文档库 最新最全的文档下载
当前位置:文档库 › 随机振动试验台测试步骤

随机振动试验台测试步骤

随机振动试验台测试步骤

随机振动试验台测试步骤

随机振动试验台方法产品概述:

系统广泛适用于国防、通迅、电子、汽车、摩托车、家电等行业。根据需要,可为用户提供适应各类环境的综合试验装置。该类型设备适用于发现早期故障,模拟实际工况考核和结构强度试验,本系列产品应用范围广泛、适用面宽、试验效果显著、可靠。

今天环仪小编来给大家讲讲随机振动试验台测试步骤:

(1-4项试验方向:3面向下,时间:60分钟)

1将包装件的3面向下放置在振动台面的中心位置上。

2.将动态载荷振动试验要求中计算得到的包装件高度方向的动态载荷(TL-Hi)放置在试验样

品顶部

3.使用堆码护栏来保证正确的振动方向,并且不能限制试验样品和顶部载荷在垂直方向的

运动。

4.启动振动台,按照动态载荷振动试验要求的公路拖车频谱进行随机振动试验

5振动60分钟后停止试验,卸载样品顶部载荷。

6检查包装件的外观破损情况,但是不能改变当前包装和产品的状态

关键词:随机振动试验台、振动试验台、动态载荷振动试验机

东莞市环仪仪器随机振动试验台参考文献

振动测试常见小知识

振动测试常见小知识问答 1什么是振动? 振动是机械系统中运动量(位移,速度和加速度)的振荡现象。 2振动的目的? 振动试验的目的是模拟一连串振动现象,测试产品在寿命周期中,是否能承受运输或使用过程的振动环境的考验,也能确定产品设计和功能的要求标准。振动试验的精义在于确认产品的可靠性及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析使其成为高水平,高可靠性的产品。 3.振动分几种? 振动分正弦振动和随机振动两种。 4.什么是正弦振动? 能用一项正弦函数表达式表达其运动规律的周期运动。 例如凡是旋转、脉动、振荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动均是正弦振动。 5.正弦振动的目的? 正弦振动试验的目的是在试验室内模拟电工电子产品在运输、储存、使用过程中所遭受的振动及其影响,并考核其适应性。 6.正弦振动的试验条件由什么确定? 正弦振动试验的验条件(严酷等级)由振动频率范围、振动量、试验持续时间(次数)共同确定. 7.什么是振动频率范围? 振动频率范围表示振动试验由某个频率点到某个频率点进行往复扫频。 例如:试验频率范围5-50Hz,表示由5Hz到50Hz进行往复扫频。 8.什么是频率? 频率:每秒振动的次数.单位:Hz。 9.什么是振动量? 振动量:通常通过加速度和位移来表示. 加速度:表示速度对时间倒数的矢量。加速度单位:gn或m/s2 位移:表示物体相对于某参考系位置变化的矢量。位移单位:mm 10.什么是试验持续时间(次数)? 振动时间表示整个试验所需时间, 次数表示整个试验所需扫频循环次数. 11.什么是扫频循环?

