文档库 最新最全的文档下载
当前位置:文档库 › 场强的计算(无限长直线)

场强的计算(无限长直线)

场强的计算(无限长直线)

8.(本题3分)(1006)两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a为_____________ .

λ1λ2

计算电场强度的基本方法

计算电场强度的基本方法 电场强度是静电学中最基本最重要的概念之一,是历年高考考查的热点。高考中将静电学与力学、磁学等问题放在一起作为综合题考查在每年是必不可少的。这些题目中往往涉及有电场力、电势和电势能等参数,这些参数与静电场最基本的物理性质参数——电场强度是紧密相关的。因此,要解决好这些问题,我们首先必须熟练掌握计算电场强度的方法。 在这里,我们首先介绍一下计算电场强度的基本方法。结合所分析的静电场的特点,很多求解电场强度的问题都可以用它来解决。对于一些比较特殊的电场,我们将在下一节介绍一些特殊的方法,那些特殊的方法也是由这些基本方法衍生而来的,因此,我们需要掌握好这些基本方法。下面来看一看这些基本方法。 方法特点 电场强度的定义是检验电荷在电场中某点受到的电场力F 与电荷q 的比值,用E 表示。因此,我们可以利用这一定义去求电场中某点的电场强度。想办法求出电荷q 在某点所受的电场力,使用公式F q E =,即可求出电场强度。在这里需要注意两点:(1)这里q 代表 电量,如果带正电则值为正,此时E 的方向与F 相同;如果带负电则值为负,此时E 的方向与F 相反。(2)由于E 有方向,是矢量,因此我们可以使用矢量的运算法则(正交分解法、平行四边形法则、矢量三角形法则等)求几个不同的电场在某一点所产生的合场强。 根据这一定义,点电荷Q 在周围某点所产生的场强为22 Qq F r q k Q E k q r ===。根据这一定义以及匀强电场中电场力做功与电势能的关系有W F d qE d q U === ,因此匀强电场的场强为U d E =。 从定义引出来的方法是最基本的方法,下面我们来看一看具体该怎么用。 经典体验(1) 如图所示,带正电小球质量为m=1×10-2kg ,带电量为q=1.6×10-6 C 。置于光滑绝缘水平面上的A 点,当空间存在着斜向上的匀强电场时,该小 球从静止开始始终沿水平面做匀加速直线 运动,当运动到B 点时,测得速度v B =1.5m/s , 此时小球的位移为s=0.15m ,求此匀强电场 的场强E 的取值范围(g=10m/s 2 )。 体验思路: 要求E 的取值范围,我们已知电量q ,根据上面的定义,即是要求电场力的

怎样计算电场强度

§10 怎样计算电场强度? 静电场的电场强度计算,一般有三种方法: 1、 从点电荷场强公式出发进行叠加; 2、 用高斯定理求解; 3、 从电场强度和电势的微分关系求解。 这三种方法各有优点: 从点电荷的场强公式出发,通过叠加原理来计算,在原则上,是没有不可应用的。但是,叠加是矢量的叠加,因此计算往往十分麻烦。 用高斯定理求电场强度,方法简单,演算方便,它有较大的局限性,只适宜于某些电荷对称分布的场强的计算,或者场强不是对称的,但为几种能用高斯定理求解折场的合成。 用场电势的微分关系求场强也有普遍性,而且叠加是代数叠加。这一种方法也简便,不过还比不上高斯定理。 所以求场强时,一般首先考虑是琐能用高斯定理,其次考虑是否能用场强与电势的微分关系去求。下面分别加以讨论。 一、从点电荷的场强公式出发通过叠加原理进行计算 点电荷的场强公式: 301 (1)4i i i q E r r πε= ∑r r 当电荷连续分布时: ()() 303 0301(2) 4134144r E dl r r E ds r r E d r λπεσπερτπε===???r r r r r r 式中 λ-电荷的线密度; σ-电荷的面密度; ρ-电荷的体密度。 式(2)、(3)、(4)中,积分应普遍一切有电荷分布的地方。计算时,还必须注意这是矢量和。 1、 善于积分变量的统一问题

