文档库 最新最全的文档下载
当前位置:文档库 › 初中数学特殊四边形的辅助线做法及口决

初中数学特殊四边形的辅助线做法及口决

初中数学特殊四边形的辅助线做法及口决
初中数学特殊四边形的辅助线做法及口决

特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.

在解决一些和四边形有关的问题时往往需要添加辅助线.

下面介绍一些辅助线的添加方法.

一、和平行四边形有关的辅助线作法

平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形.

1.利用一组对边平行且相等构造平行四边形

例1 、如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形.

求证:OE与AD互相平分.

分析:

因为四边形OCDE是平行四边形,所以OC//ED,OC=DE,又由O是AC的中点,得出AO//ED,AO=ED,则四边形AODE是平行四边形,问题得证.

证明:连结AE、OD,因为是四边形OCDE是平行四边形,

所以OC//DE,OC=DE,因为0是AC的中点,

所以A0//ED,AO=ED,

所以四边形AODE是平行四边形,所以AD与OE互相平分.

说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形.

2.利用两组对边平行构造平行四边形

例2、如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.

分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH.

证明:过点E作EH//BC,交AC于H,因为ED//AC,所以四边形CDEH是平行四边形,所以ED=HC,又FG//AC,EH//BC,所以∠AEH=∠B,∠A=∠BFG,又AE=BF,所以△AEH≌△FBG,

所以AH=FG,所以FG+DE=AH+HC=AC.

说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题.

3.利用对角线互相平分构造平行四边形

例3 、如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC.

分析:要证明BF=AC,一种方法是将BF和AC变换到同一个三角形中,利用等边对等角;另一种方法是通过等量代换,寻找和BF、AC相等的相段代换.寻找相等的线段的方法一般是构造平行四边形.

证明:延长AD到G,使DG=AD,连结BG,CG,

因为BD=CD,所以四边形ABGC是平行四边形,

所以AC=BG,

AC//BG,所以∠1=∠4,因为AE=EF,

所以∠1=∠2,又∠2=∠3,所以∠1=∠4,

所以BF=BG=AC.

图3 图4

说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.

二、和菱形有关的辅助线的作法

和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.

例4 、如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF 是菱形.

分析:要证明四边形CDEF是菱形,根据已知条件,本题有量种判定方法,一是证明四边相等的四边形是菱形,二是证明对角线互相垂直平分的四边形是菱形.根据AD是∠BAC的平分线,AE=AC,可通过连接CE,构造等腰三角形,借助三线合一证明AD垂直CE.

求AD平分CE.

证明:连结CE交AD于点O,由AC=AE,得△ACE是等腰三角形,

因为AO平分∠CAE,所以AO⊥CE,且OC=OE,因为EF//CD,所以∠1=∠2,

又因为∠EOF=∠COD,所以△DOC可以看成由△FOE绕点O旋转而成,所以OF=OD,所以CE、DF互相垂直平分.所以四边形CDEF是菱形.

例5、如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC 上一个动点,求证EF+BF的最小值等于DE长.

分析:要证明EF+BF的最小值是DE的长,可以通过连结菱形的对角线BD,借助菱形的对角线互相垂直平分得到DF=BF,然后结合三角形两边之和大于第三边解决问题.

证明:连结BD、DF.

因为AC、BD是菱形的对角线,所以AC垂直BD且平分BD,

所以BF=DF,所以EF+BF=EF+DF≥DE,

当且仅当F运动到DE与AC的交点G处时,上式等号成立,所以

EF+BF的最小值恰好等于DE的长.

说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线.

三、与矩形有辅助线作法

和矩形有关的题型一般有两种:

(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;

(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.

例6、如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长.

分析:要利用已知条件,因为矩形ABCD,可过P分别作两组对边的平行线,构造直角三角形借助勾股定理解决问题.

解:过点P分别作两组对边的平行线EF、GH交AB于E,交CD于F,交BC于点H,交AD于G.