扫频循环:在规定的频率范围内往返扫描一次: 例如:5Hz→50Hz→5Hz,从5Hz扫描到50Hz后再扫描到5Hz。 12.什么是重力加速度? 重力加速度:物体在地球表面由于重力作用所产生的加速度。 1gn=10m/s2(GB/T 2422-1995 电工电子产品环境试验术语) 13.扫描方式(sweep mode)分几种? 线性扫描:是线性的,即单位时间扫过多少赫兹,单位是Hz/s或Hz/min,这种扫描用于细找共振频率的试验. 对数扫描:频率变化按对数变化,扫描率可以是oct/min ,对数扫描的意思是相同的时间扫过的频率倍频程数是相同的 14.什么是扫描速度(sweep speed)?分几种? 扫描速度(sweep speed):指从最低频率扫描到最高频率的速度. 1)oct/min:多少倍频程每分钟. 例:1oct/min,5Hz到10Hz需1分钟,10Hz到20Hz需1分钟。 2)min/sweep:多少分钟每次扫频. 例:5-500Hz,扫描速度:1分钟/sweep,表示从5Hz到500Hz需1分钟。 3)Hz/s:多少Hz每秒. 例:5-10Hz,扫描速度:1Hz/s,表示5Hz到6Hz需1秒,6Hz到7Hz需1秒。 15.振动试验中试验几个方向?怎么区分方向? 除有关规范另有规定外,应在产品的三个互相垂直方向上进行振动试验。 一般定义产品长边为X轴向,短边为Y轴向,产品正常摆放上下为Z轴向。 16.什么是交越频率? 交越频率:在振动试验中由一种振动特性量变为另一种振动特性量的频率。如交

振动试验机的基本操作方法

振动试验机的基本操作方法 1 范围 本标准规定了振动试验机的一般要求、基本参数、技术要求、检验方法和检验规则等。 本标准适用于额定正弦激振力或随机激振力不大于200 kN试验用振动试验机。 激振力大于200 kN的振动试验机宜由用户和制造者或供应商参照本标准协商达成协议。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用的这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2298机械振动与冲击术语(GB/T 2298—1991,neq ISO 2041:1990) GB/T 2611 2007试验机通用技术要求 JB/T 6147—2007试验机包装、包装标志、储运技术要求 3 术语和定义 GB/T 2298确立的以及下列术语和定义适用于本标准。 3.1 额定负载 rated mass 有关技术文件规定的最大试验负载。 3.2 额定正弦激振力 rated excitation force under sinnsoidal conditions 不同试验负载下所有最大正弦激振力的最小值。 3.3 额定正弦加速度 rated sinusoidal acceleration 正常工作时,台面允许达到的最大加速度。 3.4 极限特性 limit characteristic 在不同的试验负载下随频率变化的位移速度一加速度的极限值,一般用极限曲线表示。3.5 额定频率范围 rated frequency range 极限特性曲线的最低频率至最高频率的范围。 3.6 额定随机激振力 rated random excitation force 任一试验负载下随机激振力的最小值。该力与频率上、下限之间的均匀加速度功率谱密度对应。 4 振动试验机的组成 振动试验机由以下部分组成: a)振动试验机台体; b)功率放大器; c)振动控制仪(可按照用户要求配置); d)冷却风机或热交换器等辅助设备。 5 基本参数与参数系列 5.1 振动试验机应给出下列基本参数: a)额定正弦激振力; b)额定随机激振力; c)额定频率范围; d)额定加速度; e)额定速度; f)额定位移; g)额定负载。 5.2振动试验机参数系列见表l,并优先选用表1的参数。