如果积分上包含有几个相关的变量,只有将它们用同一变量来表示,积分才能积得结果。 这在应用点电荷的场强公式求带电体的场强时,或者应用毕-沙-拉定律求B r 时,常常遇到。 因此,要积分必须先解决积分变量的统一问题。 积分上包含有几个变量,相互之间存在一定的关系。因此,任一变量都可选作自变量,而将其他变量用该变量来统一表示。必须指出,不但可以将积分号中包含的变量选作自变量,而且也可选择不包含在积分号中但与积分号中的变量都有关的量作为自变量,要根据具体情况而定。 现以图2-10-1所示均匀带电直线的场强计算为例来讨论积分变量的统一问题。 由图可知: 2 0cos 4x dl dE r λθπε= 2 0sin 4y dl dE r λθπε= 202 0cos (5) 4sin (6) 4x x y y dl E dE r dl E dE r λθπελθπε∴====?? ?? 上述三个变量中,共有三个相关变量:θ、l 、r 。为了把积分计算出来,必须把三个变量统一用某一个变量,可以θ、l 、r 中的任一个,或者用它的相关变量来表示。究竟选哪 一个好呢? 如果选择θ为自变量,则应把l 、r 都化作θ的函数来表示。由图示几何关系可得: 2222cot l a dl acse d r a cse θθθθ =-== 于是得: ()()2 12 1 21002100cos sin sin 44sin cos cos 44x y E a a E a a θθθθλλ θθθπεπελλ θθθπεπε==-==-? ? x 图2-10-1

电场强度地计算

电场力的性质之考点一(电场强度的理解及计算) 班级::编写:熠 学习目标:1、理解电场强度的矢量性;2、掌握电场强度的计算方法。 自主学习:一、三个公式的比较 二、 (1)电场叠加:多个电荷在空间某处产生的电场的电场强度为各电荷在该处所产生的电场场强的矢量和. (2)计算法则:平行四边形定则. 题型一、点电荷产生的电场 正点电荷电场方向背离电荷负点电荷电场方向指向电荷中心 1、如图所示,真空中有两个点电荷Q1 =+3.0×10-8C和Q2 =-3.0×10-8C,它们相距0.1m,A点与两个点电荷的距离r相等,r=0.1m 。求:电场中A点的场强。 2、如图,A、B两点放有均带电量为+2×10-8C两个点电荷,相距60cm,试求:

(1)AB 连线中点O 的场强; (2)AB 连线的垂直平分线上离开O 点距离为30cm 处的P 点的场强。 合作学习: 【拓展训练】:3、(2013·重点中学联考)如图所示,一个均匀的带电圆环, 带电荷量为+Q ,半径为R ,放在绝缘水平桌面上.圆心为O 点,过O 点作一竖直线,在此线上取一点A ,使A 到O 点的距离为d 。求A 点处的电场强度。 方法归纳: 【变式训练】:4、在某平面上有一个半径为r 的绝缘带电圆环: (1)若在圆周上等间距地分布n (n ≥2)个相同的点电荷,则圆心处的合场强为多少? (2)若有一半径同样为r ,单位长度带电荷量为q (q >0)的均匀带电圆环上有一个很小的缺口Δl (且Δl r ),如图所示,则圆心处的场强又为多少? 方法归纳:补偿法。 解题关键:把带有缺口的带电圆环―――→转化为 点电荷 解析: (1)当n 分别取2、3、4时圆心处的场强均为零,结合点电荷电场的对称性可知,n 个相同的点电荷在圆心处的合场强为零. (2)可以把均匀带电圆环视为由很多点电荷组成,若将缺口补上,再根据电荷分布的对称性可得,圆心O 处的合场强为零,由于有缺口的存在,圆心O 处的电场即为缺口相对圆心O 的对称点产生的电场,其电场强度为该处电荷(可视为点电荷)在O 点的电场强度(包括 大小和方向).其电场强度的大小为E =k q Δl r 2,方向由圆心O 指向缺口. 答案: (1)合场强为零 (2) k q Δl r 2,方向由圆心O 指向缺口 分析电场叠加问题的一般步骤 电场强度是矢量,叠加时应遵从平行四边形定则,分析电场的叠加问题的一般步骤是: (1)确定分析计算的空间位置; (2)分析该处有几个分电场,先计算出各个分电场在该点的电场强度的大小和方向; (3)依次利用平行四边形定则求出矢量和. 题型二特殊带电体产生的电场

电场强度的几种计算方法

电场强度的几种求法 一.公式法 1.q F E =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2 r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带

电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为 E 1,电势为1?;右侧部分在M 点的电场强 度为E 2,电势为2?;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1?>2 ?

