文档库 最新最全的文档下载
当前位置:文档库 › 变频器恒压供水系统(多泵)

变频器恒压供水系统(多泵)

变频器恒压供水系统(多泵)
变频器恒压供水系统(多泵)

目录

1 变频器恒压供水系统简介 (1)

1.1变频恒压供水系统理论分析 (1)

1.1.1变频恒压供水系统节能原理 (1)

1.1.2 变频恒压控制理论模型 (2)

1.2恒压供水控制系统构成 (3)

1.3 变频器恒压供水产生的背景和意义 (4)

2 变频恒压供水系统设计 (5)

2.1 设计任务及要求 (5)

2.2 系统主电路设计 (5)

2.3 系统工作过程 (6)

3 器件的选型及介绍 (8)

3.1 变频器简介 (8)

3.1.1 变频器的基本结构与分类 (8)

3.1.2 变频器的控制方式 (8)

3.2 变频器选型 (9)

3.2.1 变频器的控制方式 (9)

3.2.2 变频器容量的选择 (10)

3.2.3 变频器主电路外围设备选择 (12)

3.3 可编程控制器(PLC) (14)

3.3.1 PLC的定义及特点 (14)

3.3.2 PLC的工作原理 (15)

3.3.3 PLC及压力传感器的选择 (15)

4 PLC编程及变频器参数设置 (16)

4.1 PLC的I/O接线图 (16)

4.2 PLC程序 (17)

4.3 变频器参数的设置 (21)

4.3.1 参数复位 (21)

4.3.2 电机参数设置 (21)

总结 (22)

参考文献 (23)

1 变频器恒压供水系统简介

1.1变频恒压供水系统理论分析

1.1.1变频恒压供水系统节能原理

供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不

变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1

所示。

图1-1供水系统的基本特征

由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。

变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器

调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水

系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定

子供电频率来改变同步转速而实现调速的。

1.1.2 变频恒压控制理论模型

变频恒压控制系统以供水出口管网水压为控制目标,在控制上实现出口总管

网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可

以是一个时间分段函数,在每一个时段内是一个常数。所以,在某个特定时段内,

恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上从图1-2中可以看出,在系统运行过程中,如果实际供水压力低于设定压

力,控制系统将得到正的压力差,这个差值经过计算和转换,计算出变频器输出频率的增加值,该值就是为了减小实际供水压力与设定压力的差值,将这个增量

和变频器当前的输出值相加,得出的值即为变频器当前应该输出的频率。该频率

使水泵机组转速增大,从而使实际供水压力提高,在运行过程中该过程将被重复,

直到实际供水压力和设定压力相等为止。如果运行过程中实际供水压力高于设定压力,情况刚好相反,变频器的输出频率将会降低,水泵的转速减小,实际供水压力因此而减小。同样,最后调节的结果是实际供水压力和设定压力相等。

图1-2变频恒压控制原理图

1.2恒压供水控制系统构成

变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵连成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。

图1-3恒压供水系统方框图

水压由压力传感器的信号4-20mA送入变频器内部的PID模块,与用户设定的压力值进行比较,并通过变频器内置PID运算将结果转换为频率调节信号,以调整水泵电机的电源频率,从而实现控制水泵转速。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试更为简单、方便。

西门子系列PLC编程采用STEP7软件,它是西门子PLC的视窗软件支持工具,提供完整的编程环境,可进行离线编程和在线连接和调试,并能实现梯形图与语句表的相互转换。系统程序包括主程序和起动子程序,主程序包括参与调节程序和电机切换程序;电机切换程序又包括加电机程序和减电机程序。起动子程序实际上是清零子程序。在主程序中,设置两个变频器频率上下限到达滤波时间继电器,用于稳定系统。

1.3 变频器恒压供水产生的背景和意义

泵站担负着工农业和生活用水的重要任务,运行中需要大量消耗能量,提高泵站效率;降低能耗,对国民经济有重大意义。我过泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等原因,至使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。目前,大量的动能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当大的比例。因此,研究提水系统的能量模型,找出能够节能的控制策略方法是目前较为重要的一件事。

以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术与一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便的实现供水系统的集中管理与监控;同时系统具有良好节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。

2 变频恒压供水系统设计

2.1 设计任务及要求

本系统是以一个供水系统作为被控对象,PLC与变频器协调控制电机的转速与启动和停止。

系统控制要求:

(1) 工艺参数: 供水系统由3台水泵组成:

母管压力H≥0.8时,一台定速,一台变速,一台备用。

母管压力H≤0.64时,一台定速或变速,二台备用。

母管压力H≤0.52时,一台变速,二台备用。

(2) 电动机参数:型号:JD-L-39-4

功率:75KW

额定频率:50Hz

额定电压:380V AC;

额定转速:1470 r/min

额定电流:126.6 A

(3) 水泵电机的起动/停止、正转、调速控制。

(4) 变频器采用远方控制方式。

(5) 通过母管压力变送器测得实际压力大小,同时和压力给定组成闭环控制。

(6) 变频器的运行状态指示(如运行、停止、过流、低压等)。

(7) 变频器的报警处理。

2.2 系统主电路设计

图2.1 系统主电路图

由恒压供水主电路图可见,接触器1KM2、2KM2、和3KM2用于变频器输出,分别接到水泵M1、M2和M3,而接触器1KM3、2KM3和3KM3将工频电源接到3台水泵。变频器可以对任何一台水泵启动和恒压供水控制。

空气开关(QL)是当电动机过载时自动将电动机从电网中断开

热继电器(FR)是利用电流的热效应原理工作的保护电路,它在电路中用作电动机的过载保护。

2.3 系统工作过程

1、减泵过程

当用水量减少、水压上升、变频器输出频率低于下限值时,但管网压力仍偏高时,则各泵将依次退出运行,依次退出运行的方式有两种。

(1)先开先停方式。PLC接收到下限频率到达信号,延时一定时间后,接触器1KM2失电复位,水泵M1脱离工频电源停止运行。变频器输出频率仍然低于下限值,重复上述过程,水泵M2脱离工频电源停止运行,变频器驱动水泵M3恒压供水,水压稳定在设

定值上。这种方式称为循环方式,通常用于各台水泵的容量都相等的供水系统中。其优

点是可以自动的使各泵运行的时间比较均衡;缺点是工频运行状态直接停机时,可能由于停机太快而使管网压力发生较大波动。

(2)先开后停方式。首先使正在变频运行的M3减速停机,然后使变频器的输出频率升至50Hz,将M2切换为变频工作,依此类推这种方式通常用于各台水泵的容量不相等的供水系统中,其优点是水泵的停机比较缓慢,管网压力比较稳定;缺点是不能自动地循环变换。

2、加泵过程

首先由M1在变频控制的情况下工作。

当用水量增大、水压下降,变频器输出频率上升到50Hz时水压仍然不足,经过短暂的延时,将M1切换为工频工作,同时变频器的输出频率迅速降低为0,然后使M2投入变频运行。当M2也达到额定频率而水压仍不足时,重复开始运行时的过程,水泵M2脱离变频器驱动,由工频供电全速运行,变频器驱动水泵M3变频运行,使水压恒定在设定值上。