公路标准振动台法实验装置试验方法

公路标准振动台法实验装置试验方法 摘要:振动台法实验装置分为公路标准和水利标准,其中水利标准是我公司成熟产品,用于测定粗颗粒土的相对密度即无粘性土,公路标准用于测定无粘性自由排水粗料土、巨料土、(包括堆石料)等。 公路标准振动台法实验装置试验方法(干土法): 1、充分搅拌烘干试样,即使其颗粒分离程度尽可能小;然后大致分成三份。测定并记录空试筒质量。 2、用小铲或漏斗将任一份试样徐徐装入试筒,并注意使颗粒分离程度最小(装填宜使振毕密实后的试样等于或略低于筒高的1/3)抹平试样表面。然后可用橡皮锤或类似物敲击几次试筒壁,使试料下沉。 3、放置合适的加重底板于试料表面,轻轻转动几下,使加重底板与试样表面密合一致。卸下加重底板把手。 4、将试筒固定于振动台面上,装上套筒,并与试筒紧密固定,将合适的加重块置于加重底板上,其上部尽量不与套筒内壁接触。 5、设定振动台在振动频率50Hz下的垂直振动双振幅为0.5mm;或在振动频率60Hz下的垂直双振幅为0.35mm。振动试筒及试样等,在50Hz下振动10min,在60Hz下振动8min。振毕卸去加重块及加重底板。 6、按本规程2—5步骤进行第二层、第三层试料振动压实。但第三层振毕加重底板不再立即卸去。 7、卸去套筒,然后检查加重底板是否与试样表面密合一致,即按压加重底板边缘,看其是否翘起,若翘起则宜在试验报告中注明。 8、将百分表架支杆插入每个试筒导向瓦套中;刷净试筒顶沿面上及加重底板上位于试筒导向瓦两侧测量位置所积落的细粒土,并尽量避免将这些细粒土刷进试筒内,然后分别测读并记录试筒导向瓦每侧试筒顶沿面(中心线处)各三个百分表读数,共12个读数(其平均值即为终了百分表读数Rf)。 9、卸去加重底板,并从振动台面上卸下试筒。在此过程中,尽可能避免加重底板上及试筒沿面上落积的细粒土进入试筒里。如这些细粒土质量超过试样总质量的0.2%,应测定其质量并注明试验报告中。 10、在合适的台称上测定并记录试筒及试样总质量,扣除空试筒质量即为试样质量,或仔细地将试筒里试样全部倒入已知质量的盘中称量。计算最大干密度. 11、重复1—10步骤,直至获得一致的最大干密度值(最好在2%内)。如果发现产生过分的颗粒破碎或者是有棱角的石渣、堆石料或风化弱岩石料,则宜尽量制备足够数量代表性试样,以避免单个试样重复使用。 湿土法,结果整理、压实指标计算请参照相关规范。

高层楼房震动测试报告汇总

目录 第1章测试的目的 (1) 第 2 章高层建筑结构现场动力特性测试方法 (3) 2.1概述 (3) 2.2 影响高层建筑动力测试的环境因素 (3) 2.3高层建筑结构脉动测试测点分类 (3) 2.3.1水平振动测点 (3) 2.3.2扭转振动测点 (4) 2.4测点及测站布置原则 (4) 2.4.1找好中心位置布置平移振动测点。 (4) 2.4.2在建筑物的两侧布置扭转测点 (4) 2.5 传感器布置的方法 (5) 第3章西安建筑科技大学XX大楼现场动力测试 (6) 3.1 结构概况 (6) 3.2 测试目的 (6) 3.4 测试仪器设备 (6) 3.5 测试方案 (6) 3.6 脉动过程记录 (7) 3.7结果分析 (9) 3.8 结论 (11) 参考文献 (12)