B .若左右两部分的表面积相等,有E 1<E 2,1?<2 ? C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4 D .不论左右两部分的表面积是否相等,总有 E 1>E 2,E 3=E 4 答案:D 例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。则以下说法正确的是( ) A .两处的电场方向相同, E1>E2 B .两处的电场方向相反, E1>E2 C .两处的电场方向相同,E1<E2 D .两处的电场方向相反,E1<E2 A B M O N L

电场强度的叠加原理及电场强度的计算

第二讲:电场强度的叠加原理及电场强度的计算 内容:§9-3 电场强度的求法 要求: 1.理解场强叠加原理; 2.掌握用积分的方法计算电场强度。 重点与难点: 1.电场强度及其计算。 作业: 习题:P37:9,11 预习:电场强度的叠加原理

四、电场强度叠加原理 1.点电荷的场强:电荷Q ,空间r 处 2 04r r Q q F E πε== 2.点电荷系: 在点电荷系Q 1,Q 2,…,Q n 的电场中,在P 点放一试验电荷q 0,根据库仑力的叠加原理,可知试验电荷受到的作用力为∑= i F F ,因而P 点的电场强度为 ∑∑∑=== i i i E q F q F q F E = 即 ∑∑3 04r r Q E E i i πε == 点电荷系电场中某点的场强等于各个点电荷单独存在时在该点的场强的矢量和。这就是电场强度的叠加原理。 3.连续分布电荷激发的场强 将带电区域分成许多电荷元d q ,则 ? ?=0 2 04r r dq E d E πε= 其中,对于电荷体分布,d q =ρd v , ???v r r dv E 0 204 περ= 对于电荷面分布,d q =σds ,02 04r r ds E s ??πεσ= 对于电荷线分布,d q =λd l ,?l r r dl E 0 2 04 πελ= 其中体密度 dV dQ V Q V =??→?lim 0 =ρ 单位C/m 3; 面密度 dS dQ S Q S =??→?lim =σ 单位C/m 2;

线密度 dl dQ l Q l =??→?lim =λ 单位C/m 。 五、 电场强度的计算: 1.离散型的:∑∑3 04r r Q E E i i πε == 2.连续型的:? ?=0 2 04r r dq E d E πε= 空间各点的电场强度完全取决于电荷在空间的分布情况。如果给定电荷的分布,原则上就可以计算出任意点的电场强度。计算的方法是利用点电荷在其周围激发场强的表达式与场强叠加原理。计算的步骤大致如下: ● 任取电荷元d q ,写出d q 在待求点的场强的表达式; ● 选取适当的坐标系,将场强的表达式分解为标量表示式; ● 进行积分计算; ● 写出总的电场强度的矢量表达式,或求出电场强度的大小和方向; ● 在计算过程中,要根据对称性来简化计算过程。 例1. 电偶极子(Electric Dipole )的场强。 1. 几个概念: (1)两个电量相等、符合相反、相距为l 的点电荷+q 和-q ,若场点到这两个电荷的距离比l 大得多时,这两个点电荷系称为电偶极子。 (2)从-q 指向+q 的矢量l 称为电偶极子的轴。 (3)l q p =称为电偶极子的电偶极矩 2. 电偶极子的电场强度 (1)电偶极子轴线延长线上一点的电场强度 如图所示,取电偶极子轴线的中点为坐标原点O ,沿极轴的延长线为O x 轴,轴上任意点A 距原点的距离为x ,则正负电荷在点A 产生的场强为 ()i l x q E 2 02/41-= +πε () i l x q E 2 02/41+-=-πε 由叠加原理可知点A 的总场强为 ()()() i l x xl q i l x q l x q E E E ??? ?????-??????-= +22202204/242/2/41πεπε=+-+=- 当x >>l 时,2 224/x l x ≈-

电场强度的几种计算方法

电场强度的几种求法 一. 公式法 1.q F E = 是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E = 是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大? 例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为E 1,电势为1?;右侧部分在M 点的电场强度为E 2,电势为2?;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1?>2? B .若左右两部分的表面积相等,有E 1<E 2,1?<2?