因为四边形ABCD是矩形,

所以PF2=CH2=PC2-PH2,

DF2=AE2=AP2-EP2,

PH2+PE2=BP2,

所以 PD2=PC2-PH2+AP2-EP2

=PC2+AP2-PB2=52+32-42=18,

所以 PD=3

.

说明:本题主要是借助矩形的四个角都是直角,通过作平行线构造四个小矩形,然后根据对角线得到直角三角形,利用勾股定理找到PD与PA、PB、PC之间的关系,进而求到PD的长.

四、与正方形有关辅助线的作法

正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线.

例7、如图8,过正方形ABCD的顶点B作BE//AC,且AE=AC,又

CF//AE.求证:∠BCF=

∠AEB.

分析:由BE//AC,CF//AE,AE=AC,可知四边形AEFC是菱形,作AH ⊥BE于H,根据正方形的性质可知四边形AHBO是正方形,从AH=OB= AC,

可算出∠E=∠ACF=30°,∠BCF=15°.

证明:连接BD交AC于O,作AH⊥BE交BE于H.

在正方形ABCD中,AC⊥BD,AO=BO,

又BE//AC,AH⊥BE,所以BO⊥AC,

所以四边形AOBH为正方形,所以AH=AO=

AC,

因为AE=AC,所以∠AEH=30°,

因为BE//AC,AE//CF,

所以ACFE是菱形,所以∠AEF=∠ACF=30°,

因为AC是正方形的对角线,所以∠ACB=45°,

所以∠BCF=15°,

所以∠BCF=

∠AEB.

说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO,进一步得到菱形,借助菱形的性质解决问题.

三角形中两中点,连结则成中位线。三角形中有中线,延长中线同样长。

圆外若有一切线,切点圆心把线连。

辅助线,是虚线,画图注意勿改变。图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。

直接证明有困难,等量代换少麻烦。

要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。

要想作个外接圆,各边作出中垂线。

如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。

要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。

虚心勤学加苦练,成绩上升

四边形辅助线专题训练

一、和平行四边形有关的辅助线作法 1.利用一组对边平行且相等构造平行四边形 例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分. 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形. 2.利用两组对边平行构造平行四边形 例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED证:ED+FG=AC. 说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题. 3.利用对角线互相平分构造平行四边形

例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 图3 图4 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法. 二、和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. 例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点, 且AE=AC,EF 例5 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF 的最小值等于DE长. 图6 说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线. 三、与矩形有辅助线作法 和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股

数学常见辅助线做法与小结

几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面可小编给大家整理了一些常见的添加辅助线的方法,掌握了对你一定有帮助! 1 三角形中常见辅助线的添加 1. 与角平分线有关的?? (1)可向两边作垂线。?? (2)可作平行线,构造等腰三角形?? (3)在角的两边截取相等的线段,构造全等三角形?? 2. 与线段长度相关的?? (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可?? (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可?? (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。?? (4)遇到中点,考虑中位线或等腰等边中的三线合一。? 3. 与等腰等边三角形相关的??

(1)考虑三线合一?? (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60?° 2 四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法? ???? 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。? (1)利用一组对边平行且相等构造平行四边形? (2)利用两组对边平行构造平行四边形? (3)利用对角线互相平分构造平行四边形?? 2. 与矩形有辅助线作法? ? (1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题? (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 3. 和菱形有关的辅助线的作法? ??? ? ?

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

专题二平行四边形常用辅助线的作法精排版

专题讲义 平行四边形+几何辅助线的作法 一、知识点 1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质: 四边形ABCD 是平行四边形 ?????????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 4、平行四边形判定方法的选择 5、和平行四边形有关的辅助线作法 (1)利用一组对边平行且相等构造平行四边形 例1、如图,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形 求证: OE 与AD 互相平分. (2)利用两组对边平行构造平行四边形 例2、如图,在△ABC 中,E 、F 为AB 上两点,AE=BF ,ED//AC ,FG//AC 交BC 分别为D ,G. 求证: ED+FG=AC. (3)利用对角线互相平分构造平行四边形 例3、如图,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF.求证BF=AC. A B C D 1234A B C D A B D O C 性质 判定 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可说明:当图形中涉及到一组对边平 行时,可通过作平行线构造另一组说明:本题通过利用对角线互相平分构造平行 四边形,实际上是采用了平移法构造平行四边 形.当已知中点或中线应思考这种方法.

