文档库 最新最全的文档下载
当前位置:文档库 › 直升机原理详解真实完整版

直升机原理详解真实完整版

直升机原理详解真实完整版
直升机原理详解真实完整版

发一套最完整的直升机原理(绝对完整,绝对精华)

这是我找到的最完整,最系统介绍直升机的原理及发展史的文章。转到这里,送给论坛里喜欢飞行,向往蓝天的朋友!!

自从莱特兄弟发明飞机以来,人们一直为能够飞翔蓝天而激动不已,同时又受起飞、着落所需的滑跑所困扰。在莱特兄弟时代,飞机只要一片草地或缓坡就可以起飞、着陆。不列颠之战和巴巴罗萨作战中,当时最高性能的“

喷火

”战斗机和

Me 109

战斗机也只需要一片平整的草地就可以起飞,除了重轰炸机,很少有必须用“正规”的混凝土跑道起飞、着陆的。今天的飞机的性能早已不能为这些飞机所比,但飞机的滑跑速度、重量和对跑道的冲击,使对起飞、着陆的跑道的要求有增无减,连简易跑道也是高速公路等级的。现代战斗机和其他高性能军用飞机对平整、坚固的长跑道的依赖,日益成为现代空军的致命的软肋。为了摆脱这一困境,从航空先驱的时代开始,人们就在孜孜不倦地研制能够象鸟儿一样腾飞的具有垂直/短距起落能力的飞机。

自从人们跳出模仿飞鸟拍翅飞行的谜思之后,依据贝努力原理的空气动力升力就成为除气球和火箭外所有动力飞行器的基本原理。机翼前行时,上下翼面之间的气流速度差造成上下翼面之间的压力差,这就是升力。所谓“机翼前行”,实际上就是机翼和空气形成相对速度。既然如此,和机身一起前行时,机翼可以造成升力,机身不动而机翼像风车叶一样打转转,和空气形成相对速度,也可以形成升力,这样旋转的“机翼”就成为旋翼,旋翼产生升力就是直升机可以垂直起落的基本原理。

中国小孩竹蜻蜓玩了有2,000 年了,流传到西方后,成为现代直升机的灵感/ 达·芬奇设计的直升机,到底能不能飞起来,很是可疑

旋翼产生升力的概念并不新鲜,中国儿童玩竹蜻蜓已经有2,000 多年了,西方也承认流传到西方的中国竹蜻蜓是直升机最初的启示。多才多艺的达·芬奇在15 世纪设计了一个垂直的螺杆一样的直升机,不过没有超越纸上谈兵的地步。1796 年,英国人George C ayley 设计了第一架用发条作动力、能够飞起来的直升机,50 年后的1842 年,英国人W.H. Philips 用蒸气机作动力,设计了一架只有9 公斤重的模型直升机。1878 年,意大利人Enrico Forlanini 用蒸气机制作了一架只有3.5 公斤重的模型直升机。1880 年,美国发明家托马斯·爱迪生着手研制用电动机驱动的直升机,但最后放弃了。法国人Paul C ornu 在1907 年制成第一架载人的直升机,旋翼转速每分钟90 转,发动机是一台24 马力的汽油机。Cornu 用旋翼下的“舵面”控制飞行方向和产生前进的推力,但Cornu 的直升机的速度和飞行控制能力很可怜。

1796 年,英国人George Cayley 设计了这么一个直升机,最高升到90 英尺(约30 米)

法国人Paul Cornu 在1907 年设计的第一架载人直升机

但是意大利人Juan de la Cierva 在1923 年设计旋翼机时,无意中解决了直升机的一个重大问题,他发明的挥舞铰解决了困扰直升机旋翼设计的一个重大问题。1930 年10 月,意大利人Corradino D'Ascanio 的直升机是公认的第一架现代意义上的直升机,在1 8 米高度上前飞了800 多米的距离,D'Ascanio 的直升机用共轴反转双桨。30 年代,德国人Heinrich Focke 设计了FA-61 直升机,不断在各种纳粹集会中作公关表演,但德国人Anton Flettner 设计的FL282 可算是第一种量产直升机,在二战中为德国海军生产了近1,000 架,不过没有在战斗中起到什么作用。Igor Sikorsky 设计的VS300(VS 代表Vought-Sikorsky,当时Sikorsky 是Vought 飞机公司的一部分)第一次采用尾桨,真正奠定了现代直升机的雏形。

D'Ascanio 的直升机是第一个现代意义上的直升机,能完成前飞,具有基本的飞行控制能力

30 年代德国的FW61直升机,被纳粹用作宣传纳粹“优越性”的工具/ 德国FL282 应

该是第一架量产型直升机,在二战期间产量达到近1,000 架,用于德国海军,不过没有对战斗造成什么影响

这是FL282 的近容

39-40 年Sikorsky 的VS300 直升机是现代直升机的“老母鸡”,奠定了现代直升机最常用的尾桨布局/ 尽管贝尔飞机公司在37 年才开张,45 年的贝尔47 是第一种量产的实用型直升机,在朝鲜战场就广泛用于伤员救护、侦察、炮兵指引等,从长津湖突围的美国海

军陆战队1 师如果不是贝尔47 帮助在峡谷上架轻便桥,就没有今天吹牛的本钱了

UH-1 使越南战争成为第一场直升机战争,直升机成为美军士兵进入和撤离战斗最常见的运输工具/ UH-60 是现在美军的主力战术运输直升机,中国在89 年前进口过一小批,在西藏高原使用的效果十分好

直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。

直升机主旋翼反扭力的示意图

没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。

抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相

同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较

尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。

尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

面向直升机看,尾桨顺时针旋转),这样尾桨对主旋翼的气动干扰小,主旋翼的升力可以充分发挥。尾桨也可以逆着主旋翼的方向旋转,也就是说,对于逆时针旋转的主旋翼,尾桨向后转(或者说,从右面向直升机看,尾桨逆时针旋转),这样尾桨和主旋翼之间形成一个互相干扰,主旋翼的升力受到损失,但尾桨的作用加强,所以可以缩小尺寸,或降低功率。两者没有绝对的优劣,设计得当时,一般选择顺着转,只有设计不当、尾桨控制作用不够时,才选择逆着转,像