3 器件的选型及介绍

3.1 变频器简介

3.1.1 变频器的基本结构与分类

1、变频器的基本结构

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。变频器包括控制电路、整流电路、中间直流电路及逆变电路组成。其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。

2、变频器的分类

变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

3.1.2 变频器的控制方式

在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制

V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2) 转差频率控制

转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。

(3) 矢量控制

矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。

(4) 直接转矩控制

直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提高。即使在开环的状态下,也能输出100%的额定转矩,对于多拖动具有负荷平衡功能。

(5) 最优控制

最优控制在实际中的应用根据要求的不同而有所不同,可以根据最优控制的理论对某一个控制要求进行个别参数的最优化。例如在高压变频器的控制应用中,就成功的采用了时间分段控制和相位平移控制两种策略,以实现一定条件下的电压最优波形。

3.2 变频器选型

3.2.1 变频器的控制方式

控制方式是决定变频器使用性能的关键所在。目前市场上低压通用变频器品牌很多,包括欧、美、日及国产的共约5O多种。选用变频器时不要认为档次越高越好,其实只

要按负载的特性,满足使用要求就可,以便做到量才使用、经济实惠。下表中参数供选用时参考。

表3.1控制方式的比较

故选择U/f=C控制

3.2.2 变频器容量的选择

变频器的容量直接关系到变频调速系统的运行可靠性,因此,合理的容量将保证最优的投资。变频器的容量选择在实际操作中存在很多误区,这里给出了三种基本的容量选择方法,它们之间互为补充。

1、从电流的角度:

大多数变频器容量可从三个角度表述:额定电流、可用电动机功率和额定容量。其中后两项,变频器生产厂家由本国或本公司生产的标准电动机给出,或随变频器输出电压而降低,都很难确切表达变频器的能力。

选择变频器时,只有变频器的额定电流是一个反映半导体变频装置负载能力的关键量。负载电流不超过变频器额定电流是选择变频器容量的基本原则。需要着重指出的是,

确定变频器容量前应仔细了解设备的工艺情况及电动机参数,例如潜水电泵、绕线转子电动机的额定电流要大于普通笼形异步电动机额定电流,冶金工业常用的辊道用电动机不仅额定电流大很多,同时它允许短时处于堵转工作状态,且辊道传动大多是多电动机传动。应保证在无故障状态下负载总电流均不允许超过变频器的额定电流。

2、从效率的角度:

系统效率等于变频器效率与电动机效率的乘积,只有两者都处在较高的效率下工作时,则系统效率才较高。从效率角度出发,在选用变频器功率时,要注意以下几点:(1)变频器功率值与电动机功率值相当时最合适,以利变频器在高的效率值下运转。(2)在变频器的功率分级与电动机功率分级不相同时,则变频器的功率要尽可能接近电动机的功率,但应略大于电动机的功率。

(3)当电动机属频繁起动、制动工作或处于重载起动且较频繁工作时,可选取大一级的变频器,以利用变频器长期、安全地运行。

(4)经测试,电动机实际功率确实有富余,可以考虑选用功率小于电动机功率的变频器,但要注意瞬时峰值电流是否会造成过电流保护动作。

(5)当变频器与电动机功率不相同时,则必须相应调整节能程序的设置,以利达到较高的节能效果。

3、从计算功率的角度:

对于连续运转的变频器必须同时满足以下3个计算公式:

(1)满足负载输出:Pcn≥P m/η(3.1)

(2)满足电动机容量:Pcn≥√3KUeIe cosφ ×10-3 (3.2)

(3)满足电动机电流:Icn≥K Ie (3.3)

式中Pcn为变频器容量(单位kW),PM--负载要求的电动机轴输出功率(单位kW),Ue为电动机额定电压(单位V),Ie为电动机额定电流(单位A),η为电动机效率(通常约为0.85),cosφ为电动机功率因数(通常约为0.75),k是电流波形补偿系数(由于变频器的输出波形并不是完全的正弦波,而含有高次谐波的成分,其电流应有所增加,通常K约为1.05~1.1)。

将本系统参数带入求得所取变频器容量最低为88KW故取100KW,额定电流139.26A,故取150A。

根据计算所得的所需参数可以选取西门子MicroMaster430(风机水泵专业)变频器,具体的可以选择MM430-110K 型号的变频器,他配接电机的容量是110kw ,额定电流为205A 满足使用需求,可以选择。

3.2.3 变频器主电路外围设备选择

1、断路器

当变频器需要检修时,或者因某种原因而长时间不用时,将QF 切断,使变频器与电源隔离。当变频器输入侧发生短路等故障时,进行保护。

选择原则

(1)变频器在刚接电源的瞬间,对电容器的充电电流可达额定电流的(2-3)倍;

(2)变频器的进线电流是脉冲电流,其峰值常可能超过额定电流;

(3)变频器允许的过载能力为150%,1min 。

为了避免误动作,断路器的额定电流QN I 应选:

N QN I I )4.1~3.1(≥ (3.4)

其中N I 为变频器的额定电流。故选择断路器额定电流选择210A

根据上述数据可以选择断路器DW15—400断路器额定电压为380V ,额定电流为300满足要求可以选择。

2、接触器

(1)主要作用:可通过按钮开关方便地控制变频器的通电与断电;变频器发生故障时,可自动切断电源。

(2)选择原则:

由于接触器自身并无保护功能,不存在误动作的问题,故选择原则是主触点的额定电流N KN I I ≥,应该大于126.6A,可以选择主触点额定电流为130A 的接触器。

根据上述数据施奈德的LC1—D150,满足参数要求,可以选择

3、主电路的线径

(1)电源和变频器之间的导线

一般说来,和同容量普通电动机的电线选择方法相同。考虑到其输入侧的功率因数往往较低,应本着宜大不宜小的原则来决定线径。

(2)变频器和电机之间的导线

因为频率下降时,电压也要下降,在电流相等的情况下,线路电压降U ?在输出电压中

的比例将上升,而电动机得到电压的比例则下降。这有可能导致电动机带不动负载并发热。所以,在决定变频器和电动机之间导线的线径时,最关键的因素便是线路电压降U ?的影响。一般要求:

N U

U )%3~2(≤? (3.5) U ?的计算公式是:

)(100030V l

R I U MN =? (3.6)

式中:N U ——额定相电压,V ;

MN I ——电动机额定电流,A ;

0R ——单位长度(每米)导线的电阻,mΩ/m ;

l ——导线的长度,m 。由上两式可直接求出0R 的取值范围。根据Ro 值确

定导线面积。

由公式(3.5)得:6.7(≤?U ~11.4)V

由公式(3.6)得:0.69 mΩ/m ≤≤0R 1.04 mΩ/m

根据表3.1判断所需的导线截面积,为了满足控制系统的要求,应该选择截面积为162mm 的导线。

表3.2 常用电动机引出线的单位长度电阻值。

4、制动电阻

准确计算制动电阻值十分麻烦,在实际工作中基本不用。许多变频器的使用说明书上给了一些计算方法,也有的直接提供了供用户选用的制动电阻的规格。但按说明书上选择电阻时须注意下面问题,变频器生产厂家为了减少制动电阻档次,常常对若干种不同容量的电动机提供相同阻值和容量的制动电阻。选用时,应注意根据生产机械的具体情况进行调整。对同一挡中电动机容量较小者,制动转矩与额定转矩的比值偏大。为了减小能量的消耗,应根据制动过程的缓急程度以及飞轮力矩的大小,考虑能否选择阻值较大的制动电阻。对同一挡中电动机容量较大者,制动转矩与额定转矩的比值偏小。在

