文档库 最新最全的文档下载
当前位置:文档库 › T细胞研究 BD

T细胞研究 BD

T细胞研究 BD
T细胞研究 BD

细胞生物学常用研究方法

Southern杂交: 是体外分析特异DNA序列的方法,操作时先用限制性内切酶将核DNA或线粒体DNA切成DNA片段,经凝胶电泳分离后,转移到醋酸纤维薄膜上,再用探针杂交,通过放射自显影,即可辨认出与探针互补的特殊核苷序列。 将RNA转移到薄膜上,用探针杂交,则称为Northern杂交。 RNAi技术: 是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。可以利用siRNA或siRNA表达载体快速、经济、简便的以序列特异方式剔除目的基因表达,所以现在已经成为探索基因功能的重要研究手段。 Southern杂交一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量]。 扫描电镜技术:是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与样品表面结构有关,次级电子由探测器收集,信号经放大用来调制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。 细胞显微分光光度计:用来描述薄膜、涂层厚度超过1微米的物件的光学性能的显微技术。 免疫荧光技术:将免疫学方法(抗原抗体特异结合)与荧光标记技术结合起来研究特异蛋白抗原在细胞内分布的方法。由于荧光素所发的荧光可在荧光显微镜下检出,从而可对抗原进行细胞定位。 电镜超薄切片技术:超薄切片是为电镜观察提供极薄的切片样品的专门技术。用当代较好的超薄切片机,大多数生物材料,如果固定、包埋处理得合适,可以切成50-100微米的超薄切片。 Northern印迹杂交(Northern blot)。这是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。 放射自显影技术:放射自显影技术是利用放射性同位素的电离辐射对乳胶(含AgBr或AgCl)的感光作用,对细胞内生物大分子进行定性、定位与半定量研究的一种细胞化学技术。放射自显影技术(radioautography;autoradiography)用于研究标记化合物在机体、组织和细胞中的分布、定位、排出以及合成、更新、作用机理、作用部位等等。其原理是将放射性同位素(如14C和3H)标记的化合物导入生物体内,经过一段时间后,将标本制成切片或涂片,涂上卤化银乳胶,经一定时间的放射性曝光,组织中的放射性即可使乳胶感光。 核磁共振技术:可以直接研究溶液和活细胞中相对分子质量较小(20,000 道尔顿以下)的蛋白质、核酸以及其它分子的结构,而不损伤细胞。 DNA序列分析:在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信

细胞生物学在药学方面的研究综述

细胞生物学在药学方面的研究综述 摘要:细胞是生命的基础,一切生命问题的真正解决都必须在细胞中得到真正解决。细胞生物学所面临的主要任务是探索药物在细胞中的作用机制,理解新的药物靶标的细胞学基础。细胞生物学采用现代细胞生物学的原理与技术,通过揭示细胞生命活动的本质,在细胞与分子水平研究药物的吸收、转运与作用机制,来解决新药筛选,细胞工程制药等方面的难题。 关键词:细胞生物学药物筛选制药 1.新药筛选 1.1细胞周期与抗肿瘤药物 癌症的进展涉及无休止的基因突变,并通过进化选择成为最具侵袭性的肿瘤表型。这些基因突变形成了癌症的几种特质:漠视增殖、分化停止信号的存在;具备无限增殖的能力;逃避凋亡;侵袭性;新生血管生成的能力。其中前三种特质与细胞周期密切相关并为诊断及临床治疗提供了思路。[1] 林晓钢等人据Hela 细胞中的芳香族氨基酸、嘌呤以及嘧啶在细胞分裂过程中的相应变化引起的光谱变化建立Hela细胞的紫外吸收光谱模型,并且可以通过该光谱模型判读出Hela 群体大致处于细胞周期的哪一时相。[2]通过此项研究可以从细胞分子水平的变化来了解肿瘤细胞增殖周期的规律。研究细胞周期的规律与调控机制对于探索肿瘤发生机制、抗癌药物的设计和作用机制具有重要的指导意义。 1.2DNA与靶向药物 脱氧核糖核酸(DNA)是生物的基本遗传物质,是遗传信息的载体。许多分子能与DNA结合,破坏DNA的模板作用,影响基因调控和表达功能,从而诱发很多生物效应。因此DNA与靶向药物分子相互作用的研究是分子生物学和生物化学的重要领域。DNA与靶向药物分子相互作用的研究不仅可以从分子水平阐明生命过程机理、疾病的致病机制,而且可以引导药物的设计与合成、药物体外筛选以及探讨药物的治病机理。另外,对双链DNA(或单链DNA)具有选择性结合或具有序列特异性结合的靶向药物分子可以作为DNA分子杂交与否或识别特定序列