C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4 D .不论左右两部分的表面积是否相等,总有 E 1>E 2,E 3=E 4 答案:D 例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。则以下说法正确的是( ) A .两处的电场方向相同,E1>E2 B .两处的电场方向相反,E1>E2 C .两处的电场方向相同,E1<E2 D .两处的电场方向相反,E1<E2 三.等效替代法 例:均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场,如图,在半球面A 、B 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球顶点与球心O 的轴线,在轴线上有M 、N 两点,OM=ON=2R ,已知M 点的场强大小为E ,则N 点场强大小为( ) A .E R -22kq B .24kq R C .E R -24kq D .E R +2 4kq 答案:A 例:【2013安徽20】如图所示,xOy 平面是无穷大导体的表面,该导体充满0z <的空间, 0z >的空间为真空。将电荷为q 的点电荷置于z 轴上z=h 处,则在xOy 平面上会产生感应 电荷。空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的。已知静电平衡时导体内部场强处处为零,则在z 轴上2 h z = 处的场强大小为(k 为静电力常量) A .24q k h B .249q k h C .2329q k h D .2 409q k h 【答案】D C D A B

电场强度的几种计算方法

微专题训练16 电场强度的几种计算方法 1.(公式法)(单选)如图1所示,真空中O 点有一点电荷,在它产生的电场中有a 、 b 两点,a 点的场强大小为E a ,方向与ab 连线成60°角,b 点的场强大小为E b ,方向与ab 连线成30°角.关于a 、b 两点场强大小E a 、E b 的关系,以下结论正确的是 ( ). 图1 A .E a =33E b B .E a =13E b C .E a =3E b D . E a =3E b 解析 由题图可知,r b =3r a ,再由E =kQ r 2可知,E a E b =r 2b r 2a =31,故D 正确. 答案 D 2.(图象斜率法)(多选)如图2甲所示,在x 轴上有一个点电荷Q (图中未画出),Q 、 A 、 B 为轴上三点,放在A 、B 两点的试探电荷受到的电场力跟试探电荷所带电荷量的关系如图乙所示,则 ( ). 图2 A .A 点的电场强度大小为2×103 N/C B .B 点的电场强度大小为2×103 N/C C .点电荷Q 在A 、B 之间 D .点电荷Q 在A 、O 之间 解析 对于电场中任意一点而言,放在该处的试探电荷的电荷量q 不同,其受

到的电场力F的大小也不同,但比值F q是相同的,即该处的电场强度.所以F-q 图象是一条过原点的直线,斜率越大则场强越大.由题图可知A点的电场强度 E A=2×103 N/C,B点的电场强度的大小为E B=0.6×103 N/C,A正确,B错误.A、 B两点放正、负不同的电荷,受力方向总为正,说明A、B的场强方向相反,点电荷Q只能在A、B之间,C正确. 答案AC 3.(叠加法)(多选)如图3所示,在x轴坐标为+1的点上固定一个电荷量为4Q的正点电荷,坐标原点O处固定一个电荷量为Q的负点电荷,那么在x坐标轴上,电场强度方向沿x轴负方向的点所在区域应是(). 图3 A.(0,1)B.(-1,0) C.(-∞,-1)D.(1,+∞) 解析在区域(0,1)中4Q和-Q的电场的电场强度方向都向左,合场强仍向左, A对;在-Q左侧距-Q为x处场强为零,由k Q x2=k 4Q (1+x)2 得x=1,所以区域(-∞,-1)内合场强向左,C对. 答案AC 4.(叠加法)(单选)如图4所示,中子内有一个电荷量为+2e 3的上夸克和两个电荷量 为-e 3的下夸克,3个夸克都分布在半径为r的同一圆周上,则3个夸克在其圆 心处产生的电场强度大小为() 图4