一些飞轮力矩较大,又要求快速制动的场合,或者如起重机械那样,需要释放位能的场合,上述制动电阻有可能满足不了要求,靠考虑选择阻值较小的一挡制动电阻。

3.3 可编程控制器(PLC)

3.3.1 PLC的定义及特点

在PLC的发展过程中,美国电气制造商协会(NEMA)经过4年的调查,于1980年把这种新型的控制器正式命名为可编程序控制器(Programmable Controller),英文缩写为PC,并作如下定义:“可编程序控制器是一种数字式电子装置。它使用可编程序的存储器来存储指令,并实现逻辑运算、顺序控制、计数、计时和算术运算功能,用来对各种机械或生产过程进行控制。PLC的特点如下:

1、高可靠性

(1)所有的I/O接口电路均采用光电隔离,使工业现场的外电路与PLC内部电路之间电气上隔离。

(2)各输入端均采用R-C滤波器,其滤波时间常数一般为10~20ms.

(3)各模块均采用屏蔽措施,以防止辐射干扰。

(4)采用性能优良的开关电源。

(5)对采用的器件进行严格的筛选。

(6)良好的自诊断功能,一旦电源或其他软,硬件发生异常情况,CPU立即采用有效措施,以防止故障扩大。

(7)大型PLC还可以采用由双CPU构成冗余系统或有三CPU构成表决系统,使可靠性更进一步提高。

2、丰富的I/O接口模块

PLC针对不同的工业现场信号,如:交流或直流;开关量或模拟量;电压或电流;脉冲或电位;强电或弱电等。有相应的I/O模块与工业现场的器件或设备,如:按钮行程开关接近开关传感器及变送器电磁线圈控制阀直接连接。另外为了提高操作性能,它还有多种人-机对话的接口模块; 为了组成工业局部网络,它还有多种通讯联网的接口模块,等等。

3、采用模块化结构

为了适应各种工业控制需要,除了单元式的小型PLC以外,绝大多数PLC均采用模块化结构。PLC的各个部件,包括CPU,电源,I/O等均采用模块化设计,由机架及电缆将各模块连接起来,系统的规模和功能可根据用户的需要自行组合。

4、编程简单易学

PLC的编程大多采用类似于继电器控制线路的梯形图形式,对使用者来说,不需要具备计算机的专门知识,因此很容易被一般工程技术人员所理解和掌握。

5、安装简单,维修方便

PLC不需要专门的机房,可以在各种工业环境下直接运行。使用时只需将现场的各种设备与PLC相应的I/O端相连接,即可投入运行。各种模块上均有运行和故障指示装置,便于用户了解运行情况和查找故障。由于采用模块化结构,因此一旦某模块发生故障,用户可以通过更换模块的方法,使系统迅速恢复运行。

3.3.2 PLC的工作原理

PLC采用循环扫描的工作方式,在PLC中用户程序按先后顺序存放,CPU从第一条指令开始执行程序,直到遇到结束符后又返回第一条,如此周而复始不断循环。PLC的扫描过程分为内部处理、通信操作、程序输入处理、程序执行、程序输出几个阶段。全过程扫描一次所需的时间称为扫描周期。当PLC处于停状态时,只进行内部处理和通信操作服务等内容。在PLC处于运行状态时,从内部处理、通信操作、程序输入、程序执行、程序输出,一直循环扫描工作。

3.3.3 PLC及压力传感器的选择

水泵M1、M2、M3可变频运行,也可工频运行,需要6个输出点,根据系统设计要求需要五个输入点,则选择西门子的S7-200系列PLC。

压力传感器采用CY-YZ-1001型绝对传感器。该传感器采用硅压阻效应原理实现压力测量的力-电转换。传感器由敏感芯体和信号调理电路组成,当压力作用于传感器时,敏感芯体内硅片上的惠斯登电桥的输出电压发生变化,信号调理电路将输出的电压信号作放大处理,同时进行温度补偿、非线性补偿,使传感器的电性能满足技术指标的要求。

传感器的量程为0~2.5MPa,工作温度为5℃~60℃,输出电压为0~5V,作为本系统的反馈信号供给PLC。

4 PLC编程及变频器参数设置

4.1 PLC的I/O接线图

图4.1 PLC的I/0接线图

输出端接中间继电器控制电机的工频与变频工作状态的转换,输入点I0.0控制系统电机的停止工作,I0.1控制系统电机工作及变频器工作的开始。I0.2点用于在一号泵有故障时手动启用三号泵代替一号泵的工作。I0.4为当变频器输出频率达到上限值时手动闭合,使电动机切换为工频工作。

4.2 PLC程序

启动变频器工作

PLC接收压力变送器反馈的值,与设定值进行以系列计算之后输出一个值控制变频器的输出频率,同时根据输出AC0的值判断电动机工作的台数与状态。其中压力变送器反馈值为0~5,内部数据为0~32767,对应进行转换之后通过下面的程序进行判断,以控制电动机的运行。

判断反馈值为H≥0.8,则使一号水泵定速工作,同时使二号水泵变速工作。

判断反馈值为0.52≤H≤0.64,则一号变频器定速或变速,当变频器输出频率达到上限值时则手动输入有效水泵变为定速运行,否则变速运行。

判断反馈值为H≤0.52时,则一号水泵变速运行。

30MW机组给水泵变频器施工方案..

河北华丰煤化电力有限公司 30MW6#机组给水泵变频器改造 电气及仪表施工方案 编制: 审核: 设备处审批: 制造部审批: 动力分厂发电三车间 2015年07月16日

目录 一、编制依据 (3) 二、工程概况 (3) 三、施工组织及准备 (3) 四、施工方案 (9) 五、应急措施 (9) 六、安全施工保证措施 (10) 七、注意事项 (10)

一、编制依据 1.东方日立(成都)电控设备有限责任公司设计的10KV高压变频器电器线路 工程设计图纸。 2.10KV 电缆线路及高压变频器柜安装工程技术文件。 3.国家现行变配电安装工程施工及验收规范及质量检验评定标准。 4.工程项目施工现场实际情况、施工环境、施工条件和自然条件。 5.本工程采用的规范及标准编号如下: 本工程所采用的规范、标准编号 二、工程概况 本工程为河北华丰动力分厂发电三车间30MW机组给水泵变频器改造,新增变频器柜两套。 三、施工组织及准备 3.1、组织机构及职责: 总负责:许晓波 现场负责:张利杰、胡向军、王学科、赵刚、张红涛、刘太平、陈超、张刚、霍香烩、 张利杰负责:动力分厂发电车间应急预案实施及存在问题协调工作。 胡向军负责:调试过程中出现问题协调工作。 王学科负责:高压电缆头制作、耐压试验及安装工作。 刘太平、张刚负责:高压电器设备控制系统电缆线校对、接线工作。