米-24

直升机那样。

涵道尾桨(fenestron)将尾桨缩小,“隐藏”在尾撑端部的巨大开孔里,相当于给尾桨安上一个罩子,这样大大改善了安全性,不易打到周围的物体。由于涵道尾桨的周边是遮蔽的,尾桨翼尖附近的气流情况大大简化,翼尖速度较高也不至于大大增加噪声。罩子的屏蔽也使前后方向上的噪声大大减小。涵道尾桨的缺点是风扇的包围结构带来较大的重量,这个问题随涵道尾桨直径增加而急剧恶化,所以涵道尾桨难以用到大型直升机上。涵道尾桨只有法国直升机上采用,美国的下马了的Comanche 是法国之外少见的采用涵道尾桨的例子。

海豚直升机上的涵道尾桨/ 经典的采用涵道尾桨的EC-120 直升机,中国参加合作制造

已经下马的美国RAH-66“科曼奇”直升机同样采用涵道尾桨

另一个取代尾桨的方案是NOTAR,NOTAR 是No Tail Rotor(意为无尾桨)的简称,用喷气引射和主旋翼下洗气流的有利交互作用形成反扭力。主旋翼产生的下洗气流从尾撑两侧流经尾撑,发动机产生的压缩空气通过尾撑一侧的向下开槽喷出,促使这一侧的下洗气流向尾撑表面吸附并加速(即所谓射流效应或Coanda 效应),形成尾撑两侧气流的速度差,产生向一侧的侧推力,实现没有尾桨的反扭力。尾撑顶端的直接喷气控制提供更精细的方向控制,但不提供主要的反扭力,不是不可以,而是用射流效应可以用较少的喷气就实现较大的反扭力。从这个原理推而广之,如果把尾撑的截面做成机翼一样,下洗气流本身就可产生侧推力,甚至可以在下侧安装类似襟翼的装置以控制侧推力,岂不更好?不知道为什么,没有人这样做。NOTAR 的噪音比涵道风扇更低,安全性更好,在演示中,只要主旋翼不打到树枝,直接把尾撑捅到树丛里也照样安全飞行,但NOTAR 同样没有用到大型直升机上的例子。NOTAR 只有麦道(现波音)直升机上使用,可能是专利的缘故。

NOTAR 的原理简图

采用NOTAR 的

MD600N

直升机,不知道为什么,MD 直升机还是叫MD,不叫波音

反扭力的问题解决了,还有飞行控制的问题。前飞时,直升机不是不可以采用固定翼飞机一样的气动舵面控制偏航、俯仰、横滚,但悬停的时候怎么办呢?这又回到反扭力问题上来了,有控制地打破反扭力的平衡,不就可以造成飞机向左右的偏转吗?对于常规的主旋翼-尾桨布局,增加、减少尾桨的桨距(绕桨叶纵轴相对于桨叶迎风方向的偏转角),就在不改变尾桨转速的情况下,增加、减少尾桨的效果,达到使飞机偏转的效果。由于动力装置固有的惯性,增加扭力的速度总是不及降低扭力的速度,所以常规的单桨直升机向一侧偏转的速度通常快于向另一侧偏转的速度。

直升机旋翼水平旋转可以实现垂直起落/ 直升机通过将旋翼前倾产生推力旋翼水平旋转时,自然产生向上的升力,这是直升机得以垂直起落和悬停的基本条件。旋翼向前倾斜,自然就在产生升力的同时,产生前行的推力。但是如何使旋翼前倾呢?将传动轴或发动机向前倾斜是不现实的,机械上太复杂,可靠性也将一塌糊涂。那怎么办呢?采用所谓的旋转斜板(swash plate),如下图所示。

周期矩控制示意图,注意上旋转斜板和旋翼桨叶的连接,和下旋转斜板受飞行员控制的可调角度

上旋转斜板紧贴下旋转斜板滑动(或在接触面上安装滚珠,减少摩擦阻力),其倾斜角度由下旋转斜板决定。上旋转斜板随旋翼转动,由于前低后高,连杆和支点的作用迫使旋翼上升下降,最后按斜板的角度旋转,达到旋翼倾斜旋转。下旋转斜板不随旋翼转动,但倾斜角度可以由飞行员通过机械连杆或液压作动筒控制,以控制旋翼的倾斜角度。下旋转斜板不光可以前低后高,还可以左低右高,或向任意方向偏转。这就是直升机旋翼可以向任意方向倾斜的道理。这个改变旋翼在每个旋转周期内角度的控制称周期距控制(cyclic control),用来控制行进方向。直升机的另一个主要的飞行控制为桨叶的桨距(pitch),用来控制升力,这称为总距控制(collective control)。和固定翼飞机的飞行控制不同,直升机不靠气动翼面实现飞行控制,而是靠这总矩控制和周期距控制实现飞行控制。

旋翼倾斜,造成升力的作用力轴线倾斜,由于作用力轴线不再通过重心,造成扭转力矩,使飞机向旋翼倾斜方向滚转,直到作用力轴线重又通过重心,恢复平衡

周期距控制不仅用来控制行进方向,还用来控制滚转姿态。正常飞行时,旋翼的升力轴线必定通过飞机的重心,不然飞机要发生滚转。周期距控制使旋翼倾斜的同时,升力轴线同时倾斜,偏离直升机的重心,造成滚转力矩。飞机发生滚转之后,飞行员的控制逐渐回中(否则就一直滚转下去了),重心位置移动,升力轴线重又通过重心,恢复平衡,尽管这时飞机可能是歪着或前倾、后仰的。事实上,为了在中速巡航时机身保持水平,以减小平飞阻力,直升机的重心通常都在旋翼圆心稍后的地方,这样旋翼可以自然向前倾斜一定的角度,而机身依然保持水平。但为了达到最大速度,机身应该前倾,也就是压低机头,这样好最大限度地发挥发动机功率,而不至于产生不必要的升力,本意要向前飞得快,结果速度没有上去多少,反而越飞越高了。同样道理,从空中急降时,用周期距控制使机头高高仰起,旋翼后倾,既利用增加的机身迎风面积造成的阻力减速,又利用主旋翼向前的推力分量做反推力刹车,可以极快地减速、着陆,减少在敌人火力下的暴露时间。周期距控制也使直升机的侧飞、倒飞成为可能,既强化了悬停中对侧风的补偿能力,又极大地增强了对常规固定翼飞机来说匪夷所思的非常规机动性能。