第1章测试的目的 高层建筑结构的动力特性指它的自振频率、振型及阻尼比.虽然这些动力特性可以通过理论计算求得,但通过测试所得的动力特性仍然具有重要意义。主要表现在以下几个方面: ①.检验理论计算 理论计算方法求结构的自振频率时存在误差。于在理论计算过程中,要先确定计算简图和结构刚度,而实际结构往往是比较复杂的,计算简图都要经过简化,常填充墙等非结构构件并不记入结构刚度,而且结构的质量分布、材料实际性能、施工质量等都不能很准确的计算。因此,计算周期与实测周期相比,往往相差很多,据统计,大约前者为后者的1.5--3倍。这样,如果直接采用理论计算的自振周期计算等效地震荷载,往往使内力及位移偏小,设计的结构不够安全。因此,理论周期要用修正系数加以修正。现场实测可以得到建筑物建成后实际的动力特性,因此是准确可靠的。所得数据可以与理论计算数据进行对照比较,验证理论计算,也可为设计类似的对于超高层建筑提供经验及依据。 ②.验证经验公式 通过实测手段对各种不同类型的建筑物进行测试以后,可归纳总结出结构周期的规律,得到计算结构振动周期的经验公式。在估算结构动力特性及估算地震作用时采用经验公式可快速得到结果,方便实用。由于实测周期大都采用脉动试验的方法得到,是反映结构在微小变形下的动力特性,得的周期都比较短,如果激振力加大,结构周期会加长。在地震作用下,随着地震烈度不同,房屋会有不同程度的开裂破坏,刚度降低,自振周期会变长。因此,完全按照脉动测试的周期来确定同类型结构的周期,将使计算等效地震力加大,设计偏于保守。所以由脉动方法得到的实测周期需要乘以修正系数,再计算等效地震力。在大量测试工作和积累了丰富资料的基础上,这个修正系数的大小视结构类型、填充墙的多少而定,大约在1.1-1.5之间。在给出经验公式时,计入这一修正系数,这样既可以简化计算,又与实际周期较为接近。 ③.为结构安全性评估及损伤识别提供依据 建筑结构的质量问题不容忽视,它是直接关系着千家万户的生命财产安全和安居乐业的大事,建筑结构的质量状态评估日益受到人们的重视。传统的经验性的评估方法存在许多缺陷和不足,静力检测结构的缺陷也有许多局限性。动力检测应用于整体结构的质量评估受到国内外学者的广泛关注。近10年来,国内外学者一直在寻找一种能适用于复杂结构整体质量评估的方法。目前,到

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

机械振动的测量方法

振动的测量方法 摘要 本文主要介绍了振动的测量方法与分类,并简要说明了各测量方法的原理及优缺点,以及在测量过程中所使用的传感器。并且详细的介绍了加速度传感器与磁电式速度传感器的工作原理。简要介绍了振动量测量系统的原理框图 关键词:加速度传感器、振动、磁电式速度传感器

1引言 机械振动是自然界、工程技术和日常生活中普遍存在的物理现象。各种机器、仪器和设备在其运行时,由于诸如回转件的不平衡、负载的不均匀、结构刚度的各向异性、润滑状况的不良及间隙等原因而引起力的变化、各部件之间的碰撞和冲击,以及由于使用、运输和外界环境条件下能量的传递、存储和释放等都会诱发或激励机械振动。 2振动概述 2.1振动测量方法分类 振动测量方法按振动信号转换的方式可分为电测法、机械法和光学法。各测量方法的原理及优缺点见表1. 表1振动测量方法分类 2.2振动测试的内容: 1. 振动基本参数的测量。 测量振动物体上某点的位移、速度、加速度、频率和相位。其目的是了解被测对象的振动状态、评定振动量级和寻找振源,以及进行监测、诊断和评估。 2. 结构或部件的动态特性测量。 以某种激振力作用在被测件上,对其受迫振动进行测试,以便求得被测对象

的振动力学参量或动态性能,如固有频率、阻尼、阻抗、响应和模态等。这类测试又可分为振动环境模拟试验、机械阻抗试验和频率响应试验等。 2.3振动测量的基本原理与方法 振动检测按测量原理可分为相对式与绝对式(惯性式)两类。振动检测按测量方法可分为接触式与非接触式两类。 2.3.1相对式振动测量 相对式振动测量是将振动变换器安装在被测振动体之外的基础上,它的测头与被测振动体采用接触或非接触的测量。所以它测出的是被测振体相对于参考点的振动量 图1 相对式测振仪的原理 1测量针与笔 2 被测物体 3 走动纸 2.3.2绝对式振动测量 采用弹簧—质量系统的惯性型传感器(或拾振器),把它固定在振动体上进行测量,所以测出的是被测振动体相对于大地或惯性空间的绝对运动。 图2 绝对式测振仪原理 1质量块 2 弹簧 3 阻尼器 4 壳体机座 5 振动体

振动台试验方案设计实例

一、振动台试验方案 1试验方案 1.1工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。 本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率围无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验

随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦) (6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法 试验Fd:宽频带随机振动——一般要求 (7)GB/T 2423.12-1997 电工电子产品环境试验第2部分:试验方法

