 1 实验部分 1.1 实验仪器与试剂

葡萄糖,去离子水,95%乙醇,50mL 高压反应釜,鼓风干燥箱,电子天平,抽滤装置(有机滤膜),滤纸,玻璃棒 1.2 纳米碳球的制备 纳米碳球的制备参见文献[1]。用电子天平称取 6g 葡萄糖放入50mL 反应釜内衬(图2)中,用移液管准确移取35mL 去离子水(葡萄糖溶液的浓度为0.952 mol·L -1 )加入到上述反应釜中,用玻璃棒搅拌溶液,使葡萄糖全部溶解,然后装入反应釜中,用扳手拧紧反应釜,放入烘箱中。设定反应条件为:温度 180?C ,反应时间 4~12 h 。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用40 um 有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和 95% 乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥 4h 。收集样品,称重并计算产率。 图2 反应釜实物与结构示意图 1.3 纳米碳球的表征 1.3.1 X-射线衍射分析 测定所制备碳球的晶型以判断该碳球所属的类型(如普通碳还是石墨型碳) 1.3.2 红外光谱分析 测定碳球的活性官能团,表征不同制备条件下得到的碳球活性官能团变化 2 结果与讨论 2.1 实验数据 实验最终制备得到的纳米碳球的质量为 0.1255 g ,根据下列化学方程式 C 6H 12O 6 6C+6H 2O 可得产率23%.5100%4 .21255.0100%理论产率实际产率ω=?=?=

石墨烯纳米片详细性能参数

石墨烯纳米片性能参数 石墨烯纳米片性能参数,这是我们在购买前需要了解的事情。石墨烯纳米片具有优良 的导电,润滑,耐腐,耐高温等特性。制备的石墨烯纳米片厚度在4~20nm,微片大小在5~10μm,小于20层。石墨烯纳米片在导热方面显示了它优异的特性,应用在导热胶,导热高分子复合材料,散热材料中。同时在导电橡胶,导电塑料,抗静电材料方面有广阔的 应用前景。下面就由先丰纳米给大家简单的介绍石墨烯纳米片性能参数。 性能: 1、具有高比表面积和发达的中孔,孔隙结构分布合理。 2、具有优异的吸波防辐射屏蔽性能,可有效降低内阻,屏蔽辐射。, 3、石墨烯除了有很好的导电性能外,还具备优异的机械性能及导热性能,是导电涂料添加剂 4、石墨烯的导热系数高,将其用于导热涂料可有效传导材料的内部温度,增强导热效果。 应用领域: 1、导电涂料,纳米导电复合材料、纳米电子器件、塑料、橡胶和锂离子电池等方面具 有广泛的应用前景。 2、防屏蔽涂料,石墨烯具有优异的吸波,防辐射屏蔽功能,可直接应用于防屏蔽涂料,军工等防辐射材料。 3、塑料里掺入百分之一的石墨烯,能将它们转变成电导体,且增强抗热和机械性能。

如果想要了解更多关于石墨烯纳米片的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

碳还原氧化铜实验

碳还原氧化铜实验 一、教材分析 1、“木炭还原氧化铜”是中学教学中一个非常重要的固固高温放热反应实验,该实验验证了C的还原性,从而进一步了解氧化还原反应的本质,在固定的条件下,还原剂能够夺取氧化物中的氧,自身被氧化。 2、该实验成功的标志: (1)有鲜明现象证明反应生成铜单质,最好效果是得到紫红色铜块。(2)有鲜明现象证明反应生成了二氧化碳(石灰水浑浊)。(3)反应放热,应发现反应启动后停止加热仍继续红热燃烧。 二、学情分析 木炭还原氧化铜在初中阶段是一个很重要的实验。学生是从这个实验开始接触氧化还原反应,为九年级化学下册金属的冶炼等知识做铺垫。 三、教学目标 1、知识与技能: a、知道碳单质的化学性质 b、掌握木炭还原氧化铜的实验方法 2、过程与方法: a、学习对实验的探究以及创新 b、通过本次实验对其他类似实验有初步认识 3、情感?态度?价值观: a、通过本次实验培养学生的自主探究能力 b、通过实验培养学生的科学素养 四、教学重、难点 1、本次实验中对碳单质还原性的理解是重点也是难点

五、教学过程 教学环节教师活动学生活动活动目的 情景引入通过回顾课本知识进行情景引 入积极互动 通过引入把学生 的思维引进课堂 介绍实验原理 实验原理 主要反应: C+2CuO =高温= 2Cu+CO2↑ (置换反应) 副反应: C +CuO =高温= Cu + CO↑(炭 过量) 碳氧化铜铜一氧化碳 C + 4CuO =高温= 2Cu2O + CO2↑(氧化铜过量) 认真 听课 在实验之前给学 生系统介绍实验 原理 介绍实验仪器实验仪器:试管、试管夹、铁架 台、水槽、氧化铜粉末、碳粉、 药匙、研钵、研杵、坩埚、泥三 角、酒精灯、火柴、坩埚钳、酒 精喷灯、试管、澄清石灰水、玻 璃导管、单孔橡胶塞、托盘天平 (带砝码盒和镊子)、称量纸。 思考、记忆 让学生充分了解 本次实验所需仪 器、试剂

相关文档