细胞研究进展概述

细胞研究进展概述——干细胞技术 20092358 谢芬霏16120901 生物技术 摘要:干细胞是人体及各种组织细胞的最初来源,具有高度自我复制、高度增殖和多项分化的潜能。干细胞的研究正在向现代生命科学和医学等各个领域交叉渗透,干细胞的研究也成为了生命科学的热点,本篇就几个干细胞的研究方向的进展展开一些介绍。 关键词:干细胞;多能性;神经干细胞;造血干细胞 引言: 干细胞是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。根据干细胞所处的发育阶段分为胚胎干细胞(embryonic stem cell,ES细胞)和成体干细胞(somatic stem cell)。根据干细胞的发育潜能分为三类:全能干细胞(totipotent stem cell,TSC)、多能干细胞(pluripotent stem cell)和单能干细胞(unipotent stem cell)。干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。干细胞的形态上具有共性,通常呈圆形或椭圆形,细胞体积小,核相对较大,细胞核多为常染色质,并具有较高的端粒酶活性。胚胎干细胞(Embrtibuc stem cell)的发育等级较高,是全能干细胞(Totipotent stem cell),而成体干细胞的发育等级较低,是多能干细胞或单能干细胞。据最新研究发现,成体干细胞可以横向分化为其他类型的细胞和组织,为干细胞的广泛应用提供了基础。在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞的组织或器官。在成年动物中,正常的生理代谢或病理损伤也会引起组织或器官的修复再生。胚胎的分化形成和成体组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力,而成体组织或器官内的干细胞一般认为具有组织特异性,只能分化成特定的细胞或组织。 1 胚胎干细胞 1.1 胚胎干细胞的概念和生理学特性 胚胎干细胞(Embryonic Stem cell,ES细胞)。胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团(Inner Cell Mass)的细胞即为胚胎干细胞。胚胎干细胞具有全能性,可以自我更新并具有分化为体内所有组织的能力。胚胎干细胞的生物学特性有:①全能性,在体外培养的条件下, 胚胎干细胞可以诱导分化为机体的任何组织细胞。全能性的标志是细胞表面有胚胎抗原和Oct4蛋白【1】。②无限增殖性。胚胎干细胞在体外适宜条件下, 能在未分化状态下无限增殖。③胚胎干细胞具有种系传递的功能。④胚胎干细胞易于进行基因改造操作。⑤细胚胎干胞保留了正常二倍体的性质且核型正常。早在1970年Martin Evans已从小鼠中分离出胚胎干细胞并在体外进行培养【2】,而人的胚胎干细胞的体外培养直到最近才获得成功。进一步说,胚胎干细胞(ES细胞)是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。研究和利用ES细胞是当前生物工程领域的核心问题之一。ES细胞的研究可追溯到上世纪五十年代,由于畸胎瘤干细胞(EC细胞)的发现开始了ES细胞的生物学研究历程。目前许多研究工作都是以小鼠ES细胞为研究对象展开的,如:德美医学小组在去年成功的向试验鼠体内移植了由ES细胞培养出的神经胶质细胞。此后,密苏里的研究人员通过鼠胚细胞移植技术,使瘫痪的猫恢复了部分肢体活动能力。随着ES细胞的研究日益深入,生命科学家对人类ES细胞的了解迈入了一个新的阶段。在98年末,两个研究小组成功的培养出人类ES细胞,保持了ES细胞分化为各种体细胞的全能性。这样就使科学家利用人类ES细胞治疗各种疾病成为可能。然而,人类ES 细胞的研究工作引起了全世界范围内的很大争议,出于社会伦理学方面的原因,有些国家甚至明令禁止进行