振动测试作业报告

振动测试技术期末总结 学号: 班级:建筑与土木工程(1504班) 姓名:杨允宁 2016年4月27日

目录 1 振动测试概述 (1) 1.1 振动的分类: (1) 1.1.1 按自由度分类: (1) 1.1.2 按激励类型分类: (1) 1.1.3 振动规律分类: (1) 1.1.4 按振动方程分类: (1) 1.2 振动基本参量表示方法: (2) 1.2.1 振幅(u): (2) 1.2.2 周期(T)/频率(f): (2) 1.2.3 相位( ): (2) 1.2.4 临界阻尼(C cr) (2) 1.2.5 结构的阻尼系数(c): (2) 1.2.6 对数衰减率(δ): (3) 1.3 振动测试仪器分类及配套使用: (3) 1.3.1 振动测试仪器分类 (3) 1.3.2 振动测试仪器配套使用: (4) 1.4 窗函数的分类及用途 (5) 1.4.1 矩形窗(Rectangular窗): (5) 1.4.2 三角窗(Bartlett或Fejer窗): (5) 1.4.3 汉宁窗(Hanning窗): (5) 1.4.4 海明窗(Hamming窗) (6) 1.4.5 高斯窗(Gauss窗) (6) 1.5 信号采集及分析过程中出现的问题及解决方法 (7) 1.5.1 信号采集和分析过程中出现的问题 (7) 1.5.2 解决方法 (7) 2 惯性式速度型与加速度型传感器 (8) 2.1 惯性式传感器的分类: (8) 2.2 常用加速度计传感器的工作原理及力学模型: (8) 2.2.1 电动式(磁电式)传感器: (8) 2.2.2 压电式传感器: (9) 2.3 非惯性传感器: (11) 2.3.1 电涡流式传感器: (11) 2.3.2 参量型传感器: (11) 3 振动特性参数的常用量测方法 (11) 3.1 简谐振动频率的量测: (12) 3.1.1 李萨(Lissajous)如图形比较法: (12) 3.1.2 录波比较法: (12) 3.1.3 直接测频法: (12) 3.2 机械系统固有频率的测量 (13) 3.2.1 自由振动法: (13) 3.2.2 强迫振动法: (13) 3.3 简谐振幅值测量 (13)

变频器机械可靠性测试规范V

变频器机械可靠性 测试规范 拟制:_____黄国华________日期:2010-08-01 审核:___________________日期:__________ 批准:___________________日期:__________

更改信息登记表 规范名称:变频器机械可靠性测试规范 规范编码: 评审会签区: 人员签名意见日期 目录 1. 目的...............................................................................................................................................

2. 范围............................................................................................................................................... 3. 定义............................................................................................................................................... 4. 引用标准....................................................................................................................................... 5. 测试设备....................................................................................................................................... 6. 试验环境....................................................................................................................................... 7. 测试项目....................................................................................................................................... 7.1.测试项目清单 ............................................................................................................ 7.2.试验样品工作状态半正弦波冲击试验 .................................................................... 7.3.试验样品非工作状态半正弦波冲击试验 ................................................................ 7.4.试验样品梯形波冲击试验 ........................................................................................ 7.5.试验样品工作状态正弦扫频试验 ............................................................................ 7.6.试验样品工作状态随机振动试验 ............................................................................ 7.7.试验样品非工作状态随机振动试验 ........................................................................ 7.8.试验中断处理 ............................................................................................................ 8. 数据记录及报告格式 ................................................................................................................... 8.1.机械可靠性测试数据记录表 .................................................................................... 8.2.机械可靠性测试报告格式 ........................................................................................ 变频器机械可靠性测试规范 1.目的 检验变频器产品机械可靠性是否满足标准和客户要求;本规范主要集中在验证变频器产品在冲击和振动环境因素规定限值内的工作能力,评定产品对贮存、运输、搬运及使用环境的适应性。 2.范围 本规范规定的机械可靠性测试方法,适用于英威腾电气股份有限公司开发的所有变频器产品。 3.定义 ●可靠性(reliability):产品在规定条件下、规定时间内完成规定功能的能力。 ●环境可靠性试验(environmental reliability test):采用自然暴露或人工模拟的方法 将产品暴露在特定环境中,为验证产品环境可靠性而开展的试验;完整的环境试验操作顺序,通常包括预处理(必要时)、初始检测(必要时)、条件试验、恢复、最后检测。 ●初始检测(initial examination and measurement):预处理后,条件试验之前对试验