电场强度的计算(完整资料).doc

【最新整理,下载后即可编辑】 电场力的性质之考点一(电场强度的理解及计算) 班级: 姓名: 编写:陈熠 学习目标:1、理解电场强度的矢量性;2、掌握电场强度的计算方法。 自主学习:一、三个公式的比较 E =F q E =k Q r 2 E =U d 公式意义 适用条件 决定因素 二、电场的叠加 (1)电场叠加:多个电荷在空间某处产生的电场的电 场强度为各电荷在该处所产生的电场场强的矢量 和. (2)计算法则:平行四边形定则. 题型一、点电荷产生的电场 正点电荷电场方向背离电荷负点电荷电场方向指 向电荷中心 1、如图所示,真空中有两个点电荷Q1 =+3.0×10-8C 和Q2 =-3.0×10-8C ,它们相距0.1m , A 点与两个点电荷的距离r 相等,r=0.1m 。求:电场中A 点的场强。 2、如图,A 、B 两点放有均带电量为+2×10-8C 两个点电荷,相距60cm ,试求: (1)AB 连线中点O 的场强; (2)AB 连线的垂直平分线上离开O 点距离为30cm 处的P 点的场强。 合作学习: 【拓展训练】:3、(2013·山东济南重点中学联考)如图所示,一个均匀的带电圆环,带电荷量为+Q ,半径为R ,放在绝缘水平 E 合 E 2 E 1 Q1 Q2 A

桌面上.圆心为O 点,过O 点作一竖直线,在此线上取一点A ,使A 到O 点的距离为d 。求A 点处的电场强度。 方法归纳: 【变式训练】:4、在某平面上有一个半径为r 的绝缘 带电圆环: (1)若在圆周上等间距地分布n (n ≥2)个相同的点电 荷,则圆心处的合场强为多少? (2)若有一半径同样为r ,单位长度带电荷量为q (q >0)的均匀带电圆环上有一个很小的缺口Δl (且Δl r ),如图所示,则圆心处的场强又为多少? 方法归纳:补偿法。 解题关键:把带有缺口的带电圆环―――→转化为点电荷 解析: (1)当n 分别取2、3、4时圆心处的场强均为零,结合点电荷电场的对称性可知,n 个相同的点电荷在圆心处的合场强为零. (2)可以把均匀带电圆环视为由很多点电荷组成,若将缺口补上,再根据电荷分布的对称性可得,圆心O 处的合场强为零,由于有缺口的存在,圆心O 处的电场即为缺口相对圆心O 的对称点产生的电场,其电场强度为该处电荷(可视为点电荷)在O 点 的电场强度(包括大小和方向).其电场强度的大小为E =k q Δl r 2,方向由圆心O 指向缺口. 答案: (1)合场强为零 (2) k q Δl r 2,方向由圆心O 指向缺口 分析电场叠加问题的一般步骤 电场强度是矢量,叠加时应遵从平行四边形定则,分析电场的叠加问题的一般步骤是:

电场强度计算

电场强度的计算 描述电场的物理量——电场强度 A F q q F E = ++++ ++ q 0 B F A B 电场中某点的电场强度等于单位正电荷在该点所受的电场力。电场强度的计算 (1)点电荷的电场 (3)连续分布电荷的电场 (2)场强叠加原理和点电荷系的电场场点 源点 (1)点电荷的电场 q r 30e r r r r q q F == ,041 πε=E 0q F r r q 3 041πε=F E + E r E r r q i q 0 q 对的作用q i q 2q q 1 (2)电场强度叠加原理和点电荷系的场强n F F F F +++=21i F 0q F E =0 21q F F F n +++= n E E E +++=21∑=i E E 1 F 2 F i F ∑==n i i F 1 电场强度叠加原理场点 点电荷系的电场 q 1 + q 2 -i i i i r q r E 3 041πε= ∑=i E E 2 r 2 E E 1 E 1 r