(4)连结对角线,把平行四边形转化成两个全等三角形。 例4、如图,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点, 和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) (5)平移对角线,把平行四边形转化为梯形。 例5、如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( ) A 、111<

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

初中数学特殊四边形的辅助线做法及口决

特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形. 在解决一些和四边形有关的问题时往往需要添加辅助线. 下面介绍一些辅助线的添加方法. 一、和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形. 1.利用一组对边平行且相等构造平行四边形 例1 、如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分. 分析: 因为四边形OCDE是平行四边形,所以OC//ED,OC=DE,又由O是AC的中点,得出AO//ED,AO=ED,则四边形AODE是平行四边形,问题得证. 证明:连结AE、OD,因为是四边形OCDE是平行四边形, 所以OC//DE,OC=DE,因为0是AC的中点, 所以A0//ED,AO=ED, 所以四边形AODE是平行四边形,所以AD与OE互相平分. 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形. 2.利用两组对边平行构造平行四边形 例2、如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC.

分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH. 证明:过点E作EH//BC,交AC于H,因为ED//AC,所以四边形CDEH是平行四边形,所以ED=HC,又FG//AC,EH//BC,所以∠AEH=∠B,∠A=∠BFG,又AE=BF,所以△AEH≌△FBG, 所以AH=FG,所以FG+DE=AH+HC=AC. 说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题. 3.利用对角线互相平分构造平行四边形 例3 、如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 分析:要证明BF=AC,一种方法是将BF和AC变换到同一个三角形中,利用等边对等角;另一种方法是通过等量代换,寻找和BF、AC相等的相段代换.寻找相等的线段的方法一般是构造平行四边形. 证明:延长AD到G,使DG=AD,连结BG,CG, 因为BD=CD,所以四边形ABGC是平行四边形, 所以AC=BG, AC//BG,所以∠1=∠4,因为AE=EF, 所以∠1=∠2,又∠2=∠3,所以∠1=∠4, 所以BF=BG=AC. 图3 图4 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法.

8下四边形中常见辅助线

四边形中常用的辅助线 四边形中添辅助线的目的一般都是造就线段平行或垂直,构造全等三角形、直角三角形、平行四边形等,把难以解决的问题转化成常见的三角形、平行四边形等问题处理,其常用方法有以下几种: (1)连结对角线或平移对角线. (2)把图形中的一部分旋转,构造全等三角形. (3)涉及面积问题的,常构造直角三角形. (4)已有一组平行线或对角线互相平分的,常构造平行四边形. (5)涉及线段中点或平行四边形对角线交点的,常构造三角形的中位线. 经典例题 1.如图,在四边形ABCD中,R,P分别是BC,CD上的点.E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,下列结论成立的是( ) A. 线段EF的长逐渐增大 B. 线段EF的长逐渐减少 C. 线段EF的长不变 D. 线段EF的长与点P的位置有关 2.如图,四边形ABCD放在一组距离相等的平行线中,已知BD=6 cm,四边形ABCD的面积为24 cm2,则两条平行线间的距离为( ) A. 2 cm B. 3 cm C. 4 cm D. 1 cm 3.如图,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连结PG,PC.若∠ABC=∠BEF=60°,则等于( )

A. B. C. D. 4.已知P是正方形ABCD内一点,PB=,PC=1,∠BPC=135°,则AP的长为. 5.如图,已知正方形ABCD的边长为1,连结AC,BD相交于点O,CE平分∠ACD,交BD于点E,则DE的长为________. 6.如图,P为?ABCD内一点,△PAB,△PCD的面积分别记为S1,S2,?ABCD的面积记为S,试探究S +S2与S之间的关系. 1 7.如图,在四边形ABCD中,∠B=∠D=90°,∠A∶∠C=1∶2,AB=2,CD=1.求: (1)∠A,∠C的度数. (2)AD,BC的长度. (3)四边形ABCD的面积.