直升机异乎寻常的起落性能提供了无数可能性,也带来无数的问题,其中一个就是翻滚问题。在侧风中垂直着陆时,机身在周期距控制下向迎风方向倾斜以保持平衡,这和侧风中骑自行车要歪着身子是一样道理。在悬停过程中,机身横滚的支点还是在重心,但一侧机轮首先接地时,机轮就变成支点,这时如果控制不当,就会“别住脚”,向外侧翻滚,造成事故。为了恢复水平,如果升力轴线在着地机轮的内侧,应该降低总距(减油门),用重力使机身正确落地;如果升力轴线在着地机轮外侧,那就应该增加总距(加油门),用升力来恢复水平姿态。用错了,就会发生翻滚事故。没有侧风但是在起伏的舰船甲板上着陆,也有同样的问题。反过来的问题是在斜坡上起飞。飞行员必须小心地寻找旋翼水平的姿态,先将一侧机轮离地,机身达到水平状态,再增加升力,使另一侧机轮离地,达到升空。如果动作过急,在升力轴线还没有垂直时就匆忙离地,即使后离地的机轮没有拖地以造成不利滚动力矩,支点从后离地的机轮瞬时转移到机身重心所造成的剧烈摆动,可能使飞机失控。由于侧风和地面乱流的影响,旋翼水平还不一定就是正确的姿态,必须对侧风和乱流进行补偿,所以直升机在复杂条件下的起落需要相当的技巧。

侧风下垂直着陆,要防止支点突然转移到外侧机轮而引起翻滚的问题/ 斜坡上起飞,要注意不能太猛,否则重心突然从后离地的机轮向重心转移,会造成突然而剧烈的摆动,危害飞行安全

旋翼是圆周运动,由于半径的关系,翼尖处线速度已经接近音速时,圆心处线速度为零!所以旋翼靠近圆周的地方产生最大的升力,而靠近圆心的地方只产生微不足道的升力。桨叶向前划行时,桨叶和空气的相对速度高于旋转本身所带来的线速度;反之,桨叶向后划行时,桨叶和空气的相对速度就低于旋转本身所带来的线速度,这样,旋翼两侧产生的升力还不均匀,不做任何补偿的话,升力差可以达到5:1。这个周期性的升力变化不仅使机身向一侧倾斜,而且每片桨叶在圆周中不同方位产生不同的升力和阻力,周期性地对桨叶产生强烈的扭曲,既大大加速材料的疲劳,又引起很大的振动。所以旋翼的气动设计可以比高性能固定翼飞机的机翼设计更为复杂。

直升机以130 公里/小时前行,主旋翼翼尖线速度420 公里/小时,桨叶在不同位置和气流的相对速度是不同的,产生的升力也不同/ 固定桨叶的升力分布,等高线是与半翼展处产生的升力的比值

前面提到的de la Cierva 是在实践中发现这个问题的。他的模型旋翼机试飞很成功,但是全尺寸的旋翼机一上天就横滚翻,开始以为是遇到突然的横风,第二架飞机上天同样命运。de la Cierva 经过研究,发现模型旋翼机的桨叶是用藤条材料做的,有弹性,而全尺寸旋翼机的桨叶是刚性的钢结构,由此认识到桨叶的挥舞铰的必要性。具体来说,为了补偿左右的升力不均匀,和减少桨叶的疲劳,桨叶在翼根要采用一个容许桨叶载回转过程中上下挥舞的铰链,这个铰链称为挥舞铰(flapping hinge,也称垂直铰)。桨叶在前行时,升力增加,桨叶自然向上挥舞。由于桨叶在旋转过程中同时上升,桨叶的实际运动方向不再是水平的,而是斜线向上的。桨叶和水平面的夹角虽然不因为桨叶向上挥舞而改变,但桨叶和气流的相对运动方向之间的夹角由于这斜线向上的运动而变小,这个夹角(而不是桨叶和水平面之间的夹角)才是桨叶真正的迎角。桨叶的迎角在升力作用下下降,降低升力。桨叶在后行时,桨叶的升力不足,自然下垂,变旋转边下降造成桨叶和气流相对运动方向之间的夹角增大,迎角增加,增加升力。由于离心力使桨叶有自然拉直的趋势,桨叶不会在升力作用下无限升高或降低,机械设计上也采取措施,保证桨叶的挥舞不至于和机体发生碰撞。桨叶在环形过程中,不断升高、降低,翼尖离圆心的距离不断改变,引起科里奥利效应(这个东西谁都“知道”,但说清楚不容易。谁要是能把这个东西说清楚,鲜花奉上),就像花样滑冰运动员经常把双臂张开、收拢,以控制旋转速度。要是一个手臂张开,一个手臂收拢,就不可能在原地旋转,就要东倒西歪了。所以桨叶在水平方向也要前后摇摆,以补偿桨叶上下挥舞所造成的科里奥利效应。摆振铰利用前行时阻力增加,使桨叶自然增加后掠角(即所谓“滞后”,因为桨叶在旋转方向上的角速度低于圆心的旋转速度),这也变相增加桨叶在气流方向上剖面的长度,加强了减小迎角的作用;在后行时,阻力减小,阻尼器(相当于弹簧)使桨叶恢复的正常位置(即所谓“领先”,因为桨叶在旋转方向上的角速度高于圆心的旋转速度),当然也加强了增加迎角的作用,所以摆振铰(drag hinge 也称水平铰)也称领先-滞后铰(le ad lag hinge)。挥舞铰和摆振铰是旋翼升力均匀的飞行平稳的关键。由于桨叶在旋转中容许上下挥动和前后摆动,这种桨叶称为柔性桨叶(articulated rotor)。除了用机械铰链容许

桨叶在环形过程中相对于其他桨叶有一定的挥舞外,材质也必须具有弹性,这就是为什么直升机停在地面时,桨叶总是“耷拉”着的原因。但机械铰链磨损大,可靠性不好,德国M BB(战时著名的梅塞斯米特就是MBB 中的M)用弹性元件取代了挥舞铰,研制成功无铰桨叶,第一个应用无铰桨叶的是MBB Bo-105,中国曾进口一批,用于支援海上采油平台。

挥舞铰示意图,前行桨叶可以在升力作用下向上有所挥舞,从而降低升力,达到平衡;后行桨叶则向下弯曲,从而提高升力,达到平衡/ 采用挥舞铰后的升力分布,要均匀得多双叶旋翼是一个特例,桨叶和圆心的桨毂刚性连接,但用一个单一的“跷跷板”铰链同时代替挥舞铰和摆振铰,所以也称为半刚性桨叶(semi-rigid rotor)。跷跷板铰链在一侧桨叶上扬时,将另一侧桨叶自然下压;在一侧桨叶“领先”时,将另一侧桨叶自然“滞后”,既简化了机械设计,又完美地实现了更复杂的机械设计才能实现的功能。贝尔直升机公司用双叶用出了味道,越战期间漫天蝗虫似的UH-1 就是双叶,后来的AH-1 也是。不过“跷跷板”设计只能用于双叶旋翼。双叶旋翼有无可置疑的简洁性和由此而来的成本和可靠性上的优势,但双叶旋翼也只有两片桨叶可以产生升力和推力,和多叶桨叶相比,就要增加旋翼