霍香烩负责:自动化系统电缆线校对、接线,画面制作、程序编写及下装工作。 赵刚负责:30MW发电机应急措施预案实施工作。 参加人:相关专业人员。 技术指导:厂家人员 安全监护: 3.2、安装调试时间:2015年7月17日——2015年7月23日 3.3、人员安排 3.4、主要施工机具见下表: 3.5、施工前准备 3.5.1进入高压变频器室施工人员进行安全施工教育,做好安全技术交底工作,并

恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1 变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2 恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (4) 2.1 设计任务及要求 (5) 2.2 恒压供水系统主电路设计 (6) 2.3 系统工作过程 (7) 3 器件的选型及介绍 (9) 3.1 变频器简介 (9) 3.1.1 变频器的基本结构与分类 (9) 3.1.2 变频器的控制方式 (9) 3.2 变频器选型 (10) 3.2.1 变频器的控制方式 (10) 3.2.2 变频器容量的选择 (11) 3.2.3 变频器主电路外围设备选择 (13) 3.3 可编程控制器(PLC) (15) 3.3.1 PLC的定义及特点 (15) 3.3.2 PLC的工作原理 (16) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (18) 4.1 PLC的I/O接线图 (18) 4.2 PLC程序 (18) 4.3 变频器参数的设置 (22) 4.3.1 参数复位 (22) 4.3.2 电机参数设置 (22) 总结 (23) 参考文献 (24)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1为供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

变频恒压供水系统协议

技术协议 一、总则 1.1本协议书适用于山西柳林王家沟煤业有限公司变频恒压供水系统。它包括了设备的功能设计、结构、性能、供货等方面的技术要求。 1.2如卖方没有以书面形式对技术规范书明确提出异议,那么卖方提供的产品应完全满足技术协议书的要求。若供方所提供的协议书前后有不一致的地方,应以更有利于设备安装运行、工程质量为原则,由买方确定。设备采用的专利涉及到的全部费用均被认为已包含在设备报价中,卖方应保证买方不承担有关设备专利的一切责任。 1.3本技术协议书所使用的标准如与卖方所执行的标准发生矛盾时,按较高标准执行。 二、设备概述 2.1变频恒压供水是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。供水管网的出口压力值是根据用户需求确定的。 2.2变频恒压供水系统以管网水压 (或用户用水流量)为设定参数,通过微机控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节 (PID),使供水系统自动恒稳于设定的压力值:即用水量增加时,频率升高,水泵转速加快,供水量相应增大;用水量减少时,频率降低,水泵转速减慢,供水量亦相应减小,这样就保证了供水效率用户对水压和水量的要求。 2.3变频恒压供水系统是一项成熟的技术,我公司已为多家水处理厂进行设计和改造,并取得可观的经济和社会效益。

三、设备规范 3.1设备名称:变频恒压供水系统 3.2型号:HHY-50/72-Q3 3.3设备组成:主泵、副泵、稳压罐、系统机组、智能变频控制柜 3.4主要参数: 3.5位置:室内安装

3.6变频恒压供水系统型号说明 3.7该系统设备主泵有二台,全部可软启动,均可变频调速,若按正顺序启动则按逆顺序停止。在三台水泵并联供水时,只有一台泵是变频调速泵,其余为恒速泵。在水泵出水管附近安装压力传感器,并将出水口压力信号反馈给变频恒压控制柜,控制水泵按设计给定的压力自动选择水泵的开停及台数,由用户需水量决定水泵供水量。 四、变频调速水泵恒压供水的特点: 我公司的变频调速水泵恒压供水有如下特点: 4.1供水压力稳定: 系统实现闭环控制,传感器返回系统压力,通过与设定值的比较,输出相应频率,拖动水泵运行在相应的转速,使系统压力保持恒定。 4.2高效节能: 系统能按需设定压力,根据设定的压力自动调节水泵转速和水泵运行台数,使设备运行在高效节能的最佳工作状态。 4.3操作方便简单,稳定可靠: 系统由变频器和PLC自动控制,可实行无人操作,操作简单。配有自动/手动开关控制,保证设备的安全连续运行。

各种变频器恒压供水参数

安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F4.01=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10公斤)压力 设定值40,则设定压力为4公斤 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F17= 下限频率,休眠启动模式下为休眠频率 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。

二期给水泵变频器招标

二期给水泵变频器招标 Document number:BGCG-0857-BTDO-0089-2022

10KV给水泵变频器 (二期) 技术规范 需方: 设计院: 供方: 2011年10月 一、总则: 1.1本技术规范适用锅炉给水泵用高压变频调速装置的主要技 术和相关要求。其具体参数在以下内容将有具体描述。

1.2本规范书所提出的是最低限度的技术要求,并未对一切细节作出规 定,也未充分引述有关标准和规范的条文。供方应保证提供符合本规范书的优质产品。 1.3如果供方没有以书面形式对本规范书的条文提出异议,那么需方可 以认为供方提出的产品完全符合本规范书的要求。 1.4供方所采用的零部件等,必须是技术和工艺先进,并经过两年以上 运行实践已证明是成熟可靠的产品。 1.5规范书所使用的标准,如遇与供方所执行的标准发生矛盾时,按较 高的标准执行。 1.6从订货之日至供方制造之日的这段时期内,需方有权提出因规程、 规范和标准发生变化而产生的补充要求,供方应遵守这些要求。 二、技术要求 1.规范与标准 高压变频调速系统的主要和辅助设备的设计、制造、检查、试验必须遵守下列最新的标准,但不仅限于下列标准。如果本技术规范书同下列标准矛盾,投标商应以书面方式指出矛盾,并由用户解答。 GB 12326 电能质量电压允许波动和闪变 GB/T 14549 电能质量公用电网谐波 GB ~ 电力变压器 GB 6450 干式变压器 GB311 高电压输变电设备的绝缘配合与高电压试验技术 DL/T 620 交流电气装置的过电压保护和绝缘配合 GB/T 半导体变流器基本要求的规定 GB/T 半导体变流器应用导则 GB/T 半导体变流器变压器和电抗器 2.语言 投标商提供的信息及资料(包括投标书)应使用中文。 3.测量单位 温度o C 热量J 容量kVA