牙髓干细胞 研究进展综述

牙髓干细胞 1牙髓干细胞概念 牙髓组织位于牙齿内部的牙髓腔内,是牙体组织中唯一的软组织。2000年Gronthos[1]等通过对人牙髓细胞的研究,发现了一种与骨髓间充质干细胞有着极其相似的免疫表型及形成矿化结节能力的细胞,细胞中形态呈梭形,可自我更新和多向分化,有着较强的克隆能力。这些由牙髓组织中分离出的成纤维状细胞就称为牙髓干细胞(Dental Pulp Stem Cells,DPSCs)。现在普遍认为牙髓组织中具有形成细胞克隆能力和较强增殖能力的未分化间充质细胞即DPSCs[2]。 2牙源性干细胞 至今,已从人类牙齿相关组织中分离和鉴定出7种干细胞: (1)牙髓干细胞(dental pulp stem cell,DPSC)[1],来自恒牙牙髓;张巍巍等[3]以人牙髓干细胞为种子细胞与PLGA支架材料在体外进行复合培养,表明PLGA 有利于于牙髓干细胞的粘附与增值。Lindroos等[4]得到DPSC与其他间充质源性干细胞具有相似的表面标志物和骨相关性的标志物的结论,支持DPSC在硬组织再生方面的可能性。从成人第三磨牙牙髓中分离的DPSC在适宜的条件下可诱导分化为有功能活性的神经细胞,并在基因和蛋白水平表达神经组织专有的标志物[5],为治疗神经系统方面的疾病提供了新的途径。DPSCs不表达成牙本质细胞特征性蛋白DSP、DMP,则表明DP-SCs尚处于未分化状态[6]。我国学者通过对根髓和冠髓进行比较时发现:DPSCs 存在于全部牙髓之中,在根髓中的密度更高[7]。 (2)人类脱落乳牙牙髓干细胞(stem cell from the pulp of human exfoliated deciduous teeth, SHED),来自儿童脱落乳牙的牙髓;Miura等[8]研究发现,正常脱落的乳牙牙髓中的细胞经培养会表现出成纤维细胞样生长,其增殖率和群体倍增数均比骨髓基质干细胞(BMMSC)、DPSCs高,于是首次提出了SHED的概念。Shen YY等[9]发现SHED在体外培养过程中可以表达成骨细胞的标志,如RUNX-2、OCN、BSP,表明SHED在体外可以分化为成骨细胞;将SHED与人类牙齿切片复合后,在体外培养或是植入免疫缺陷小鼠皮下,均表达成牙本质细胞分化的标志( DSPP,DMP-1,MEPE)[10]。一系列实验表明SHED在体内只能诱导宿主细胞分化为成骨细胞[11],而其自身无法分化为成骨细胞,但在体外培养过程中却可以分化为成骨细胞。SHED 可能还具有参与机体的免疫调节等功能[12]。李丽文[13]等用不同密度接种培养DPSCs,计算细胞产量、倍增次数, 观察细胞形态、检查克隆形成率和钙结节形成能力的方法得到,1.5~3cells/cm2低密度接种培养DPSCs 有利于细胞快速扩增,扩增后的细胞保持较高的增殖和分化潜能。SHED 的增殖能力、克隆形成效率和钙结节形成能力均优于DPSCs。 (3)根尖乳头干细胞(stem cell from the apical papilla,SCAP)[14,15],来自牙根发育未完成的根尖乳头;Abe等[16]从人年轻第三磨牙根末端分离根尖周牙乳头,并采用酶消化法从中分离出细胞进行研究,结果发现这种细胞在低密度下培养时,

细胞生物学研究方法

细胞由于体积小,一般需在显微镜下观察,显微镜一般分为光学显微镜与电子显微镜。显微镜的放大倍数由目镜与物镜决定:放大倍数=物镜×目镜。清晰与否由分辨率(指能够分辨出相邻两质点间的最小距离,距离越小,分辨率越高)决定。一般来说,光镜分辨率为0.2微米,电镜分辨率为0.2纳米。分辨率的限制因素为:入射光波长,介质折射率,物镜镜口角。 光学显微镜结构为:光学显微系统,光源,机械支撑系统,有些还有图像采集系统。常见有三种:复式显微镜,相差显微镜以及荧光显微镜。 复式显微镜分为单筒显微镜,双筒显微镜。复式光学显微镜较为简单,照明系统为可见光,光学系统为玻璃透镜(目镜,物镜以及聚光镜),另外还有机械与支架系统。普通复式显微镜的缺点:由于光的干涉,衍射现象,光线通过样品时,两个相邻焦点的图像可能发生重叠,进而无法分辨,导致存在分辨极限。 相差显微镜是指利用光线的干涉,衍射特征,时相位差转变为振幅差,增强样品的明暗对比,从而观察无色透明样品的装置。相差显微镜的特殊构件为相差板,环状光阑。相差显微镜的特点:样品无需染色,可观察活细胞及细胞器动态。 荧光原理:荧光分子吸收入射光能量以后,电子由基态跃迁到激发态。激发态电子不稳定,会自发跃迁回基态,并辐射荧光。荧光显微镜原理:利用短波长电磁波为光源,激发样品辐射荧光,之后利用样品产生的自发荧光或诱发荧光,对细胞内特异性蛋白质进行定性与定位研究的装置。荧光显微镜的优点:荧光显微镜主要用于定性,定位研究细胞内特异性蛋白质,可以观察活细胞。缺点:无法排除来自样品焦平面以外的荧光,使得图像的反差与分辨率降低。 光学显微镜样品的制备:固定,包埋,切片,染色 固定:目的是杀死细胞,稳定细胞成分,以便进一步处理和切片是不受破坏。