直径,增加旋翼转速,前者增加总体尺寸和阻力,后者增加噪声。

第一个采用无铰桨叶的Bo-105 / Bo-105 的无铰桨叶,用弹性元件代替了挥舞铰和摆振铰,但变距铰依然保留

EC-135 更进一步,甚至取消了使桨叶改变桨距的变距铰,也用弹性元件代替了/ EC-135的先进技术桨叶(Advanced Technology Rotor,简称ATR,属hingeless bearingless),采用弹性元件代替所有机械铰链,避免机械磨损,减轻重量,改善飞行平稳性

[/url]

单桨直升机的起飞重量终归有限,要增大起飞重量,就要增加旋翼直径,增加旋翼转速,增加桨叶数目,加强传动轴,这些都增加了旋翼系统的机械复杂性和重量。旋翼直径和转速受到翼尖速度不能超过音速的限制,否则音障带来的阻力和振动将不可忍受,更大的旋翼直径也迫使尾撑长度增加,增加结构重量。较大的旋翼也对狭小场地的起落造成不便。大幅度提高起飞重量最有效的途径,还是采用两个甚至更多的旋翼,分担负担。除了一些设想中的四旋翼方案,三旋翼没有见到过,还是双旋翼最常见。既然采用两个旋翼,如果旋转方向相反,一个顺时针旋转,一个逆时针旋转,就自然抵消相互的反扭力。反转的双旋翼不需要特别考虑尾桨和尾撑的结构,也没有尾桨吃掉对推进和升力没有作用的功率的问题,可以把所有功率都用于升力和推进,这是双旋翼额外的优点。双旋翼(也称双桨)有多种方案,可以前后串列,可以左右并列,可以上下共轴,还可以上下不共轴。串列双桨的典型有美国的CH-46、CH-47;并列双桨的典型有俄罗斯的米-12,直升机状态的美国

[url=https://www.wendangku.net/doc/103068901.html,/intro/v22/1.htm]

V-22

直升飞机飞行原理

直升飞机飞行原理 直升机的机翼与固定翼飞机一样,当气流从机翼前缘流向机翼后缘,从上翼面流过的气流比下翼面走过的路程长,为避免出现真空,上翼面的气流流速比下翼面的大。根据伯努利方程,相同条件下,气流的静压与动压的和恒定,因为上翼面的气流的流速大,导致动压大,所以其静压就小,机翼收到来自上翼面的压力小于来自下翼面的压力,大气对机翼的总压力向上,这个压力就是升力,有了升力直升机就能飞起来,但机翼旋转会对机身产生扭矩,为了不使机身旋转,通过加尾浆的方式平衡掉这个扭矩,所以直升机都是有尾浆的。直升机的机翼旋转面和轴的夹角可以通过杠杆机构来调整,通过调整这个夹角使升力与直升机的重力同轴或不同轴,同轴时,直升机悬停,不同轴时,直升机前飞 直升机升空的原理和竹蜻蜓是一样的,主桨桨叶上产生升力。至于你说的玩具有两个桨,而真机只有一个,应该是上下两层吧,总共四片桨叶,而真机只有一层。都知道,主桨高速转动,会给机身一个反方向的扭矩,如果不加以平衡,机身就会沿着和主桨转动方向相反的方向高速自旋,这样的直升机能飞么?玩具的两层桨叶就是平衡这个扭矩的,你仔细观察下,上下桨的转动方向一定是相反的,也就是靠两对桨叶给机身的扭矩来平衡机身,它们给机身的扭矩方向是相反的,如果大小也相同,那么机身就能保持稳定。但是真机,或者真正的航模直升机,都是单层桨叶的,因为它们都带尾桨,靠尾桨产生的推力来稳住机身。主桨产生的扭矩如果会使机尾顺时针旋转,那么就让尾桨产生逆时针的推力,平衡这个顺时针的扭矩。

一、直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。二、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。(2)直升飞机的横向稳定。因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。三、能量方式分析。根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析 能量也是守衡的

直升机原理图

1动压

科技名词定义 中文名称:动压 英文名称:dynamic pressure 其他名称:速压 定义:总压与静压之差,运动流体密度和速度平方积之半。 所属学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 物体在流体中运动时,在正对流动运动的方向的表面,流体完全受阻,此处的流体速度为0,其动能转变为压力能,压力增大,其压力称为全受阻压力(简称全压或总压,用P表示),它与未受扰动处的压力(即静压,用P静表示)之差,称为动压(用P动表示)。即: P动 = P - P静 = ρ*V*V*1/2 其中:ρ为密度,V为速度 推导: 先看看势能的推导 势能=F*S=m*g*h=ρ*Q*g*h=ρ*g*h*Q F为力大小,S为面积,m为质量,g为重力加速度,h为高度,Q为体积 即势能=压强*体积 动能=m*V*V*1/2=ρ*Q*V*V*1/2=ρ*V*V*Q*1/2=动压*体积 体积为Q,所以动压为1/2*ρ*V*V 即证。 飞机飞行的原理就是运用机翼上下气流速度是不一样而产生的压力差托起飞机的,注意机翼上下的空气速度是不一样的,它是由机翼的结构和飞机的迎角所决定的。 2 L=CρV^2/2,L是升力,C为升力系数,ρ是标准大气密度为一恒量,V是飞机的指示空速 3直升机是怎样改变方向的