电动振动试验说明书

DLS-3000-40-07 电动振动试验系统 使 用 说 明 书 SM 苏 州 苏 试 试 验 仪 器 有 限 公 司

S T I目录 目 录 1. 安全须知 2. DLS-3000-40-07 电动振动试验系统概述 3. DLS-3000-40-07 电动振动试验系统构成 4. DLS-3000-40-07电动振动试验系统方框图 5. DLS-3000-40-07振动试验系统技术参数 6. 系统各组成部分详细说明 6.1 SA-40开关功率放大器 6.2 DLS-3000-40-07电动振动试验系统台体 6.3 振动系统的地基和安装 7. 系统运行 7.1 电动振动台部分的备 7.2 SL-0707水平滑台运行前的准备 7.3 传感器的安装 7.4 运行操作 7.5 停机 8. 注意事项 9. 保护动作和复位方法 10. 试验样品 11. 附图

1. 安全须知 为安全起见,请注意下述事项(由于是作一般性的说明,可能有些项目本装置中没有)。 1.1 占有区域 为安全起见,在振动试验装置及电缆的四周设置一个设备占有区域(可能的话在5 m2以上)。 保持占有区域清洁,不需要物品不可放在占有区域内。占有区域以外也可能因噪音等对人体构成伤害。除设备专门操作者,他人不可进入占有区域。 1.2 培训 对本装置的操作者必须详细阅读使用说明书,有条件的进行专门培训。 1.3 检查 为了您的使用安全,请做定期检查。 1.4 设置 振动试验装置的主操作面板应该设置在能看到振动台、功率放大器的位置。 1.5 设备电源 变更电源的场合,风机、马达等可能会产生倒转现象。请确认旋转方向,用箭头表示正确的旋转方向。 1.6 其它注意事项 a. 噪声 振动试验装置会产生较大的噪声,故对周围的工作人员应采取保护措施(耳塞等)。我公司推荐隔音室作为防噪对策。

2016年《振动测试实验》综合练习题 (2)

2016年《振动测试实验》综合练习题 1、关于振动传感器,请回答以下问题: 1)振动传感器主要有那些类型?哪种传感器目前使用最广泛? 答:①振动传感器按所测机械量分为位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 ②目前使用最广泛的是加速度传感器。 2)加速度传感器安装方式有哪些?对于飞机空中振动环境测试,你认为哪几种安装方式较合适? 答:①加速度传感器安装方式:刚螺栓连接、胶合螺栓、石蜡粘接、双面胶、永久磁铁。 ②对于飞机空中振动环境测试,用刚螺栓连接、胶合螺栓较合适。 3)加速度传感器和力传感器的主要技术指标? 答:(1)灵敏度:电信号输出与被测运动输入之比。加速度传感器的灵敏度通常为V/g或PC/ms-2、V/ms-2。力传感器的灵敏度通常为V/N。(2)频率响应特性(包括幅频特性和相频特性)。(3)动态范围:可测量的最大振动量与最小振动量之比。下限取决于连接电缆和测量电路的电噪声,上限取决于传感器的结构强度。(4)横向灵敏度:垂直于主轴的横向振动也会使传感器产山输出信号。该信号与主轴灵敏度的百分比为横向灵敏度。(5)幅值线性度:实际传感器的输出信号只在一定幅值范围内与被测振动成正比(即保持线性特性)。在规定线性度内可测幅值范围称为线性范围。 4)一般振动数据采集设备最大输入电压为10伏。测量一结构加速度响应,加速度最大值预估约为20g,现有加速度传感器甲(灵敏度:50mv/g)、乙(灵敏度:500mv/g)各一只,选用哪一个传感器?请说明理由。 答:灵敏度等于输入电压除以加速度为10V/20g = 500 mv/g,所以选择乙传感器。 2、关于激振器,请回答以下问题: 1)常用的激振器安装方式有哪两种?两种安装方式的分别有何技术要求? 答:①常用的激振器安装方式:刚性支承、柔性悬挂。 ②刚性支承安装要求:垂直向、横向、纵向支承刚度足够大。 支承系统(激振器+支架)的最低阶固有频率>试验件最高阶固有频率。 柔性悬挂安装要求:垂直向、横向、纵向支承刚度足够小。