电荷面分密度 电荷体密度 电荷线分布密度 d S d V l d (3) 连续带电体的电场:体分布、面分布、线分布 V ΔΔ=→Δq lim 0τρl q lim 0l ΔΔ=→ΔηS q lim 0S ΔΔ=→Δσ电荷面分布 电荷体分布 电荷线分布d S d V d q P .l q d d η=所以, 电荷元:q d S q d d σ=dV d ρ=q r E 3 0d 41d r q πε= 计算时将上式在坐标系中进行分解,再对坐标分量积分。 r E d l d ?体电荷分布的带电体的电场 r r dV E V ∫∫∫=3 04περ?面电荷分布的带电体的电场r r dS E S ∫∫ = 3 04πεσ?线电荷分布的带电体的电场r r dl E l ∫= 3 04πε η计算时将上式在坐标系中进行分解,再 对坐标分量积分,即先分后和: , ∫=x x dE E , ∫=y y dE E ∫=Z Z dE E 解题思路及步骤: 1、根据题意建立坐标系; 2、确定电荷密度:4、根据库仑定律确定电荷元的电场强度dE : 6、积分求场强分量:3、求电荷元电量dq; 7、求总场的大小和方向 2 2 2Z y x E E E E ++=x y x i dE E i i ,,,==∫关键是得到电荷元的微分形式,即dq r E 3 0d 41d r q πε=5、确定dE 在坐标系中分量形式:x y x i ,,,=i dE 注意使用对称性 解: 例1. 求电偶极子中垂面上的电场。r ] )([222 l r q ++?=E E 041 πε= =E +E 2θ cos ] )([22 2 412 l r q +=πε 2 122 2 2/])([l r l +× 2 /3220)4/(41 l r ql += πεP +q +q ?2 /l 2 /l θ θ ? E + E E 若r l >>用矢量形式表示为: 2 /3224/l r )(+? =P E 041πε3 r P E 041πε? =r P +q +q ?2 /l 2 /l θ θ ? E +E E l P q =+ P l 电偶极矩(电矩)

三种计算场强的方法及场强叠加专题

三种计算场强的方法及场强叠加 1、如图所示,带电量为q的小球质量为m,用一细线系在O点,整个放置在水平匀强电场中,静止时小球与竖直线的夹角为θ。下列说法正确的是( ) A.小球带正电荷,电场强度大小是E=mgtanθ/q B.小球带正电荷,电场强度大小是 E=mgcosθ/q C.若细线断开,则小球作平抛运动 D.以上说法都不对 2、在如图(a)所示的x轴上有一个点电荷Q(图中未画出所在位置),O 为x轴坐标原点,A、B两点的坐标分别为0.1m和0.4m.放在A、B两点 的检验电荷q1、q2受到的电场力跟它们所带电量的关系如图(b)所示.则 A、B两点的电场强度大小之比为________;点电荷Q的位置坐标为 x=________m. 3、在点电荷Q产生的电场中有a,b两点,相距为d,已知a点的场强大小为E,方向与ab连线成30°角, b点的场强方向与ab连线成120°角,如图所示,则点电荷Q的电性和b点的场强大小为() A.正电、 B.负电、 C.正电、 D.负电、 4、在匀强电场中有a、b、c三点,如图所示,ab=5cm,ac=3cm,bc=4cm,已知Uac=12V, E=400N/C, 则场强方向应是() (A)由a向c (B)由b向c (C)由a向b (D)由c向b 5、如图所示,在匀强电场中宵A、B、C三点,在以它们为顶点的三角形中,,电场方向与三角形所在 平面平行。已知A、B、C三点的电势分别为、和3V,且AB=2 m,则下列分析正确的是() A.该匀强电场的场强的方向沿BC方向 B.该匀强电场的场强的方向沿BA方向 C.该匀强电场的场强大小为2 V/m D.该匀强电场的场强大小为V/m 6、在场强为E的匀强电场中,放一个电量为Q的点电荷,并以它为圆心在平行于电场线的平面内做 一个圆。过圆心的电场线和圆交于A、B两点,A、B的垂直平分线交圆于C、D,如右图所示。A点的 电场强度是零。电荷带_______电,圆的半径R=__________,B点的合场强大小是___________,C 点的合场强大小是____________。 7、如图所示,M、N和P是以MN为直径的半圈弧上的三点,O点为半圆弧的圆心,∠MOP=60O。电荷量相等、符号相反的两个点电荷分别置于M、N两点,这时O点电场强度的大小为E1;若将N点处的点电荷移至P点,则O 点的场强大小变为E2,E1与E2之比为 A.2∶1 B.1∶2 C.2∶ D.4∶ 8、点电荷A和B,分别带正电和负电,电量分别为4Q和Q,在AB连线上,如图所示,电场强度 为零的地方在 ( ) A.A和B之间 B.A右侧 C.B左侧 D.A的右侧及B的左侧