浅谈变频恒压供水系统中水泵选择

浅谈变频恒压供水系统中水泵选择 目前,供水行业中经常用到无负压给水设备和变频恒压给水设备,以上两种设备的基本原理都是根据供水系统的压力变化(对应流量变化)。利用变频器调节执行单元(水泵、电机)的转速,达到恒压供水目的(f1:f2=n1: n2= Q1: Q2=H12: H22。该系统中,执行单元是系统中主要工作消耗能源的设备及主要影响系统综合性能的设备之一。泵的选择合理与否则直接影响到系统的两个重要指标: 一、运行费用——耗电量及出水量。 二、使用维护成本——设备使用寿命,日常维护费用。 所以,在变频恒压供水系统中,水泵的选择至关重要。 变频恒压供水系统中水泵的选择必须考虑以下几方面: 1.流量、扬程,满足系统设计的供水要求,泵的基本参数合理与否是系统供水功能的基本保障。 2.水泵配电机的供电要求必须满足使用地供电情况。 3.尽量选择高效率水泵,由于变频恒压供水为不间断供水,运转时间长,水泵在该系统中又是主要耗能单元,高效率的水泵选择是系统节能理念的根本保证。 4.性能曲线(Q-H线)选择较陡峭的水泵。 变频恒压供水主要是通过水泵转速的变化来调节因用水量变化带来的压力变化,使压力恒定、平稳,性能曲线陡峭的泵相对于性能曲线平稳的泵在转速、流量发生变化压力恒定时频率的调节幅度大,选择性能曲线陡峭的水泵在变频恒压给水系统中满足不同用水量的变化更加节能。 5.选择使用寿命相对长的水泵。水泵作为能量转换工作单元,本身就是易损坏,高维修保养的部份。高品质的水泵关系到整个系统的使用寿命,直接影响使用成本。 6.选择维修维护简单的水泵 一般设备将交到物业公司管理,物业公司的维修技术力量不强,不方便维修或维修技术要求高的水泵会增加使用成本,特别是零部份互换性差的水泵更会增加日常的维护成本。 其它如:使用环境对防护等级及噪音要求等根据实际情况加以考虑。 以下为典型不能用于变频恒压供水系统中的水泵实例: 一、填料密封水泵 该类水泵启动转矩大,变频启动的启动转矩小,使用中经常会使变频器报故障,并且使用中密封耗能量大,也不节能。 二、屏蔽泵 1.该泵效率相对于单端面机械密封离心泵低,一般不会高于60%。 2.变频恒压供水系统流量是变化的,经常会出现长时间小流量供水,如夜间及其他供水各区,屏蔽泵在长时间小流量情况下运转,由于其效率低,会导致发热,使液体蒸发,而导致干转,从而损坏滑动轴承或过热后烧毁电机。 3.屏蔽泵为单级泵,性能曲线较为平坦,压力恒定,流量发生变化要求的转速变化不大,

全自动变频调速恒压供水控制柜

概况: HDL系列水泵控制柜是海德隆公司充分吸收国内外水泵控制的先进经验,经多年的生产和应用,不断完善优化,精心设计制作而成。该产品具有过载、短路、缺相保护以及泵体漏水、电机超温及漏电等多种保护功能及齐全的状态显示。还具备单泵及多泵控制工作模式,多种主、备泵切换方式及各类起动方式。可广泛适用于工农业生产及各类建筑的给水、排水、消防、喷淋管网增压以及暖通空调冷热水循环等多种场合的自动控制系统。 海德隆公司的控制设备根据不同的使用情况,可分为液位控制、压力(恒压)控制、时间控制、温度控制、空调联控、消防专用等类型。按产品使用的特点可分为:生活泵控制设备、变频恒压控制设备、消防泵专用控制设备、空调泵专用控制设备、潜水排污泵专用控制设备等。 启动方式: 1、直接启动:一般电机功率为15kW以下的水泵采用直接起动。 2、自耦降压启动:15kW以上的排污泵,一般采用自耦降压启动。消防喷淋泵亦多选用此起动方式。 3、Y-△降压启动:其余型号15kW以上的水泵,若无特殊要求,一般采用Y-△降压方式起动。 4、软启动器启动:若希望进一步降低起动时对电源及电机的冲击,延长机械寿命,完全消除水锤现象和噪音,并达到节能的目的,则采用软起动方式。 5、变频启动:适用于任何功率情况下的控制设备,变频控制系统设在自动状态下,水泵启动方式为通过改变电源的频率由小到大延时启动,达到平稳启动的目的。 工作条件: 1、周围最高空气温度不超过40℃,最低温度不低于-5℃。 2、安装地点海拔高度不超过1000米。 3、周围空气中无爆炸危险的介质,且介质中无足以腐蚀金属和破坏绝缘的气体及导电尘埃。 4、工作电压为380±10%。 5、震动:<5.9m/s2(0.6G); 功能原理及用途: 多泵控制工作模式: 一用一备:控制Ⅰ、Ⅱ二台水泵,可工作于“Ⅰ主Ⅱ备”或“Ⅱ主Ⅰ备”两种方式。 二用一备:控制Ⅰ、Ⅱ、Ⅲ三台水泵,可工作于“Ⅰ、Ⅱ主Ⅲ备”或“Ⅱ、Ⅲ主Ⅰ备”或“Ⅰ、Ⅲ主Ⅱ备”三种方式。 三用一备:控制Ⅰ、Ⅱ、Ⅲ、Ⅳ四台水泵,可工作于“Ⅰ、Ⅱ、Ⅲ主Ⅳ备”或“Ⅱ、Ⅲ、Ⅳ主Ⅰ备”或“Ⅰ、Ⅲ、Ⅳ主Ⅱ备”

高压给水泵变频改造技术协议(1600KW )

6KV高压给水泵变频改造工程技术协议书 二〇一〇年十二月 目录

技术规范 (2) 一、总则 (2) 二、技术要求 (2) 三、设备规范 (13) 四、包装、运输和贮存 (13) 五、高压变频调速装置规范表 (14) 附件1、供货范围 (17) 附件2、技术资料和交付进度 (18) 附件3、技术服务和设计联络 (20)

一、总则 1、技术协议书仅适用于水电厂六期1600KW给水泵电动机的高压变频调速装置。它提出 了变频调速装置本体及附属设备的功能设计、结构、性能、安装和试验等方面的技术要求及供货范围。 2、技术协议书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分 引述有关标准和规范的条文,乙方应提供符合工业标准、国家标准和技术协议书的优质产品。 3、技术协议书所使用的标准如遇与乙方所执行的标准不一致时,按较高标准执行。 4、所有文件、图纸采用中文,相互间的通讯、谈判、合同及签约后的联络和服务等均应 使用中文。 5、本技术规范书未尽事宜,由供、需双方协商确定。 二、技术要求 1、应遵循的主要标准 下列标准所包含的条文,通过在技术协议书中引用而构成技术协议书的基本条文。在技术协议书出版时,所示版本均为有效。所有标准都会被修订,使用技术协议书的各方应探讨使用下列标准最新版本的可能性。 GB 156-2003 标准电压 GB/T 1980-1996 标准频率 GB/T 2423.10-1995 电工电子产品基本环境试验规程振动(正弦)试验导则GB 2681-81 电工成套装置之中的导线颜色 GB 2682-81 电工成套装置之中的指示灯和按钮的颜色 GB 3797-89 电控设备第二部分:装有电子器件的电控设备 GB 3859.1-93 半导体电力变流器基本要求的规定 GB 3859.2-93 半导体电力变流器应用导则 GB 3859.3-93 半导体电力变流器变压器和电抗器 GB 4208-93 外壳防护等级的分类 GB 4588.1-1996 无金属化孔单、双面印制板技术条件 GB 4588.2-1996 有金属化孔单、双面印制板技术条件 GB 7678-87 半导体自换相变流器 GB 9969.1-8 工业产品使用说明书总则 GB 10233-88 电气传动控制设备基本试验方法 GB 12668-90 交流电动机半导体变频调速装置总技术条件

变频器恒压供水接线

第一篇 一、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红) 二、开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF 和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反

馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如 3.1V)。按停车键STOP,变频器减速停车。 三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。 第二篇 一、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。 采用泵出口变压力控制系统,则可解决以上的不足,即泵出口的设定压力随用水量的变化而变化,使管道最末端的出口水压恒定在其所需的流出水 头。 ABB公司的ACS510系列变频器是专为风机、水泵控制系统设计的,其中参数“给定增量8103、8104和8105”可完成泵出口变压力控制功能。 二、ACS510中的变压力控制部分参数设置 在多台并联泵供水系统中,随着泵的运行数量的增加,流量会成倍的增大,管道阻力会迅速增高。如果随着流量的变化,增减恒压控制系统的设定压力,做到小流量小压力,大流量大压力,则可以最大限度的较少管道阻力对管道出口压力的影响,并且提高了节能比例。ABB公司的ACS510系列变频器就提供了上述功能。 在ACS510中,参数8103、8104、8105是给定增量参数,他们的作用是每多

锅炉给水泵的变频调速改造

锅炉给水泵的变频调速改造 1 现状 系统是向锅炉不间断供水,保证锅炉正常运行的重要环节。我厂现有锅炉5台,其中SHL35-16-P型2台,SHL20-13-P型1台,T-18A-13型2台,总蒸发量126吨/时。供给本厂及相邻各厂的生产和生活用汽。实际运行中炉前蒸汽压力较低,夏季一般为,冬季一般为,蒸发量变化较大,夏季20-35T/H,冬季90-110T/H。与锅炉相配套的给水泵为4GC-8X5型,共6台,分为2组,每组3台,通过母管向各台锅炉供水。每台泵的额定流量55M3/H,扬程19M,驱动电动机功率55KW。运行方式是夏季开1-2台,冬季开2-3台,其余备用。运行时,由于锅炉给水泵的供水能力大于锅炉的蒸发量,尤其是当锅炉负载愈轻时,二者的差值愈大,因此必须实行流量调节。传统的给水泵是连续恒速运行的,流量调节通过调节阀和回流支路来实现(如图一)。 2 改造的可行性 这两种方法都存在明显的缺陷:采用调节阀时,随着阀门开度的减小,水泵出口压力上升,达到2Mpa以上,阀门两侧的压差将增大,达到以上,远远大于原设计的水泵出口压力高于锅炉汽包压力(包括给水垂直落差及管路压降)的要求,不但造成能量的浪费,而且使得水泵的振动和磨损加大,寿命缩短。采用回流支路调节时,大量水的回流同样造成能量的无谓消耗。 因此,对给水系统实施技术改造,降低水泵的出口压力,消除回流,减少能源消耗和设备磨损,已成大势所趋。 众所周知,水泵运行遵循如下规律:流量Q与转速N成正比,扬程(压力)H与转速N的平方成正比,轴功率P与转速N的三次方成正比,电动机的转速N与电源的频率F成正比,因此改变电源频率就可改变电动机即给水泵的转速。 变频调速技术是电力电子技术和微电子技术相结合的产物,以其优异的调速特性和显着的节能效果,在国民经济的各个领域获得了广泛的应用。当今,变频调速已成为交流电动机转速调节的最佳方法。水泵采用变频调速后,给水流量的调节就可通过改变

水泵恒压供水变频器节能改造

水泵恒压供水变频器节能改造 叶良禄 提要:变频器传动时要得到与工频电源传动相同的转矩特性,变频器输出电压的基波有效值通常要等于工频电源的有效值。因此,变频器调速改造选型时要充分考虑电动机的负载特性。 摘要论述了水泵恒压供水变频节能改造的原理;变频器的选型要点及容量计算;节电计算及运行效果分析。 关键词变频器电动机改造 一、引言 动能公司供水车间七泵房主要承担着热力车间老区3台锅炉和3台汽机生产用水的供水任务。该系统共有水泵机组两大两小,大水泵机组型号为600S-32,额定流量3170m3/h,扬程32m,转速970r/min,配套功率400kW;配用电机为Y4005-6,额定功率400kW,电压6kV,额定电流46.5A,转速988r/min;小水泵机组型号为350S-44A,额定流量1116m3/h,扬程36m,转速1450r/min,配套功率160kW;配用电机为Y315L1-4,额定功率160kW,电压380V,额定电流289A,转速1485r/min。根据平时用水情况来确定机组的匹配数量和阀门开度,平时开一大一小,系统组管压力偏高有富余,有时只需一台大机,有时需要一大两小,其中一台小机的阀门开度仅为20%左右,系统瘪压情况较严重,压力不稳定。设备振动厉害,给生产带来很多不稳定的因素。系统的给水压力和供水量整年呈现一个动态的变化过程。为此,于2005年初对该系统的两台小机组进行了恒压供水变频节能改造,改造后的供水系统完全满足3台锅炉、3台汽机的生产用水要求,同时节能效果也十分显著。 二、恒压供水变频节能的原理 如图1所示,当水泵工作在曲线②的A点时,其流量与压力分别为Q1、p2,此时水泵所需的功率正比于p2与Q1的乘积。由于工艺要求需减小水量到Q2,通过增加管网管阻,使水泵的工作点移到曲线③上的B点,水压增大到p1,这时水泵所需的功率正比于p1与Q2的乘积,由图可见这种调节方式控制虽然简单,但功率消耗并无减少。

变频器恒压供水课程设计

目录 1变频器恒压供水系统简介 ................................................................... 错误!未定义书签。 1.1变频恒压供水系统节能原理 .................................................... 错误!未定义书签。 1.2变频恒压控制理论模型 ............................................................ 错误!未定义书签。 1.3恒压供水控制系统构成 ............................................................ 错误!未定义书签。 1.4恒压供水系统特点 .................................................................... 错误!未定义书签。 1.5恒压供水设备的主要应用场合 ................................................ 错误!未定义书签。2变频恒压供水系统设计 ....................................................................... 错误!未定义书签。 2.1设计任务及要求 ........................................................................ 错误!未定义书签。 2.2系统主电路设计 ........................................................................ 错误!未定义书签。 2.3系统工作过程 ............................................................................ 错误!未定义书签。 2.3.1减泵过程 ....................................................................... 错误!未定义书签。 2.3.2加泵过程 ....................................................................... 错误!未定义书签。 3 器件介绍及选型 .................................................................................. 错误!未定义书签。 3.1变频器介绍 ................................................................................ 错误!未定义书签。 3.2变频器的种类 ............................................................................ 错误!未定义书签。 3.3变频器选型 ................................................................................ 错误!未定义书签。 3.3.1变频器的控制方式 ....................................................... 错误!未定义书签。 3.3.2变频器容量的选择 ......................................................... 错误!未定义书签。 3.3.2变频器主电路外围设备选择 ......................................... 错误!未定义书签。 3.4可编程逻辑控制器(PLC)..................................................... 错误!未定义书签。 3.4.1 PLC的工作原理 ........................................................... 错误!未定义书签。 3.4.2 PLC及压力传感器的选择 ........................................... 错误!未定义书签。4PLC编程及变频器参数设置............................................................ 错误!未定义书签。 4.1 PLC的I/O接线图 ............................................................... 错误!未定义书签。 4.2 PLC .......................................................................................... 错误!未定义书签。 4.3 变频器参数的设置 ................................................................. 错误!未定义书签。总结 .......................................................................................................... 错误!未定义书签。参考文献 .................................................................................................. 错误!未定义书签。