四边形辅助线常用做法

四边形常用的辅助线做法 作辅助线的方法 一:中点、中位线,延线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 五:面积找底高,多边变三边。 如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。 如遇多边形,想法割补成三角形;反之,亦成立。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 添加辅助线解特殊四边形题 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法. 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形. 平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 (4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等.

沪科版八年级数学下册四边形辅助线常用做法

四边形常用的辅助线做法 1.利用一组对边平行且相等构造平行四边形 例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分. 2.利用两组对边平行构造平行四边形 例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC. 分析:要证明ED+FG=AC,因为DE//AC,可以经过点E作EH//CD交AC于H得平行四边形,得ED=HC,然后根据三角形全等,证明FG=AH. 3.利用对角线互相平分构造平行四边形 例3 如图,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 二、和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. 例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形.

例5 如图6,四边形ABCD 是菱形,E 为边AB 上一个定点,F 是AC 上一个动点,求证EF+BF 的最小值等于DE 长. 图6 说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线. 与矩形有辅助线作法 和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 例6 如图7,已知矩形ABCD 内一点,PA=3,PB=4,PC=5.求 PD 的长. 图7 说明:本题主要是借助矩形的四个角都是直角,通过作平行线构造四个小矩形,然后根据对角线得到直角三角形,利用勾股定理找到PD 与PA 、PB 、PC 之间的关系,进而求到PD 的长. 四、与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线. 例7如图8,过正方形ABCD 的顶点B 作BE//AC ,且AE=AC ,又CF//AE.求证:∠BCF=21 ∠AEB.

与平行四边形有关的常用辅助线作法归类

与平行四边形有关的常用辅助线作法归类解析 第一类:连结对角线,把平行四边形转化成两个全等三角形。 例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) ⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O ∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF = 图2 图1 E C A A B 第二类:平移对角线,把平行四边形转化为梯形。 例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( ) A 111<

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

初中四边形辅助线规律

3.1 一般四边形常用的辅助线 1、连对角线构造三角形 【例1】已知:如图(1),在四边形ABCD中, AB=3,BC=4,CD=13,AD=12, .求四边形ABCD的面积。 分析:由,AB=3,BC=4,联想到连结AC,利用勾 股定理解得AC=5,又AD=12,CD=13,由勾股定理的逆定理有 为直角,从而。 2、延长对边构造三角形 【例2】如图(2),在四边形ABCD中, CD=3, 则AB等于多少? 分析:如果延长AD、BC即可出现角的直角三角形,从而把四边形问题转化为三角形只是解决。

3、化为三角形和特殊四边形 【例3】在四边形ABCD中,AD=3,,BD=7, . 如图(3),求: CD的长 和AB的长。 二、多边形中常用的辅助线 一般地,解决多边形问题的思路是:转化为三角形和特殊四边形的问题来解决。 1连对角线转化 【例4】已知:如图(4),求证: 分析:要证此六角只和为,想到四边形的 内角和为,故转化为一个四边形的四个内角, 由图很容易想到连结BE。

2延长边的转化 【例5】如图(5),在六边形ABCDEF中 。 求证:AB+BC=EF+ED。 分析:由题意知各角都为,想到它的外角 为,如果延长各边,能得到等边三角形,又由求 证AB+BC=EF+ED想到延长所涉及的边构成线段;当题中涉及到等特殊角时,常想到把他们转化到特殊三角形中,如等边三角形、直角三角形等。 三、平行四边形常用的辅助线(矩形、菱形,正方形与其相同) 1、过一边两端点作对边的垂线,把平行四边形转化为矩形和直角三角形问题 【例6】如图(8),已知点P是矩形ABCD内 一点,PA=3,PB=4,PC=5,求PD的长。 分析:利用已知条件,可过P分别作两组对边