陀螺效应这是一个很奇妙的物理现象,如下图,一个转动的物体,当在某一点施力,施力的效果会出现在沿转动方向90 度的地方出现,而且转动的物体会有保持原来状态,抗拒外来力量的倾向,也就是转动中物体的轴心会极力保持在原来所指的方向。像枪管中的膛线使子弹高速旋转以保持直进性就是运用陀螺效应,直升机高速旋转的主旋翼同样的也会有陀螺效应产生,控制方式也必须考虑这种力效应延后90 度出现的陀螺效应。 陀螺仪的功用 直升机飞行的基本原理是利用主旋翼可变角度产生反向推力而上升,但对机身会产生扭力作用,于是需要加设一个尾旋翼来抵消扭力,平衡机身,但怎样使尾旋翼利用合适的角度,来平衡机身呢?这就用到陀螺仪了,它可以根据机身的摆动多少,自动作出补偿讯号给伺服器,去改变尾旋翼角度,产生推力平衡机身。以前,模型直升机是没有陀螺仪的,油门、主旋翼角度和尾旋翼角度很难配合,起动后便尽快往上空飞(因为飞行时较易控制),如要悬停就要控制杆快速灵敏的动作,所以很容易撞毁,现在已有多中直升机模型使用的陀螺仪,分别有机械式、电子式、电子自动锁定式。 直升机的抬头现象 当直升机快速前进时,旋翼一偏离6 点和12 点钟方向时,两支旋翼对空气速度就会不一样,而在 3 点和9 点钟方向产生最大速度差,假设旋翼翼端转速300km/h,机体前进速度100km/h 时,以R/C 直升机顺时钟方向转动的旋翼来讲,3 点钟方向对空气速度200km/h ( 后退旋翼),9 点钟方向对空气速度400km/h(前进旋翼),产生 3 点和9 点钟方向的升力差,因陀螺效应的关系,力效应发生在 6 点和12 点钟方向产生抬头现象,此种抬头现象不论主旋翼是顺时针或逆时针转动皆会发生。 翼端速度与离心力 直升机靠著主旋翼高速回转时所产生的离心力来悬住机体。离心力是水平方向的力而机体重力是垂直方向的力,实№飞行时两者几乎呈90 度,所以直升机飞行时其主旋翼所产生的速度和离心力是非常大的。 在这里有一个公式可算出翼端速度和离心力: 翼端速度: V = 2 * 圆周率* R * 60 * RPM V = 旋翼翼端速度(公尺/小时) 圆周率= 3.14(大约值) R = 旋翼头中心到翼端距离(公尺) RPM = 旋翼每分钟转速 以30级来算 停悬1500 RPM 翼端速度= 2 * 3.14 * 0.625 * 60 * 1500 = 353km/h

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

直升机旋翼头工作原理

解读直升机旋翼头的奥秘 遥控直升机可说是所有遥控模型里头最为复杂的一个项目,各细节的关连性更是环环相扣,其中最复杂的结构莫过於旋翼头的设计,旋翼头也是性能的主要取决性,本章针对於主旋翼结构对性能的影响作深入的分析,直升机迷们不可错过! 决定性能的旋翼头 决定遥控直升机机体特性的几个要素里项,旋翼头所占的比例相当高。要如何分辨机体特性呢?遥控直升机不像飞机一样,可以从外形上直接分辨出特级机、练习机、象真机,直升机可就不一样了,同样的旋翼头,经过不同的设定与调整,可以让性能有截然不同的表现,就算是相同的直升机,也可以安稳的适合初学者,也可以灵活的对应3D飞行,旋翼头的变化可说是相当大的。相信有许多直升机模友们从直升机的种类,即使不曾亲身试飞过,就可以大约知道飞行的特征,对直升机性能的推断依据多半也是来自于旋翼头的造型设计,但是相信也有更多的朋友们对旋翼头的性能会有著『为什么不一样』的想法?但是想要深入研究,却又被复杂的结构打败。这一次我们就来说明一下关於旋翼头的性能取决做一个研究。 决定性能的四大要素 1、三角补偿角 2、贝尔希拉比率 3、修正率 4、避震橡胶 这四个要素的搭配,可决定大多数直升机的性格。实际上有人测试过,将J牌的旋翼头装在H牌的直升机上面,整体飞行起来的感觉就会比较接近於J牌的感觉。 一、三角补正角 一般玩家可以比较简单变更的一项。请参考图一,以目前市面上多数韵.型态多半是主旋翼夹片球头臂在主旋翼後方(三角补正角为正角度),接著要注意的是夹片球头的部分(图二) ,当夹片球头臂太短的时候,三角补偿角便会增加,当主旋翼高转速运转时执行动作,整体旋翼面的倾斜会使的旋翼夹片会受到三角补偿角的影响增大螺距角度,使的直升机的反应迅速加快执行动作,虽然这样可以增加机体的灵活度,但是你也会同时发现直升机变的更加难以操纵,因为既使是简单的停悬动作,只要风轻轻的吹向旋翼面,直升机主旋翼会做出些微的摆荡运动,但是很容易因为三角补偿角的关系而自行产生螺距角度的变化,造成直升机会出现类似打舵的现象,因此会变的难以控制。 以主旋翼相同的旋转方向来说(顺时针) ,三角补正角的正数值(+)越大,机体越灵敏,但也越不安定。三角补正角负数值(-)越大则越安定,但反应也越迟钝。然而要获得一个折衷的办法,就是让三角补正角度为0度,三角补正角为0度的直升机最好掌握而且不失灵活度。而调整三角补正角的方式也很简单,只需要加长旋翼夹片上的球头长度就可以了,但是要注意旋翼夹片的强度喔!如果是塑胶品的话,建议用新品来改装,免得发生断裂的危险。 每一家厂牌的直升机旋翼头的支点不太一样,以遥控直升机为例,大约有五种型式的旋翼头,所以先确定好支点旋翼头的种类的位置,再来做相关的测量。这样才能够有效的发挥三角补正角的效果。

直升机的飞行原理

直升机的飞行原理 延直升机旋翼叶片的切向做剖面,可得到一个形状,我们称之为桨型。该形状与机翼翼型(定义与桨型定义类似)相似,均具有较好的气动力特征,即在与空气的相对运动中,能够产生向上的气动升力。与固定翼飞机不同的是,固定翼飞机是通过机翼与气流的直线(这说法不确切,但宏观上说,问题不大,可以这么理解)运动产生上述气动升力。而直升机是通过使旋翼做圆周运动,产生上述气动升力。该气动升力通过旋翼的传载将直升机拉起(飞起来)。 上面已经提到,直升机飞起来需要旋翼的旋转。我们知道,当旋翼旋转的时候,同时将对机身产生一个反方向旋转的反扭矩。为平衡该反扭矩,故设置一个尾梁和一个尾桨,产生一个扭矩去平衡旋翼的反扭矩。 最后,直升机的旋翼,剖面应该是一个桨型(即翼型),通常是上凸下平(或凹)。这个有现成的桨型手册或桨型数据库的。而平面形状来说,是一个长宽比很大的矩形,在桨尖处,为避免激波的产生,有后掠角或弯曲。 旋翼的空气动力特点 (1)产生向上的升力用来克服直升机的重力。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓直升机下降趋势。 (2)产生向前的水平分力克服空气阻力使直升机前进,类似于飞机上推进器的作用(例如螺旋桨或喷气发动机)。 (3)产生其他分力及力矩对直升机;进行控制或机动飞行,类似于飞机上各操纵面的作用。旋翼由数片桨叶及一个桨毂组成。工作时,桨叶与空气作相对运动,产生空气动力;桨毂则是用来连接桨叶和旋翼轴,以转动旋翼。桨叶一般通过铰接方式与桨毂连接。 旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。 先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω绕轴旋转,并以速度 Vo沿旋转轴作直线运动。如果在想象中用一中心轴线与旋翼轴重合,而半径为 r的圆柱面把桨叶裁开(参阅图 2,1—3),并将这圆柱面展开成平面,就得到桨叶剖面。既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度 (等于Ωr)和垂直于旋转平面的速度(等于 Vo),而合速度是两者的矢量和。显然可以看出(如图2.1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的:大小不同,方向也不相同。如果再考虑到由于桨叶运动所激起的附加气流速度(诱导