基于PLC控制的多台水泵循环变频恒压供水系统

1 引言 恒压供水在城市自来水管网系统、住宅小区生活消防用水系统、楼宇中央空调冷却循环水系统等众多领域中均有应用。恒压供水是指用户端在任何时候,不管用水量的大小总能保持管网中水压的基本恒定。在恒压供水系统中可根据压力给定的理想值信号及管网水压的反馈信号进行比较,变频器根据比较结果调节水泵的转速,达到控制管网水压的目的。本文介绍基于PLC控制的多台水泵循环变频恒压供水系统的设计方法。 2 控制要求 某中心给水泵站担负周边高层小区的生活用水二次加压任务。包括3台22kW生活水泵、1台7.5kW夜间补压水泵。3台生活水泵用水高峰时段需要工作在“1工1变”状态,其它时段工作在“1变”状态,深夜用水低谷仅用7.5kW补压泵工作在工频即可。 3 系统设计 该系统主要由三菱FX-2N系列PLC控制器、三菱FR-A540变频器、PID调节器、压力变送器、浮球水位计(开关)、低压电气设备及水泵组成。 3.1 主回路设计 采用一拖多的方式,每台电机水泵既可工频运行又可变频运行。主回路如图1所示。图1 主回路图变频器用水高峰期3台水泵一台工频运行一台变频运行另一台处于待机状态,并每周循环一次,既便于维护和检修作业,又不至于停止供水。利用PLC编程可实现此功能。状态转换图如图2所示。一般用水时段有一台水泵处于变频状态,其中应特别注意,为了保护机电设备在工频——变频状态切换过程中应先将变频器输出停止,延时1s时间后再启动,此时可能会出现短暂失压现象,但实际应用中这种影响并不明显。图2 多泵循环的PLC编程方法3.2 变频器频率(速度)设定的方法(1) 利用变频器本身的多段速度设定法三菱FR-A540变频器本身有多段速度的设定功能,以七段速度为例,七段调速如附表所示。附表变频器七段速度表这种控制方式下,当前水位若在下限则PLC输出高一级的变频信号给变频器,当七段速度均启动工作但仍未达到上限,则启动工频。若已达到高水位,则PLC输出低一级的变频信号给变频器。相应的状态转换图如图3。图3 利用变频器本身的多段速度控制功能实现恒压供水(2) 利用压力传感器信号经PLC运算给出变 频器运行频率设定信号利用变频器本身的多段速度控制仅需要水压上限和下限两个信号,控制方式简单,编程方便。但控制精度不高。通过安装在出水管网上的压力变送器(本项目选择PMC系列电子陶瓷压力传感器),将压力信号转换成标准的DC4~20mA的模拟量信号送入PLC的扩展A/D单元,经过A/D变换,利用PLC采用经验数据方法计算出此时变频器应运行的频率,将相应的数字量信号再通过PLC扩展D/A转换单元,转换成电压信号,此时变频器工作在Pr.79=2的外部操作模式,由2、5端子之间的电压值决定其频率输出。硬件原理图见图4。图4 变频器频率由PLC给定硬件原理图由于涉及到PLC的A/D、D/A单元,其软件编程需注意这两个单元初始化的方法及数据传输的方式。程序如图5所示。图5 A/D、D/A模块初始化及数据传送编程(3) 利用压力传感器给出信号经PID调节器进行频率设定的方法除了3.2(2)中的方法外,目前应用较广泛的是通过传感器将压力信号转换成标准的DC4~20mA的模拟量信号后,将该信号送入PID调节器,经过PID

恒压供水变频调速系统毕业设计

1 引言 1.1 本课题的意义 水作为一种能源,是生活中必不可少的,水作为一种可再生资源,同时也是非常脆弱的,这时节约用水就显得非常重要。随着中国经济的飞速发展,大城市里房屋建筑的高度也在迅速的增加,但随之也出现了许多问题,高层住宅供水难就是其中尤为突出的问题。原因是通常,供水系统全天各时段用水量变化较大,如果不及时对供水水量及供水压力进行调节,会使整个供水管网的压力处在波动状态,严重的还会引起管网失压或爆管事故、恶化供水质量。]3[ 传统供水方式主要有:高水塔,高位水箱或增压设备等。它们在不同程度上存在下列许多问题:其设备一次投资费用高,而且必须使水塔高度高于最高层楼用水高度,用压力来提升水量,其结果往往缩短了水泵的使用寿命,还容易造成水的二次污染,造成水电资源的浪费。除此之外传统的供水系统还存在下列问题:1、用水负荷大幅度变化容易引起管网压力的巨幅变化极易造成供水管网的破裂;2、加大了工人的劳动及增加了生产设备维修费用;3、设备的频繁启动产生的大电流易使电网和设备均处于频繁的电流冲击状态,从而使电气设备和机械连接部件的寿命大幅度缩短。]10[在城市供水系统中, 泵的驱动电机绝大部分是交流异步电动机, 其年耗电量约占系统生产成本的80%。目前国内大部分供水企业仍采用传统供水工艺, 即手工操作, 人工监控,经验管理。一般采用调节阀门来满足和适应管网供水压力和需水量的变化,但是用户需水量随时间变化的非常频繁。]9[随着国民经济的迅速发展,能源紧缺问题愈加严重,寻求解决高层建筑供水难的办法迫在眉睫。 对于泵类和风扇负载而言,其功耗与转轴速度的立方根呈正比。当转轴速度降低10%时,气流也减少10%,且能耗减少27%;如果速度降低20%,能耗可降低49%。在工业中应用的离心泵、风扇和鼓风机中,通过使用单片机对电机进行变速控制,取代速度恒定的电机方法,可以节能25%-40%。]5[ 以改善高层住宅用水难为目标,根据城市高层建筑供水系统的实际情况,本系统采用基于恒定管压力的PID 算法对交流电机进行交流变频调速,通过合理配置水泵的工况, 能

二期给水泵变频器招标

二期给水泵变频器招标 This model paper was revised by LINDA on December 15, 2012.

10KV给水泵变频器 (二期) 技术规范 需方: 设计院: 供方: 2011年10月

一、总则: 1.1本技术规范适用锅炉给水泵用高压变频调速装置的主要技术和 相关要求。其具体参数在以下内容将有具体描述。 1.2本规范书所提出的是最低限度的技术要求,并未对一切细节作出规定,也 未充分引述有关标准和规范的条文。供方应保证提供符合本规范书的优质产品。 1.3如果供方没有以书面形式对本规范书的条文提出异议,那么需方可以认为 供方提出的产品完全符合本规范书的要求。 1.4供方所采用的零部件等,必须是技术和工艺先进,并经过两年以上运行实 践已证明是成熟可靠的产品。 1.5规范书所使用的标准,如遇与供方所执行的标准发生矛盾时,按较高的标 准执行。 1.6从订货之日至供方制造之日的这段时期内,需方有权提出因规程、规范和 标准发生变化而产生的补充要求,供方应遵守这些要求。 二、技术要求