振动试验台安全技术操作规程示范文本

振动试验台安全技术操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

振动试验台安全技术操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 ?物品放置:将振动试验的物品放入试验台上的夹具 中,用扳手将固定螺丝拧紧,防止振动中物品脱落损坏; ?开机:打开启动按钮,此时听到“嗒”的一声,表示 振动台电源接通,如果没有声音,则先按停止按钮再重新 按启动按钮; ?振动频率调节:根据实际情况,把频率调节旋钮旋到 合适位置,在调整频率过程中,需缓慢调节,以防瞬间频 率过高,将物品振坏; ?关机:振动实验结束后.先把频率按钮调至0Hz, 然后按下停止按钮,取下试验物品,关闭振动台电源; ?振动台要固定位置,防止滑动; ?振动台所放物品一定要保持平衡,以防物品不平衡而

在振动过程中损坏; ?插拔电源插头时,要小心操作,以防被电击伤; ?振动过程中,切忌用手触摸被振物品,以防振动中的物品将手击伤; ?试验台经常保持清洁,长期不用应套好塑料防尘罩,放置在干燥的环境内。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

某建筑振动台试验方案设计

、振动台试验方案 1 试验方案 1.1 工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒” 结构体系,主要由4个核心筒、钢骨混凝土(SRC外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑 (UBB构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4 o 本工程的自振周期约为6.44 秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2 个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1 、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据 Buckingham的n定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1 )弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的 应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1 (S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在 Sa=Sg=1的条件下,要满足Sa=SE/S l S P=1,即S=S E/S p必须使模型材料的弹模很小或材

振动量的常用测量方法三种

振动量的常用测量方法三种: 1. 机械式测量方法:主要用杠杆放大原理或惯性原理加上杠杆放大原理。 2. 电测法:将振动参量(位移、速度、加速度)转换成电信号,经电子系统放大后进行测 量记录的方法。 3. 光测法:把振动参量转换成光信号,经光学系统放大后,加以测量和记录。 直接为震动试验提供振动源的设备是激振设备,包括:振动台和激振器两类;有机械式、电动式、电动液压式、压电式。 1. 机械式振动台的工作原理: (1) 离心式:利用偏心块绕定轴转动,产生离心力。质量为m,偏心距r 的质量块,以角 速度ω绕O 转动,产生离心力 t m r t F F t m r t F F y x ωωωωωωsin sin cos cos 22==== 为了产生单一方向激振力,将其设计成双轴式结构,即把两偏心块对称地安装在两轴上,并使偏心块作反向同角速度的旋转。水平分力相互抵消,只剩下按正弦规律变化的垂直激振力。 通常偏心质量块由活动扇形块与固定扇形块构成。若改变活动扇形块的角度α ,则可以改变激振力值,也就是台面的振幅值。当 180=α时,离心力为最大,此时激振力为: t mr F ωωsin 22= 振动台的运动方程: F ky y M -=+ 台面的振幅: ) (22022 ωωω-=M mr A M k =0ω为振台的固有频率;m 每组偏心块的质量;r 偏心距;M 运动部分的总质量 当0ωω>>,台面的振幅不随激振频率改变,同偏心质量、偏心距成正比M mr A 2= 。