电场强度的计算

6.2.5电场强度的计算 在本知识点中,我们将给大家介绍使用迭加原理计算场强的方法。重点是微积分的使用。使用微积分计算场强的步骤大致有: 1、建立坐标系:目的是便于表示场强的方向和选择积分的变量; 2、选取元电荷:即对连续带电体进行微分; 3、写出元电荷在考察点的场强大小; 4、分析元电荷在考察点场强的方向:目的是为写分量做准备; 5、写出元电荷在考察点场强的各个分量:目的是为对各个分量积分做准备; 6、分别对各个分量积分,并在积分过程中选择恰当的积分变量和统一变量。 【例1】求电偶极子中垂线上任意一点的电场强度。 电偶极子的电场

【解】如上图所示。设电偶极子的电量分别为+q和-q,用l表示从负电荷指向正电荷的矢量。设中垂线上任意一点P相对于+q和-q 的位置矢量分别为r+和r-,而r+=r-。+q和-q在P点处产生的场强 分别为 以r表示电偶极子中心到P点距离,则 在距离电偶极子甚远时,即r>>l时,取一级近似有。而P点的总场强为 式中p=q l是电偶极子的电矩,这样上述结果又可以写成 此结果表明,电偶极子在其中垂线上距电偶极子中心较远处各点的电场强度与电偶极子的电矩成正比,与该点离电偶极子中心的距 离的三次方成反比,方向与电矩的方向相反。 【例2】试求一均匀带电直线外任意一点处的场强。设直线长为 L(见下图),电荷线密度(即单位长度上的电荷)为(设)。

设直线外场点P到直线的垂直距离为,P点与带电直线的上下端点 的连线与垂线的夹角分别为和。 带电直线外一点的电场 【解】均匀带电直线可以理解为实际问题中一根带电直棒的抽象模型,如果我们仅限于考虑离棒的距离比棒的截面尺寸大得多的地方的电场,则该带电直棒就可以看作一条带电直线。P点处的场强可以通过微积分来求解。 在带电直线上任取一长为的元电荷,其电量。以P点到 带电直线的垂足O为原点,取如图所示坐标轴,。元电荷d q 在P点的场强d E沿两个轴方向的分量分别为和。因而 由于,从而(此式在几何上表示,当很小时, 对P点张开的角度与的关系),并且,所以

真空中静电场场强的计算

真空中静电场场强的计算 张贵银 任何带电体都要在空间激发电场,静止带电体激发的电场称为静电场,静电场的空间分布通过物理量电场强度来描述,静电场的有源无旋性通过与电场强度相关联的高斯定理和场强环路定理来体现。所以电场强度是静电学部分最重要、最基本的一个概念,对于给定的任一带电体,了解和掌握其电场强度的计算方法具有重要的实际意义。场强的计算是静电学的重点和难点,本文对电场强度的计算方法进行了归纳、总结。 一、迭加法 电场强度的基本特性之一就是可迭加性,该特性提供了计算任意带电体场强的基本方法——迭加法,该方法的基本思想是:以熟知的点电荷场强公式r r q E 3 04 为基础,当 带电体系由若干个分离的点电荷组成时,直接应用点电荷场强公式,进行矢量迭加,即得空间场强的分布;当带电体电荷连续分布时,将带电体视为由无数个电荷元组成,电荷元激发的场强由点电荷场强公式描述,无数个电荷元场强的迭加,即整个带电体激发的电场强度。 例1、一带电细线弯成半径为R 的半圆形,电荷线密度为 sin 0 ,式中0 为一常数, 为半径R 与X 轴所成的夹角,如图1所示。 试求环心O 处的电场强度。 解:在Φ 处取电荷元,如图2, 其电量为 d R dl dq sin 0 它在O 点产生的场强为 R d R dq dE 002 04sin 4 在x 、y 轴上的二个分量 sin cos dE dE dE dE y x 对各分量分别求和 000 0cos sin 4d R E x R d R E y 0002008sin 4 j j i E R E E y x 00 8 迭加法求场强的一般步骤是:首先在带电体上选取适当的电荷元,写出电荷元在场点激发的电场强度,若各电荷元在场点激发的电场强度方向相同,将电荷元在场点激发的场强直接积分即得带电体在场点激发的电场强度;反之,需将电荷元在场点激发的场强沿选取的