黄芪研究进展综述

中药黄芪药理作用的研究发展 周春竹 【摘要】黄芪为蒙古黄芪或膜荚黄芪的干燥的根。黄芪性微温.味甘,具有补中益气、固表敛汗、利水消肿、托疮生肌等功效。现代研兜分析发现其舍有苷类、黄嗣、多糖、氧基酸、亚油酸、生物碱和胆碱等多种有效成分。本文就黄芪的药理作用的研究发展作出综述。【关键词】黄芪;药理作用;综述 黄芪为豆科植物蒙古黄芪或膜荚黄芪的干燥根[1]。始载于《神农本草经》,黄芪味甘,性温,归肺、脾经,具有益气升阳、固表止汗、利水消肿和托毒生肌的功效[2]。黄芪用途广泛,可用于脾肺气虚或中气下陷之症;卫气虚所致表虚自汗;气血不足所致痈疽不溃或溃久不敛以及浮肿尿少和气虚血滞导致的肢体麻木,关节痹痛,气虚津亏的消渴等症[3]。 多年来人们对黄芪的化学成分、药理作用及临床应用进行了大量的研究,特别是对黄芪新的药理作用成为研究焦点。本文主要针对黄芪的药理作用进行综述。 1.对心脏器官的作用 1.1改善心功能 1.1.1 增强心肌收缩力黄芪对改善心功能具有肯定的作用。黄芪皂苷是黄芪正性肌力作用的主要活性成分,不但对正常犬和心功能受抑制犬左室表现正性肌力作用,且对收缩和舒张功能均有改善作用,而不增加心肌耗氧[4]。王氏等[5]采用B受体阻滞剂心得安诱发麻醉犬体内急性心衰模型的方法,通过血流动力学测定,观察到黄芪注射液增加心输出量,增强心肌收缩力和改善心脏舒缩功能的作用。 1.1.2 减轻心脏负荷研究表明[6],黄芪扩血管作用和组胺释放或肾上腺素d、B受体无关,而可能通过血管平滑肌细胞诱导一氧化氮合成酶的产生,促进NO产生,继而激活血

管内皮细胞一氧化氮鸟苷酸环化酶途径,导致血管扩张。 1.2保护心肌细胞 1.2.1减少心肌细胞凋亡彭氏等[7]利用培养的心肌细胞造成缺氧模型,发现缺氧30分钟时细胞凋亡率较正常细胞显著增高,109/L黄芪对缺血心肌无保护作用,1009/L、10009/L的黄芪使凋亡率分别降低34.96%、37.02%,结果表明一定浓度的黄芪可能抑制缺氧心肌细胞的凋亡,但作用并非与浓度呈正相关,且缺氧心肌细胞中TNF-otmRNA的水平和凋亡率都增高,提示TNF.a可能参与诱导缺氧心肌细胞凋亡。 1.2.2稳定细胞膜李氏等[8]观察到一定浓度的黄芪可提高SOD活性,使MDA、CK水平降低,但未恢复正常,该作用并非与浓度呈正相关,提示黄芪可能通过抗自由基和稳定细胞膜来防止细胞受损。 1.3 心脏的保护作用采用体外兔心缺血再灌注模型和培养心肌细胞缺氧复氧模型,从器官和细胞2个水平,运用免疫组织细胞化学、流式细胞仪、免疫印记、RT—PCR、生化学检测等多种方法,发现该药物具有调节抗再灌注损伤的MAPK细胞信号通路的作用,而这种作用很可能是其心肌保护效应的机制之一。并且特异性抑制剂并不能减弱黄芪作用,说明黄芪可能是通过多种途径发挥作用[9]。 1.4对血压的影响黄芪具有降低血压的作用。在大鼠体外胸主动脉环灌流模型上[10],表明黄芪注射液对去除内皮的血管具有舒张作用,其机制可能与阻断血管平滑肌细胞内质网上的三磷酸肌醇敏感的钙离子通道,抑制内钙的释放有关。 2.对免疫功能的影响 2.1 增强细胞免疫功能细胞免疫是由T细胞结合抗原后,活化、增殖分化为效应细胞通过直接杀伤靶细胞或产生多种细胞因子来发挥效应。朱培成[11]等观察到斑秃患者给服黄芪多糖后可显著下调Thl型细胞因子(IFN-y,IL-12)及转录因子T-bet基因表达,逆转斑秃患者Thl型反应,提示APS可抑制斑秃患者转录因子T-bet及Thl型细胞因子基因表达,逆转Thl型反应,促进Th2型细胞因子IL-IO基因表达,逆转Thl型反应,使之向Th2型漂移。蔡小燕[12]通过研究黄芪对系统性红斑狼疮细胞凋亡和T淋巴细胞亚群的影响,发现黄芪治

细胞研究论文

细胞研究论文 骨缺损的治疗,由局部伤情复杂和缺乏理想的修复材料,一直是困扰临床医生和基础医学工作者的一大难题,而寻找一种尽可能达到或接近自体骨移植效果的理想的骨替代材料更是无数学者热切探索、孜孜以求的目标。近年来日趋活跃的骨组织工程技术为这一课题的研究带来了新的亮点和希望。目前动物实验已能从骨膜、骨髓等定向性骨祖细胞密集处分离培养出成骨细胞,经体外扩增并与载体结合,回植体内骨缺损处取得骨缺损修复的成功[1]。与此同时,基于对患者易接受性、可操作性和更简单易行性等方面的考虑,研究者又开始把目光投向诱导性骨祖细胞。其中,在体内分布广泛、数量巨大、部位表浅、取材方便、培养传代易行、分裂增殖迅速的成纤维细胞首先成为了研究的焦点。由于目前许多相关研究尚处于实验阶段,为此,本文着重就成纤维细胞的生物学特性及其成骨作用等作一综述。 1 成纤维细胞的及其生物学特性 成纤维细胞是结缔组织中最常见的细胞,由胚胎时期的间充质细胞分化而来。在结缔组织中,成纤维细胞还以其成熟状态—纤维细胞的形式存在,二者在一定条件下可以互相转变。 不同类型的结缔组织含成纤维细胞的数量不同。通常,疏松结缔组织中成纤维细胞的数量比同样体积的致密结缔