图解直升机原理

图解直升机原理之一---涡轮轴发动机工作 原理 航空涡轮轴发动机 航空涡轮轴发动机,或简称为涡铀发动机,是一种输出轴功率的涡轮喷气发动机。法国是最先研制涡轴发动机的国家。50年代初,透博梅卡公司研制成一种只有一级离心式叶轮压气机、两级涡轮的单转于、输出轴功率的直升机用发动机,功率达到了206kW(280hp),成为世界上第一台直升机用航空涡轮轴发动机,定名为“阿都斯特—l”(Artouste—1)。首先装用这种发动机的直升机是美国贝尔直升机公司生产的Bell 47(编号为X H—13F),于1954年进行了首飞。 涡轴发动机的主要机件 与一般航空喷气发动机一样,涡轴发动机也有进气装置、压气机、燃烧室、涡轮及排气装置等五大机件,涡轴发动机典型结构如下图所示。

进气装置 由于直升机飞行速度不大,一般最大平飞速度在3 50km/h以下,故进气装置的内流进气道采用收敛形,以便气流在收敛形进气道内作加速流动,以改善气流流场的不均匀性。进气装置进口唇边呈圆滑流线,适合亚音速流线要求,以避免气流在进口处突然方向折转,引起气流分离,为压气机稳定工作创造一个好的进气环境。有的涡轴发动机将粒子分离器与进气道设计成一体,构成“多功能进气道”,以防止砂粒进入发动机内部磨损机件或者影响发动机稳定工作,这种多功能进气道利用惯性力场,使含有砂粒的空气沿着一定几何形状的

通道流动。由于砂粒质量较空气大,在弯道处使砂粒获得较大的惯性力,砂粒便聚集在一起并与空气分离,排出机外(见下图)。 压气机 压气机的主要作用是将从进气道进入发动机的空 气加以压缩,提高气流的压强,为燃烧创造有利条件。根据压气机内气体流动的特点,可以分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轴发动机的压气机,其结构形式几经演变,从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。当前,直升机的

直升机原理详解真实完整版

发一套最完整的直升机原理(绝对完整,绝对精华) 这是我找到的最完整,最系统介绍直升机的原理及发展史的文章。转到这里,送给论坛里喜欢飞行,向往蓝天的朋友!! 自从莱特兄弟发明飞机以来,人们一直为能够飞翔蓝天而激动不已,同时又受起飞、着落所需的滑跑所困扰。在莱特兄弟时代,飞机只要一片草地或缓坡就可以起飞、着陆。不列颠之战和巴巴罗萨作战中,当时最高性能的“ 喷火 ”战斗机和 Me 109 战斗机也只需要一片平整的草地就可以起飞,除了重轰炸机,很少有必须用“正规”的混凝土跑道起飞、着陆的。今天的飞机的性能早已不能为这些飞机所比,但飞机的滑跑速度、重量和对跑道的冲击,使对起飞、着陆的跑道的要求有增无减,连简易跑道也是高速公路等级的。现代战斗机和其他高性能军用飞机对平整、坚固的长跑道的依赖,日益成为现代空军的致命的软肋。为了摆脱这一困境,从航空先驱的时代开始,人们就在孜孜不倦地研制能够象鸟儿一样腾飞的具有垂直/短距起落能力的飞机。 自从人们跳出模仿飞鸟拍翅飞行的谜思之后,依据贝努力原理的空气动力升力就成为除气球和火箭外所有动力飞行器的基本原理。机翼前行时,上下翼面之间的气流速度差造成上下翼面之间的压力差,这就是升力。所谓“机翼前行”,实际上就是机翼和空气形成相对速度。既然如此,和机身一起前行时,机翼可以造成升力,机身不动而机翼像风车叶一样打转转,和空气形成相对速度,也可以形成升力,这样旋转的“机翼”就成为旋翼,旋翼产生升力就是直升机可以垂直起落的基本原理。

中国小孩竹蜻蜓玩了有2,000 年了,流传到西方后,成为现代直升机的灵感/ 达·芬奇设计的直升机,到底能不能飞起来,很是可疑 旋翼产生升力的概念并不新鲜,中国儿童玩竹蜻蜓已经有2,000 多年了,西方也承认流传到西方的中国竹蜻蜓是直升机最初的启示。多才多艺的达·芬奇在15 世纪设计了一个垂直的螺杆一样的直升机,不过没有超越纸上谈兵的地步。1796 年,英国人George C ayley 设计了第一架用发条作动力、能够飞起来的直升机,50 年后的1842 年,英国人W.H. Philips 用蒸气机作动力,设计了一架只有9 公斤重的模型直升机。1878 年,意大利人Enrico Forlanini 用蒸气机制作了一架只有3.5 公斤重的模型直升机。1880 年,美国发明家托马斯·爱迪生着手研制用电动机驱动的直升机,但最后放弃了。法国人Paul C ornu 在1907 年制成第一架载人的直升机,旋翼转速每分钟90 转,发动机是一台24 马力的汽油机。Cornu 用旋翼下的“舵面”控制飞行方向和产生前进的推力,但Cornu 的直升机的速度和飞行控制能力很可怜。