1.规范与标准 高压变频调速系统的主要和辅助设备的设计、制造、检查、试验必须遵守下列最新的标准,但不仅限于下列标准。如果本技术规范书同下列标准矛盾,投标商应以书面方式指出矛盾,并由用户解答。 GB 12326 电能质量电压允许波动和闪变 GB/T 14549 电能质量公用电网谐波 GB ~ 电力变压器 GB 6450 干式变压器 GB311 高电压输变电设备的绝缘配合与高电压试验技术DL/T 620 交流电气装置的过电压保护和绝缘配合 GB/T 半导体变流器基本要求的规定 GB/T 半导体变流器应用导则 GB/T 半导体变流器变压器和电抗器 2.语言 投标商提供的信息及资料(包括投标书)应使用中文。

水泵恒压供水方案

水泵恒压供水方案 一.泵房供水电机一般以恒定速度运行,用大小泵切换或调节 进出水阀的方法调节水压及流量,以满足各种不同的需求.这种低效率控制流量的方法,不能满足实际工作要求,由于工作中水量变化,可能使平均水压升高,一方面造成不必要的能量消耗还会使管网因较大的压力冲击,使管网破裂;另一方面使水压不稳,影响供水品质. 二.采用变频恒压供水自动化控制的特点: 1.节省电能,降低能源消耗,能24小时维持恒定压力,并根据 压力信号自动启动备用泵,无级调整压力,供水质量好,与 传统供水相比,不会造成管网破裂及水龙头共振现象. 2.启动平滑,减少电机水泵的冲激,延长了电机及水泵的使 用寿命,降低了维修成本,避免了传统供水中的水锤现象. 3.变频恒压供水保护功能齐全,运行可靠,具有欠压,过压, 过流,过热等保护功能.可根据用户需要,选择各种附加功 能. 三.供水工况 目前通过二台45KW,二台15KW的水泵(一用一备),工艺要求水压为5Mpa。主要考虑节能及自动化的要求,内置自动节能,PID,简易PLC及通讯接口等功能,可以

方便与PLC,现场总线进行通讯,方便操作及监控,同时可以方便地与压力传感器连用。 四、恒压供水原理 当供水系统阻力一定时,水泵转速的变化,将会改变供水系统的压力和流量。如图1所示,当水泵转速由N1提升到N2时,由于阻力曲线R不变,水泵工况由A点移到B点。则流量由Q1提升到Q2,同时扬程也由H1提升到H2。系统阻力不变时,只需调节电动机的转速,即可改变流量与扬程。 H R H2 N2 P=QⅹHⅹr/102ⅹn (1) H1N1 B P:水泵工况点的轴动功率(KW) H0 A Q:水泵工况点的水压或流量(m3/s ) Q1 Q2 Q H:水泵工况点的扬程(m) r:输出介质单位体积重量(Kg/m H0 ( 图1 ) n:水泵工况点的泵效率(%) 根据离心泵的公式 (1)和水阻力特性曲线,我们可以知道,在水阻特性一定时,调速N与流量Q、 扬程H、轴功率P之间的关系式为: Q2/Q1=N2/N1 (2) H2/H1=(N2/N1)2 P2/P1=(N2/N1)3

变频调速恒压供水(单泵).

摘要 自从通用变频器问世以来,变频调速技术在各个领域得到了广泛的应用。变频调速技术在各个领域得到了广泛的应用。变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中得到了很大的发展。 对城镇住宅电力驱动恒压供水的原理及几种实用化方案进行了深入的讨论,以变频器为主体的恒压供水系统对供水水泵实现全方位的宝护。该系统不但能最大限度地节约水资源,而且能够节约电能,延长供水水泵的使用寿命,并在紧急情况下(消防,减灾)能够做到重点供水。最后,对几种实用化供水方案进行了详细的讨论。 关键词:变频器;恒压供水;变频调速;供水系统

目录 1. 变频调速恒压供水系统的现状和应用 (1) 1.1. 变频调速恒压供水的目的和意义 (1) 1.2变频调速恒压供水的应用 (1) 2.变频调速恒压供水系统 (2) 2.1供水系统的基本特性 (2) 2.2变频恒压供水系统的构成及工作原理 (2) 2.2.1系统的构成 (2) 2.2.2变频调速恒压供水系统原理 (3) 2.2.3变频恒压控制理论模型 (4) 3.变频恒压供水系统设计 (6) 3.1控制方案 (6) 3.2变频恒压控制系统构成 (6) 3.3系统的硬件设计 (8) 3.4系统的软件设计 (9) 3.4.1 PLC的定义及特点 (9) 3.4.2 PLC的工作原理 (9) 3.4.3.I/O接线图 (10) 4.器件的选型 (11) 4.1变频器选型 (11) 4.1.1.变频器的控制方式 (11) 4.1.2.变频器容量的选择 (11) 4.1.3.系统主电路外围设备选择 (12) 5.变频器参数的设置 (16) 5.1参数复位 (16) 5.2电机参数设置 (16) 总结 (17) 参考文献 (18)

变频恒压供水原理说明

变频恒压供水原理说明 变频恒压供水设备利用专门为风机、泵类、空气压缩机等流量和压力控制特点而研制的专用变频调速器。利用变频器的一拖三功能,而不采用昂贵的PLC就可以自动控制泵组的运行与退出台数,而且内置PID功能与我司开发的专门处理恒压供水的控制板,可以方便地与远传压力表连用,同而完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。为客户节省成本,具有较高的经济性和实用性。 一、变频恒压供水特点: 1、恒压供水能自动24小时维持恒定压力,并根据压力信号自动启动备用泵,无级调整压力,供水质量好,与传统供水比较,不会造成管网破裂及水龙头共振现象。 2、动平滑,减少电机水泵的冲击,延长了电机及水泵的使用寿命,避免了传统供水中的水锤现象。 3、采用变频恒压供水保护功能齐全,运行可靠,具有欠压、过压、过流、过热等保护功能。 4、系统配置可实现全自动定时供水,彻底实现无人值守自动供水.控制系统具有故障报警和显示功能,并可进行工变频转换,应急供水。 5、系统根据用户用水量的变化来调节水泵转速,使水泵始终工作在高效区,当系统零流量时,机组进入休眠状态,水泵停止,流量增加后才进行工作,节电效果明显,比恒速水泵节电23%-55%。 6、变频恒压供水设备不设楼顶水池,既减少建筑物的造价,又克服了水源二次污染,气压波动大,水泵启动频繁和建造水塔一次性投资大,施工周期长,费用高等缺点。 7、整套设备只需一组控制柜和水泵机组,安装非常方便,占地面积少。 8、本设备采用全自动控制,操作人员只需转换电控柜开关,就可以实现用户所需工况,操作简单。 二、工作原理: 变频恒压供水系统采用一电位器设定压力(也可采用面板内部设定压力),采用一个压力传感器(反馈为4~20mA)检测管网中压力,压力传感器将信号送入变频器PID回路,PID回路处理之后,送出一个水量增加或减少信号,控制马达转速。如在一定延时时间内,压力还是不足或过大,则通过变频器作工频/变频切换起动另一台水泵,使实际管网压力与设定压力相一致。另外,随着用水量的减少,变频器自动减少输出频率,达到了节能的目的。 三、变频恒压供水系统控制图(以一台变频器控制一台马达为例): 例:使用远传压力表,量程0-10kg,反馈4-20mA,要求5kg压力供水,上限6kg,下限4kg,面板起动停止,电位器给定目标值。 四、适用范围:

相关文档
相关文档 最新文档