组织中所含成纤维细胞的数量要少,故分离培养成纤维细胞多以真皮等致密结缔组织为取材部位[2,3]。 成纤维细胞形态多样,常见的有梭形、大多角形和扁平星形等,其形态尚可依细胞的功能变化及其附着处的物理性状不同而发生改变。成纤维细胞胞体较大,胞质弱嗜碱性,胞核较大呈椭圆形,染色质疏松着色浅,核仁明显。电镜下,其胞质可见丰富的粗面内质网、游离核糖体和发达的高尔基复合体,表明它具有合成和分泌蛋白质的功能。成纤维细胞尚可合成和分泌胶原纤维、弹性纤维、网状纤维及有机基质。它合成的前胶原蛋白分子经内切酶作用,聚合和重排,可形成与成骨细胞合成分泌的胶原原纤维一样具有64nm周期横纹的胶原原纤维,胶原原纤维经互相粘合形成胶原纤维。经检测,这两种细胞合成分泌的胶原纤维均是Ⅰ型胶原纤维,在形态和生化结构上完全相同[4,5]。 处于成熟期或称静止状态的成纤维细胞,胞体变小,呈长梭形,粗面内质网和高尔基复合体均不发达,被称为纤维细胞。在外伤等因素刺激下,部分纤维细胞可重新转变为幼稚的成纤维细胞,其功能活动也得以恢复,参与组织损伤后的修复。另外,在结缔组织中,仍保留着少量具有分化潜能的间充质细胞,它们在创伤修复等情况下可增殖分化为成纤维细胞。 2 成纤维细胞在一般创伤修复中的表现

干细胞研究进展综述

干细胞研究进展(综述) Advances in the research of stem cells(LR) 【摘要】:干细胞是人体及其各种组织细胞的最初来源,具有高度自我复制、高度增殖和多向分化的潜能。干细胞技术是生物技术领域最具有发展前景和后劲的前沿技术,其已成为世界高新技术的新亮点,势将导致一场医学和生物学革命。干细胞研究正在向现代生命科学和医学的各个领域交叉渗透,干细胞技术也从一种实验室概念逐渐转变成能够看得见的现实。干细胞研究作为一门新兴学科已成为生命科学中的热点。本文对近几年来国内外对干细胞的研究现况作一综述。 【关键词】:干细胞因子帕金森病神经干细胞糖尿病 ABSTRACT:Stem cells are the body and cells of various tissues of origin, has high self replication, high proliferation and multilineage differentiation potential. Stem cell technology is the field of biotechnology has the most development prospect and potential of cutting-edge technology, it has become a new bright spot in the world of high-tech, will lead to a revolution in medicine and biology. The research of stem cell is to modern life science and medical fields intersection, stem cell technology from a laboratory concept gradually transformed to be able to see the reality. Stem cell research as a new discipline has become the hotspot of life science. Based on the domestic and abroad in recent years on stem cell research summarizes. Keywords:Stem cell factor Parkinson disease Neural stem cells Diabetes mellitus 干细胞技术最显著的特征就是能再造一种全新的、正常的甚至更年轻的细胞、组织或器官。由此人们可以用自身或他人的干细胞和干细胞衍生组织、器官替代病变或衰老的组织、器官,并可以广泛涉及用于治疗传统医学方法难以医治的多种顽症。 干细胞研究是一门新兴的学科,干细胞生物学研究与应用几乎涉及所有的生命科学和生物 医学领域。 一、目前干细胞的主要研究热点

干细胞研究发展历程.

1950:将骨髓细胞移植到遭受致死剂量辐射的动物,发现能够挽救生命,重建骨髓造血免疫系统 1960:真正认识和了解人和哺乳动物干细胞始于20世纪60年代 1961:Till 和Mc Culloch 提出多能干细胞概念 1967:多纳尔–托马斯完成第一例骨髓移植,后于1990年获得诺贝尔医学和生理学奖 1980:造血干细胞移植成为治疗多种疾病的重要手段 1981:Evans等首次成功建立小鼠胚胎干细胞系 1981:胚胎干细胞(embryonic stem cell,ES细胞)的分离和培养首先在小鼠中获得成功 1988:美国科学家James Thomson分离出人类胚胎干细胞 1998:美国两个科研小组分别报告从胚胎和生殖脊成功建立人类胚胎干细胞系,使人类胚胎干细胞能在体外生长和增殖 同年,美国科学家在《美国科学院院刊》上报告:小鼠肌肉组织的成体干细胞可以“横向分化为血液细胞”。此后,世界各国科学家相继证实,包括人类的成体干细胞具有可塑性,从而掀起了全球成体干细胞研究高潮。干细胞研究进展被《科学》杂志评选为该年度世界十大科学成就之首。人类ES (hES)细胞建系获得成功,由此推动了干细胞研究的兴起。 2000: 日本把以干细胞工程为核心技术的再生医疗列为“千年世纪工程”之一,当年投资108亿日元;同年,全世界有10622例造血干细胞移植。 成体干细胞移植使糖尿病大鼠恢复正常 神经干细胞能够进入脑组织并修复脑损伤 角膜干细胞有助于恢复视力 发现成人骨髓干细胞形成肝细胞 成人骨髓干细胞可以在合适的条件下转化为神经细胞 成人骨髓干细胞可以在体外大规模培养 证实成人骨髓干细胞可以形成多种类型组织