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

直升机操纵原理与固定翼飞机的对比,让你分分钟明白

直升机操纵原理与固定翼飞机的对比,让你分分钟明白 直升机的操纵原理,与固定翼飞机完全不同。先做个对比,以单旋翼带尾桨直升机为例。固定翼飞机升力以及操纵力矩来源:前飞动力:由发动机直接喷气或螺旋桨产生拉力。升力:由机翼产生。俯仰力矩:由水平尾翼活动舵面产生。滚转力矩:由副翼产生。偏转力矩:由垂直尾翼的活动舵面产生直升机各种力和力矩的来源:前飞动力:由旋翼桨盘前倾产生。升力:由旋翼产生。俯仰力矩:由旋翼桨盘前后倾斜产生。滚转力矩:由旋翼桨盘左右倾斜产生。偏转力矩:由尾桨拉力大小变化产生。结论:两者的动力和操纵力矩产生方式完全不同。固定翼飞机操纵力矩来自于各个可动舵面。直升机除了偏转力矩之外,其余动力和操纵力矩全部来自旋翼。这就自然导致操纵原理与操纵方式的大相径庭。再对比一下飞行员直接面对的操纵设备:固定翼飞机:右手:驾驶杆。(大型机的驾驶盘先忽略吧)左手:油门杆。双脚:脚蹬。直升机:右手:驾驶杆(真名:周期变距杆)左手:总距油门杆。双脚:脚蹬。驾驶杆VS 周期变距杆他们长得样子都是一样的,产生的操纵效果也是一样的,都是用来控制航空器的倾斜和俯仰状态。向前推杆是低头,向后拉杆是抬头,向左压杆是左滚转,向右压杆是右滚转。效果一样的,可是原理不一样。固定翼飞机:驾驶杆的左右运动,带动的是机翼外侧的副翼,前后运动,带动的

是尾部的水平尾翼。直升机:驾驶杆的运动,通过液压动作筒,带动自动倾斜器的不动环向驾驶杆运动的方向倾斜。自动倾斜器上方的动环在跟随旋翼旋转的同时,跟随不动环倾斜,带动变距拉杆运动,使所有桨叶的迎角周期性改变,产生强制挥舞,整个桨盘向驾驶杆运动的方向倾斜,产生操纵力矩。没有接触过直升机原理的话可能不太好理解,只要记住驾驶杆向哪里运动,上面的大桨盘就朝哪里倾斜就好了。油门杆VS总距油门杆固定翼飞机:油门,就是单纯的油门,直接控制发动机的功率,决定动力的大小。直升机:油门实际上有两个,一个显形的,一个隐形的。显形的那个,就是和固定翼飞机一样的油门杆,一般是在驾驶室顶棚的上方,只是起动的时候用,操纵的时候就不用了。隐形的那个,就是总距油门杆了。它的操纵方式是上提和下放。上提总距杆时,通过液压动作筒,带动自动倾斜器的不动环整体上升,动环跟随上升,带动变距拉杆运动,使所有桨叶的迎角同时增大,每片桨叶的升力都增加,导致整个旋翼的拉力增加。上提总距杆的同时,还有一根钢索,连接到燃油调节器,增大活门开度,提升发动机功率,用来在总桨距提升导致旋翼旋转阻力增大的同时,增加动力维持恒定的旋翼转速。下放总距杆的动作与前面相反。因为它带动的是所有桨叶的桨距,所以叫做总桨距,简称总距。有一个概念需要明确一下,直升机旋翼的旋转速度在正常工作状态下是相对恒定的,增减功率靠

直升机飞行原理

直升机与旋翼机的飞行原理 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂旋转平面)之间的夹角称为桨叶的安装角,以表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。

气流V 与翼弦之间的夹角即为该剖面的迎角。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。 3. 直升机旋翼的操纵 直升机的飞行控制与飞机的飞行控制不同,直升机的飞行控制是通过直升机旋翼的倾斜实现的。直升机的控制可分为垂直控制、方向控制、横向控制和纵向控制等,而控制的方式都是通过旋翼实现的,具体来说就是通过旋翼桨毂朝相应的方向倾斜,从而产生该方向上的升力的水平分量达到控制飞行方向的目的。 直升机体放在地面时,旋翼受其本身重力作用而下垂。发动机开车后,旋翼开始旋转,桨叶向上抬,直观地看,形成一个倒立的锥体,称为旋翼锥体,同时在桨叶上产生向上的升力。随着旋翼转速的增加,升力逐渐增大。当升力超过重力时,直升机即铅垂上升(图;若升力与重力平衡,则悬停于空中;若升力小于重力,则向下降落。 旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。从原理上讲,调节转速和桨距都可以调节拉力的大小。但是 桨毂旋转面 桨毂旋转轴线 前缘 后缘 b ? α V 图 直升机的旋翼 (a) (b)

直升机原理章节1

Introduction A helicopter is an aircraft that is lifted and propelled by one or more horizontal rotors, each rotor consisting of two or more rotor blades. Helicopters are classified as rotorcraft or rotary-wing aircraft to distinguish them from fixed-wing aircraft because the helicopter derives its source of lift from the rotor blades rotating around a mast. The word “helicopter” is adapted from the French hélicoptère, coined by Gustave de Ponton d’Amécourt in 1861. It is linked to the Greek words helix/helikos (“spiral” or “turning”) and pteron (“wing”). Introduction to the Helicopter Chapter 1

Figure 1-1.Search and rescue helicopter conducting a pinnacle approach. Figure 1-2. Search and rescue helicopter landing in a confined area. As an aircraft, the primary advantages of the helicopter are due to the rotor blades that revolve through the air, providing lift without requiring the aircraft to move forward. This creates the ability of the helicopter to take off and land vertically without the need for runways. For this reason, helicopters are often used in congested or isolated areas where fixed-wing aircraft are not able to take off or land. The lift from the rotor also allows the helicopter to hover in one area and to do so more efficiently than other forms of vertical takeoff and landing aircraft, allowing it to accomplish tasks that fixed-wing aircraft are unable to perform. [Figures 1-1 and 1-2] Piloting a helicopter requires a great deal of training and skill, as well as continuous attention to the machine. The pilot must think in three dimensions and must use both arms and both legs constantly to keep the helicopter in the air. Coordination, control touch, and timing are all used simultaneously when flying a helicopter. Although helicopters were developed and built during the first half-century of flight, some even reaching limited production; it was not until 1942 that a helicopter designed by Igor Sikorsky reached full-scale production, with 131 aircraft built. Even though most previous designs used more than one main rotor, it was the single main rotor with an antitorque tail rotor configuration design that would come to be recognized worldwide as the helicopter. Turbine Age In 1951, at the urging of his contacts at the Department of the Navy, Charles H. Kaman modified his K-225 helicopter with a new kind of engine, the turbo-shaft engine. This adaptation of the turbine engine provided a large amount of horsepower to the helicopter with a lower weight penalty than piston engines, heavy engine blocks, and auxiliary components. On December 11, 1951, the K-225 became the first turbine-powered helicopter in the world. Two years later, on March 26, 1954, a modified Navy HTK-1, another Kaman helicopter, became the first twin-turbine helicopter to fly. However, it was the Sud Aviation Alouette II that would become the first helicopter to be produced with a turbine engine. Reliable helicopters capable of stable hover flight were developed decades after fixed-wing aircraft. This is largely due to higher engine power density requirements than fixed-wing aircraft. Improvements in fuels and engines during the first half of the 20th century were a critical factor in helicopter development. The availability of lightweight turbo-shaft engines in the second half of the 20th century led to the development of larger, faster, and higher-performance helicopters. The turbine engine has the following advantages over a reciprocating engine: less vibration, increased aircraft performance, reliability, and ease of operation. While smaller and less expensive helicopters still use piston engines, turboshaft engines are the preferred powerplant for helicopters today.