场强测量与计算

电磁干扰场强单位及其换算,是广大电磁兼容工作者经常遇到的、关切的问题之一。电磁干扰场强既有电场强度、磁场强度和功率通量密度等基本单位,又有分贝制导出单位。在某些情况下,单位之间还可相互换算。现将就这些单位的使用及换算作一简要的介绍。 一、电磁干扰场强的基本单位 高频、微波电磁干扰场强有三种基本单位:电场强度V/m、磁场强度A/m和功率通量密度w/m2。 在测量电场时,若仪器的表头刻度用的是电场强度单位时,则用V/m单位表示之。所测干扰场强小于1V/m时,可用mV/m、V/m 单位。 当使用环天线、框天线或磁性天线等来测量磁场,且仪器的表头刻度按磁场强度单位A/m刻度时,则可用A/m、mA/m、A/m 等单位表示之。 当电磁场频率高至微波段时,由于对电场、磁场的单独测量在技术上有一定困难;或者功率密度测量比电场、磁场测量要方便,所以可采用功率通量密度测量。功率通量密度的单位为W/m2。国外生产的全向宽带场强仪、辐射危险计,因其工作频率范围极宽,从260kHz~26GHz,故测试电路中实现、较为方便。因此,大多采用功率通量密度测量,并以mW/cm2为表头刻度单位。 场强仪测得的功率通量密度值是Poynting矢量模的时间平均值,亦代表电磁场的强度。它的单位W/m2和电场强度单位V/m、磁场

强度单位A/m同为电磁干扰场强的基本单位。它们的地位是等同的。 二、电磁干扰场强单位间的相互换算 在一般情况下,V/m、A/m和mV/cm之间不能相互换算。只有在被测场为平面波情况下,三者间才能相互换算。否则,只能“等效换算”。 何谓平面波?凡远离发射天线,在自由空间中传播的电磁波,皆为平面波。 根据电磁场理论,在平面波情况下, (1) 在自由空间中,Z0=120π≈ 376.7Ω 代入上式后可得: (2) 式中,E单位为V/m,s单位为mW/cm2。 值得指出的是:通常A、B波段(10kHz~30MHz)的干扰场强测量仪(例如德国R/S公司的ESH3、日本Anritu公司的ML428B)使用环形天线进行测量。虽然环形天线只对磁场分量起作用,但在自由空间中,由于E=Z0H(称等效电场分量),故表头可用等效电场分量刻度。但对近区场而言,电场E和磁场H并无确定的比例关系。可能E很大,H很小,也可能H很大,E很小,需视场源情况而定。此时,公式(1)~(2)已不成立,充其量只能“等效换算”,仅供参考而已。 三、电磁干扰场强的分贝制单位 在电磁干扰场强的测试中,往往会遇到量值相差非常悬殊(甚至达

电场强度的几种计算方法

电场强度的几种计算方法

电场强度的几种求法 一. 公式法 1.q F E =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。 2.2 r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。 3.d U E =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。 二.对称叠加法 当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。 例:如图,带电量为+q 的点电荷与均匀带电。 例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大?

例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r q k =?。假设左侧部分在M 点的电场强度为E 1,电势为1 ?;右侧部分在M 点的电场 强度为E 2,电势为2 ?;整个半球壳在M 点的电 场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1 ?>2 ? B .若左右两部分的表面积相等,有E 1<E 2,1 ?<2 ? C .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4

相关文档
相关文档 最新文档