睾丸细胞的生物学特征及研究进展

睾丸细胞的生物学特征及研究进展 周文钧 摘要:睾丸形态与功能的维持主要依靠生精细胞、支持细胞、管周肌样细胞、间质细胞发挥作用。生精细胞、支持细胞功能的正常是精子发生的基础,管周肌样细胞的收缩促使精子排出至睾丸网,间质细胞是睾酮的主要来源。目前,睾丸细胞研究主要集中在细胞体外培养、细胞基因组学、细胞应用三大领域。本次研究将分别探讨生精细胞、支持细胞、管周肌样细胞、间质细胞的的生物学特征及其研究进展。 关键词:生精细胞;支持细胞;管周肌样细胞;间质细胞;生物学;应用 睾丸由生精小管和间质构成,1~4条生精小管(seminiferous tubule)高度盘曲于睾丸小叶中。管壁上皮为特殊的生精上皮,是精子发生的场所,主要由支持细胞(Sertoli cell)、生精细胞(spermatogenic cell)组成。小管上皮基膜外有胶原纤维和管周肌样细胞(peritubularmyoid,PTM)。睾丸间质是含有大量的血管及淋巴管的疏松结缔组织,其中含有大量的间质细胞(Leydig cell),其主要功能为合成和分泌雄激素。本次研究将分别探讨生精细胞、支持细胞、管周肌样细胞、间质细胞的的生物学特征及其研究进展。 1 睾丸细胞生物学特点 1.1生精细胞精子发生既是一个复杂的生物形态与遗传变化过程,又是一个复杂、特异的细胞分化过程,是生命周期循环的重要环节之一,其中生精细胞生物学变化起到关键作用。人的精子发生需要(64±4.5)d,需要经过精原细胞增殖分化、精母细胞减速分裂、形成精子三个阶段。 精原细胞位于生精小管基底室,基膜与之相接触。其分化起始于胚胎时期的原始生殖细胞,分化形成生殖母细胞并逐渐迁移至生精上皮基膜,经过细胞分裂分化成为以精原干细胞(SSCs)为主的精原细胞,SSCs可自我更新,又能定向分化成精母细胞。大鼠的精原细胞可分为A型、中间型、B型精原细胞,Huckins提出将大鼠的精原细胞分为三部分,即贮备型精原干细胞(As),更新或增值型精原细胞(Apr-Aal)和分化型精原细胞(A1~A4-In-B)[1],前两者也可以称之为未分化型精原细胞。As一般情况下处于休止状态,只有在其他类型的精原细胞耗尽的情况下才会进行分裂。单个的精原细胞As分裂形成成对Apr精原细胞,Apr精原细胞再分裂分化成4、8、16个链状精原细胞(Aal),Aal再分裂形成分化型A型精原细胞(A1~A4)四个亚型及中间型(In)、B型精原细胞。初级精母细胞内细胞器增多,有发达的高尔基复合体,在组织切片中可观察到大量处于各阶段的初级精母细胞,分裂完成后次级精母细胞便很快开始第二次减数分裂,因次级精母细胞存在时间短,故在组织切片中不易看到,此时次级精母细胞不进行染色体复制,形成单倍体圆形精子细胞,最终形态改变形成精子。 1.2支持细胞支持细胞(Sertoli cell)是维持生殖上皮稳定性与维持睾丸功能的关键细胞,是一种滋养型细胞,位于基部紧贴基膜,顶部伸向腔面,侧面和管腔面有很多不规则的凹陷,其内镶嵌着各级生精细胞。支持细胞之间的连接复合体将生精上皮分为了基底室和近腔室,基底室有精原细胞和细线前期精母细胞,近腔室有精母细胞、精子细胞和精子[1],为精子发生内环境的稳定提供了保障,支持细胞和精子细胞之间存在缝隙连接,此连接就像锚一样在精子细胞镶嵌在支持细胞上发挥作用[2]。 支持细胞可分泌生长因子(如TGFα、TGFβ、IGF-1、IL-1)、转运蛋白(如雄激素结合蛋白、转铁蛋白、铜蓝蛋白)、类固醇等物质,为精子细胞提供营养物质,同时还起到包裹生殖细胞质突起和释放管腔作用。支持细胞分泌的生长因子可支持精原细胞的增殖分化[3]。支持细胞具有免疫豁免作用[1],还可以通过自分泌与旁分泌作用调节睾丸间质细胞的功能。