直升机的操纵原理

第六章 直升机的操纵原理
直升机不同于固定翼飞机,一般都没有在飞行中 供操纵的专用活动舵面。这是由于在小速度飞行 或悬停中,其作用也很小,因为只有当气流速度 很大时舵面或副翼才会产生足够的空气动力。单 旋翼带尾桨的直升机主要靠旋翼和尾桨进行操纵, 而双旋翼直升机靠两副旋翼来操纵。由此可见, 旋翼还起着飞机的舱面和副翼的作用。

直升机操纵原理
旋翼不仅提供升力同时也是直升机的主要操 纵面。
总距操纵杆:通过自动倾斜器改变旋翼桨叶 总距,控制直升机的升降运动。提杆,增大 总距,升力增大,直升机上升;压杆,减小 总距,直升机下降。
周期变距操纵杆:操纵周期变距操纵杆,使 自动倾斜器相应的倾斜,从而使桨叶的桨距 作每周一次的周期改变,造成旋翼拉力矢量 按相应的方向倾斜,达到控制直升机的前、 后(左、右)和俯仰(或横滚)运动。

直升机操纵原理
脚蹬:控制尾桨,实现航向操纵。 尾桨:平衡旋翼反扭矩、航向操纵。 垂尾:增加航向稳定性。 平尾:增加俯仰稳定性。

直升机操纵原理(续)

6.1 直升机操纵特点
直升机驾驶员座舱 操纵机构及配置直 升机驾驶员座舱主 要的操纵机构是: 驾驶杆(又称周期 变距杆)、脚蹬、 油门总距杆。此外 还有油门调节环、 直升机配平调整片 开关及其他手柄.

驾驶杆和脚蹬
驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼 的自动倾斜器连接。驾驶杆偏离中立位置表示:
向前——直升机低头并向前运动; 向后——直升机抬头并向后退; 向左——直升机向左倾斜并向左侧运动; 向右——直升机向右倾斜并向右侧运动。 脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机
来说,驾驶员蹬脚蹬操纵尾桨变距改变尾桨推(拉) 力,对直升机实施航向操纵。

直升机原理教案

直升机原理教案 作为一种特殊的飞行器,直升机的升力和推力均通过螺旋桨的旋转获得,这就决定了其动力和操作系统必然与各类固定机翼飞机有所不同。一般固定翼飞机的飞行原理从根本上说是对各部位机翼的状态进行调节,在机身周围制造气压差而完成各类飞行动作,并且其发动机只能提供向前的推力。但直升机的主副螺旋桨可在水平和垂直方向上对机身提供动力,这使其不需要普通飞机那样的巨大机翼,二者的区别可以说是显而易见。 操纵系统 直升机的操纵系统可分为三大部分: 踏板在直升机驾驶席的下方通常设有两块踏板,驾驶员可以通过它们对尾螺旋桨的输出功率和桨叶的倾角进行调节,这两项调整能够对机头的水平方向产生影响。 周期变距杆位于驾驶席的中前方,该手柄的控制对象为主螺旋桨下方自动倾斜器的不动环。不动环可对主螺旋桨的旋转倾角进行调整,决定机身的飞行方向。 总距杆位于驾驶席的左侧,该手柄的控制对象为主螺旋桨下方自动倾斜器的动环。动环通过对主螺旋桨的桨叶倾角进行调节来对调整动力的大小。另外,贝尔公司生产的系列直升机在总距杆上还集成有主发动机功率控制器,该控制器可根据主螺旋桨桨叶的旋转倾角自动对主发动机的输出功率进行调整。

飞行操作 升降有些读者可能会认为,直升机在垂直方向上的升降是通过改变主螺旋桨的转速来实现的。诚然,改变主螺旋桨的转速也不失为实现机体升降的方法之一,但直升机设计师们很早之前便发现,提升主螺旋桨输出功率会导致机身整体负荷加大。所以,目前流行的方法是在保持主螺旋桨转速一定的情况下依靠改变主螺旋桨桨叶的倾角来调整机身升力的大小。驾驶员可通过总距杆完成这项操作。当把总距杆向上提时,主螺旋桨的桨叶倾角增大,直升机上升;反之,直升机下降。需要保持当前高度时,一般将总距杆置于中间位置。 平移直升机最大飞行优势之一是:可以在不改变机首方向的情况下,随时向各个方向平移。这种移动是通过改变主螺旋桨的旋转倾角来实现的。当驾驶员向各个方向扳动周期变距杆时,主螺旋桨的主轴也会发生相应的倾斜。此时,主螺旋桨所产生的推力分解为垂直和水平两个方向的分力,垂直方向的分力依旧用于保持飞行高度,水平方向上的分力可使机身在该方向上产生平移。 需要指出的是,以上分析是将主螺旋桨看作一个整体而得出的。

直升机飞行操控的基本原理

直升机飞行操控的基本原理

图 1 直升机飞行操纵系统- 概要图 (a)

(b) 图2 直升机操纵原理示意图 1.改变旋翼拉力的大小 2.改变旋翼拉力的方向 3.改变尾桨的拉力 飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。 一、周期变距操纵系统 周期操纵系统用于操纵旋翼桨叶的桨距周期改变。当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。 纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。 周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)

(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。 1.右侧周期变距操纵杆3.左侧周期变距操纵杆 2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件1 3.总距拉杆1 4.与复合摇臂相连接的拉杆1 5.伺服机构1 6.伺服机构(横滚+总距)1 7.伺服机构(俯仰+总距)1 8. 可调拉杆 图 3 直升机周期变距操纵系统 (一)纵向操纵情况 当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固

相关文档