(2.)凸轮式振动台: 台面振幅由偏心距r 决定:t r y ωsin =,频率由直流电机的转速决定。为了调节振幅,常用同轴的双凸轮装置。通过调节内外两凸轮的相对位置调节凸轮的偏心距,即调节了振幅。 机械式振动台的特点: 简单、可靠,承载力较大。由于旋转机构的惯性大,所以工作的频率不高,低于50~60Hz 。另外,机件之间存在加工间隙,工作时会引起碰撞,影响台面波形。用于中小型模型试验,也用于对产品作环境实验。 2. 电磁式振动台: 电磁式振动台是把交变的电量变为交变的机械量的装置。利用带电导线在磁场里受到安培力的作用,使得导线产生运动的原理制成的。 410102.0-?=BLI F B ——磁场强度 L ——导线有效长度 I ——导线内电流强度 改变磁力线圈中电流的频率及强度,就能改变振动台振动的频率及幅值。 3. 电气液压式振动台 工作过程:电信号转化为大功率液压信号,液压油进入激振器,激振器带动台面按照输入电信号的规律振动。 4. 大型模拟地震振动台 地震荷载是因地面运动而引起的一种惯性力,仅用激振器所产生的集中力来模拟地震力是不确切的。大型模拟地震振动台可以模拟地震运动,具有大振幅、大出力、多方向震动及频率低的特点。

SW系列电磁振动台操作要点

SW型电磁吸式振动试验台 使用说明书 若能明确了解振动试验的目的就必能了解振动试验的必要性. 现今世界经济潮流,已从过去地域性的经济模式而走向全球性的经济贸易。无论是地域性市场或进军全球市场,高品质的表现是不容讳言的。而振动测试更是协助您产品跃入高品质行列中不可缺乏的利器。 产品达到用户手中,在此过程中将有不同状态之振动产生,造成产品不同程度的损坏。而对于产品有任何损坏都不是厂商及客户所愿意见到的,然而运送过程所发生的振动却是难以避免,若一味的提高包装成本,必将带来严重而不必要的浪费,反之脆弱的包装却造成产品的高成本,并丧失了产品形象及市场,这些都不是我们所愿见到的。 振动测试约在四、五十年前开始萌芽,理论建立时,并无助于人们相信它的重要性,直到二次大战时,许多的飞行器、舰艇、车辆及器材在使用后,意外的发现机件失零的比例相当高,经研究的结果发现,大都由于其结构无法承受其本身所产生的长时间共振,或搭载物品承受运送共振所引起之,元件松脱、崩裂,而致机件失零甚而造成巨大损失。当这项结果公布后,振动测试才受到各界重视,纷纷投入大笔经费、人力去研究。尔后,对于振动量测分析以至模拟分析的近代理论建立后,对振动测试的方法及逻辑亦不断改进。尤其现今货物的流通频繁,使振动测试更显重要。 然而振动测试的目的,是在于实验中作一连串可控制的振动模拟,测试产品在寿命周期中,是否能承受运送或振动环境因素的考验,也能确定产品设计及功能的要求标准。据统计的数据显示提升3%的设计水准,将增加20%的回收及减少18%的各项不必要支出。振动模拟依据不同的目的也有不同的方法如共振搜寻、共振驻留、循环扫描、随机振动及应力筛检等,而振动的效应计有:一、结构的强度。 二、结合物的松脱。三、保护材料的磨损。四、零组件的破损。五、电子组件之接触不良。六、电路短路及断续不稳。七、各件之标准值

相关文档
相关文档 最新文档