细胞综述

NF-κB的组成及其经典信号通路概述 在单细胞和多细胞中,都存在着程序性细胞死亡(programmed cell death)即细胞凋亡,多项实验和现在的科学家们都认为细胞凋亡不是一个简单的细胞坏死的过程,它需要诸多基因和蛋白质的共同参与,是一个高度有序、自动死亡的过程。细胞凋亡在生物生命过程中发挥着极其重要的作用,如神经纤维细胞对靶点细胞的生物的择、胚胎发育时期脚趾之间的细胞、免疫系统是细胞的死亡、植物中绒毡层细胞的死亡、酵母细胞中部分酵母细胞的死亡都属于细胞凋亡的过程。细胞凋亡是一种保护性机制,有利于个体的生长发育、细胞的更新,种群合理密度的保持,把受伤的、受感染的、老化的的细胞及时清理出去,对于生物的正常生命活动特别是免疫系统的正常运行具有重要的功能。 细胞凋亡现在引人注目的是肿瘤坏死因子(tumor necrosis factor,NTF)中的NF-κB,近年来在肿瘤、癌症、白血病等疾病机理的研究中均发现了NF-κB与这些疾病有关系。最近有报告指出。NF-κB信号的失调可导致炎症反应和肿瘤等疾病的发生, NF-κB信号在多种白血病细胞中, 特别是白血病干细胞中持续活化。在运动神经元与靶细胞接触时由于竞争神经生长因子(nerve growth factor,NGF)来与靶细胞的数量配对时也发现了NF-κB。 NF-κB的组成 NF-κB(nuclear factor k gene binding,NF-κB)的全称是细胞核因子κB 又称κ基因结合核因子,是一广泛存在于细胞中的具有多向性调节作用的蛋白质分子,参与细胞激酶、趋化因子、生长因子、细胞黏附因子及早期反应的蛋白质分子基因的转录,其活性受到一个强抑制物Iκ B 的抑制。近年来研究结果表明:NF-κ B 能介导广泛的生物学作用,参与多种疾病的发生发展过程。NF-κB 在细胞凋亡中有一定的作用。 在哺乳动物中,其五个家族成员包括:NF-kB1 (p105/p50), NF-kB2 (p100/p52), RelA (p65), RelB,c-Rel 。其中NF-kB1和NF-kB2是由p105和p50降解而成的,而p105和p50是分别由DNA上基因p50 and p52分别编码合成的。这五个成员的共同点是它们的N末端均包含一个约300个氨基酸的高度同源序列,称为Rel同源结构域(Rel homology domain, RHD), 该结构域介导其与DNA结合及二聚化。 RHD包含着一个核定位序列(nuclear localization sequence ,NLS),RHD与二聚化有关的可以与相互作用并且还可以与DNA特定序列相连接、IκB(inhibitor of kappa B)的连接都有关。RelA、RelB和c-Rel 这3个成员, 它们均含有转录激活结构域(transactivating domain, TAD);NF-κB1和NF-κB2两个成员, 无TAD结构域,缺乏转录激活活性甚至可能具有转

细胞骨架研究现状简介

细胞骨架研究现状简介 【内容提要】细胞骨架是纤维状聚合物和各种调控蛋白交错连接的网络结构,可分为微管,微丝和中间纤维两种。细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有 序性方面起重要作用,而且还参与许多重要的生命活动。本文就细胞骨架的组分、细胞骨 架网络、细胞微环境等的研究进展作一综述。 【关键词】细胞骨架,植物,动物 细胞骨架是指真核细胞中的蛋白纤维网络结构,它是真核细胞借以维持其基本形态的 重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种。在维持真核 细胞的形态、胞内运输、变形运动、信号转导、细胞分裂等方面发挥着重要的作用。细胞 骨架主要有3个功能:细胞结构的空间组织作用;建立细胞内外环境中物理联系;协同细 胞移动和改变细胞形态的作用。细胞骨架是动态结构,组成它的聚合物和调控蛋白处于连 续不断地变化中,将细胞质蛋白和细胞器的活动整合为一个有机体。 细胞骨架基本组成成分已被大量鉴别和定性,它主要由微管、微丝和中间纤维构成。 微管可在所有哺乳类动物细胞中存在,除了红细胞(红血球)外,所有微管均由约55kD的α 及β微管蛋白组成。它们正常时以αβ二聚体形式存在,到目前为止,已发现150多种肌 动蛋白聚合形成细胞一种重要的骨架纤维。一系列肌动蛋白调节蛋白形成一种大分子复合 物叫做WAVE复合物,促进肌动蛋白丝网络结构的装配。微丝主要由肌动蛋白构成,普遍存在于所有真核细胞中。它是一个实心状的纤维,一般细胞中含量约占细胞内总蛋白质的 1%-2%,但在活动较强的细胞中可占20%-30%。在一般细胞主要分布于细胞的表面,直接影 响细胞的形状。微丝具有多种功能,在不同细胞的表现不同,在肌细胞组成粗肌丝、细肌丝,可以收缩(收缩蛋白),在非肌细胞中主要起支撑作用、非肌性运动和信息传导作用。细胞骨架的第三种纤维结构称中等纤维或中间纤维,又称中间丝,为中空的骨状结构,直 径介于微管和微丝之间,其化学组成比较复杂,在不同细胞中,成分变化较大。中间纤维 使细胞具有张力和抗剪切力。中间纤维有共同的基本结构,即构建成一个中央α螺旋杆状区,两侧则是大小和化学组成不同的端区。端区的多样性决定了中间纤维外形和性质的差 异和特异性。 本文将就植物细胞、动物细胞中的细胞骨架的研究现状作进一步综述。 植物细胞骨架