初中几何常见辅助线作法50种

初中常见辅助线作法 任何几何题目都需分析题目条件和结论找到解题思路,本讲从常见的条件和结论出发说明50种辅助线作法,分三角形部分、四边形部分、解直角三角形部分、圆。每种辅助线作法均配备了例题和练习。 三角形部分 1.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某 边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题. 例:如图,已知D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE . 证法(一):将DE 向两边延长,分别交AB 、AC 于M 、N 在△AMN 中, AM + AN >MD +DE +NE ① 在△BDM 中,MB +MD >BD ② 在△CEN 中,CN +NE >CE ③ ①+②+③得 AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +CE 证法(二)延长BD 交AC 于F ,延长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有, ①AB +AF >BD +DG +GF ②GF +FC >GE +CE ③DG +GE >DE ∴①+②+③有 AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +CE 注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证 有关的量)移到同一个或几个三角形中去然后再证题. 练习:已知:如图P 为△ABC 内任一点, 求证: 1 2 (AB +BC +AC )<P A +PB +PC <AB +BC +AC 2.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来, 可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题. 例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC 证法(一):延长BD 交AC 于E , F G N M E D C B A

四边形中常见辅助线的作法

儒洋教育学科教师辅导讲义 作辅助线的方法 一:中点、中位线,延线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:面积找底高,多边变三边。 如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。 如遇多边形,想法割补成三角形;反之,亦成立。 另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。 四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为△和□。 平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 添加辅助线解特殊四边形题 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法.

初三数学平行四边形中常用辅助线的添法专题辅导

平行四边形中常用辅助线的添法 徐卫东 刘建英 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: 一、连对角线或平移对角线: 例1 如图1,E 是平行四边形ABCD 中AD 延长线上一点,ED 交BC 于F ,求证:CEF ABF S S △△=。 简证:连BD ,由图易得BCE BDE S S △△=(同底等高) ,BDF ABF S S =△(同底等高) 所以BEF BCE BEF BDE S S S S △△△△-=-, 所以ECF BDF S S △△=,即CEF ABF S S △△=。 例2 如图2,平行四边形ABCD 中,对角线AC 、BD 交于O ,AC=a+b ,BD=a+c (c b >), AB=m ,求m 的取值范围。 简解:要求AB 的值,需把AC 、BD 、AB 集中在一个三角形中,过C 作CE ∥DB 交AB 的延长线于E ,由图易得DBEC 是平行四边形, 所以c a DB CE +==, m AB DC BE ===, 即m 2AE =,在△ACE 中, CE AC AE CE AC +<<-, 即 ()()c b a 22 1m c b 21 ++<<-。 二、过顶点作对边的垂线构造直角三角形 例3 如图3,平行四边形ABCD 中,∠DBC=?30,DE ⊥DB 交BC 的延长线于E ,AD=a ,DE=b ,求DCE S △。

三角形中的常用辅助线方法总结

数学:三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

平行四边形有关的常用辅助线

PART A 知识讲解 六类与平行四边形有关的常见辅助线,供借鉴: 第一类:连结对角线,把平行四边形转化成两个全等三角形。 例1如左下图1,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) ⑴连结BF ⑵DE BF = ⑶证明:连结DF DB ,,设AC DB ,交于点O ∵四边形ABCD 为平行四边形 ∴OB DO OC AO ==, ∵FC AE = ∴FC OC AE AO -=- 即OF OE = ∴四边形EBFD 为平行四边形 ∴DE BF = 图2 图1 E C A A B 第二类:平移对角线,把平行四边形转化为梯形。 例2如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( ) A 111<

特殊平行四边形中的常见辅助线

A . 4 B .丄 C .二 D . 5 5 5 上,点G H 在对角线AC 上.若四边形 EGFH 是菱形,贝U AE 的长是( A. 2 _ * B . 3 ! C. 5 D. 6 P 是AD 上的点,且 特殊平行四边形中的常见辅助线 一、连结法 1. (2014 陕西,第9题3分)如图,在菱形 ABCD 中,AB=5,对角线AC =6.若过 点A 作AE! BC 垂足为 E ,贝U AE 的长为( ) 2. (2015安徽,第9题4分)如图,矩形 ABCD 中, AB=8 BC=4点E 在边AB 上,点F 在边CD 3. 如图,在矩形 ABCC 中,AB=4, AD=6 M N 分别是 AB, CD 的中点, / PNB=3/ CBN (1) 求证:/ PNM=Z CBN (2) 求线段AP 的长.

? DA 彳 AC, 4 . (2015山东德州,第20题8分)如图,在平面■直角坐标系中,矩形 OABC 勺对角线OB AC 相交于点D,且BE// AC, AE// OB (1) 求证:四边形 AEBD 是菱形; (2) 如果OA=3 OC=2求出经过点 E 的反比例函数解析式. 考点: 反比例函数综合题.? 分析: (1)先证明四边形 AEBD 是平行四边形,再由矩形的性质得出 DA=DB 即可证出四边形 AEBD 是菱形; (2)连接DE 交AB 于F ,由菱形的性质得出 AB 与DE 互相垂直平分,求出 EF 、AF,得出点E 的 坐标;设经过点 E 的反比例函数解析式为: y 」,把点E 坐标代入求出k 的值即可. X 解答: (1)证明:??? BE// AC AE// OB ???四边形AEBD 是平行四边形, ???四边形OABC 是矩形, DB=[OB AC=OB AB=OC=2 ? DA=DB ?四边形AEBD 是菱形; (2)解:连接DE,交AB 于F ,如图所示: ???四边形AEBD 是菱形, ? AB 与DE 互相垂直平分,

专题二:平行四边形常用辅助线的作法(精排版)

专题讲义平行四边形+几何辅助 线的作法 、知识点 1 ?四边形的内角和与外角和定理: (1) 四边形的内角和等于360°; (2) 四边形的外角和等于360° . 2. 多边形的内角和与外角和定理: (1) n 边形的内角和等于(n-2)180 ° (2) 任意多边形的外角和等于 360° 3. 平行四边形的性质: 4、平行四边形判定方法的选择 ..”■ 已知条件 选择的狎定方法 i 边 1. 一鲫边幘 L .... 讹⑵沁⑶ 一组对边平行 定文{方法1),方送⑶ 一纽对命相等 方法《5〉 方搓⑷ 5、和平行四边形有关的辅助线作法 (1)利用一组对边平行且相等构造平行四边形 例1、如图,已知点O 是平行四边形ABCD 勺对角线AC 的中点,四边形OCD 是平行四边形? 求 证:OE 与AD 互相平分. 说明:当已知条件中涉及到平行,且要求 证的结论中和平行四边形 的性质有关, 可 试通过添加辅助线构造平行四边形—: 性质 四边形ABCD 是平行四边形 判定 (1) 两组对边分别平行; (2) 两组对边分别相等; (3) 两组对角分别相等; (4) 对角线互相平分; (5) 邻角互补. B C C

(2)利用两组对边平行构造平行四边形 例2、如图,在△ ABC中,E、F为AB上两点,AE=BF ED//AC, FG//AC交BC分别为D, G. 说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组 对边平行,得到平行四边形解决问 (3)利用对角线互相平分构造平行四边形 例3、如图,已知AD S^ ABC的中线,BE交AC于E,交AD于F,且AE=EF求证BF=AC. 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了 平移法构造平行四边形.当已知中点或中线应思考这种方法?

相关文档
相关文档 最新文档