体细胞克隆牛的研究进展(综述)

体细胞克隆牛的研究进展 1997年,体细胞克隆绵羊多莉的诞生,改变了以往教科书中的哺乳动物已分化的体细胞不能重新去分化而重获全能性的概念。1998年,体细胞克隆牛获得成功。体细胞克隆动物的成功是几十年来生物学领域的重大突破之一,它引起了社会的广泛兴趣和关注。因为该技术可能对未来农业、医学和人类自身产生重大影响。 为了使我国科学家能抓住机遇,在体细胞动物克隆领域研究中尽快加入国际竞争的行列并走在国际前列,国家自然科学基金委员会于1998年不失时机地设立了“家畜体细胞无性繁殖的研究”的重点项目。这个项目,不仅可为发育生物学的基本理论研究提供很好模型,更重要的是在我国建立家畜克隆技术并在未来国民经济发展中发挥重要作用。因此,该项目既具有科学上的前沿性,又符合国家重大发展需求。 “家畜体细胞无性繁殖的研究”项目(批准号39830280)是国家自然科学基金委员会的重点科研项目。1999年、2000年和2002年,体细胞克隆山羊、转基因克隆山羊和克隆牛分别在我国降生。2002年2月27日同行专家在中国科学院动物研究所对该项目进行了验收与鉴定。专家们对项目成果给予了高度评价,一致认为,通过该项目的研究,我国的家畜克隆技术已迈入世界先进水平。 克隆牛研究是由中国科学院动物研究所生殖生物学国家实验室克隆动物研究组与山东五里墩中大动物胚胎工程中心合作完成的。通过成批体细胞克隆牛的研究,我国科学家已建立了从家畜体细胞培养、卵母细胞成熟、卵子去核、重构胚构建、胚胎体外培养、胚胎移植等成套的较成熟的操作方法和规程,标志着我国成为继英国、日本、新西兰和美国等国家之后,掌握体细胞克隆家畜关键技术的少数国家之一。体细胞克隆牛和克隆羊的成功,使我国在动物胚胎工程高科技领域已走在国际前沿。该项目的研究可能为未来畜牧业的发展提供一个新的增长点。特别是奶牛克隆胚胎应用技术,在我国奶牛业十分落后的条件下,一旦提高效率并投入生产应用,将对畜牧经济发展产生重要影响。因为供核样本牛的性别和生产性能可以人为选定,原料成本很低,取材方便利于工厂化生产。这些优点使我们可以选择经济价值最高的个体进行“复制”,而且可以大批量生产和大面推广。 (一)发展回顾 动物胚胎移植技术历时20年的发展,对牛来说,在无手术情况下,可一次冲卵30枚,平均可用胚胎数为5.5枚/头。超数排卵和胚胎移植(MOET)育种计划在至少8个国家得到全面实行,遗传改良进展比预期提高了10%。奶牛胚胎移植的总数正在逐年增加,全球1997年移植胚胎数接近460,000,现在每年大约500,000枚左右。在美国,奶牛生产群中有0.2%的母牛是通过胚胎移植获得,但95%以上的种公牛和优良种母牛是胚胎移植获得的。“七五”和“八五”期间,我国“863”计划、国家攻关计划、农业部重点攻关计划和部分省市的研究计划都重点支持了动物胚胎移植技术的研究与开发,包括胚胎分割、卵母细胞体外成熟、体外人工授精、核移植技术等,并利用体外受精和胚胎移植技术繁育了大量的优良种畜,如内蒙古共生产良种牛胚胎3万多枚,建立中试移植基地4处,几年来共移植受体1000余头(次),获得试管牛犊300余头;新疆与宁夏已建成700余头供体牛的牛胚胎移植产业化基地,生产良种牛胚胎1530余枚,进口安格斯肉牛胚胎1300余枚,移植受体牛300头,冻胚平均妊娠率40%以上;北京、河南、山东、黑龙江、广西等地也获得了较大数量的胚胎移植优

癌细胞研究发展综述

癌细胞的研究发展 摘要:癌细胞是一种变异的细胞,有无限生长、转化和转移三大特点,能够无限增殖并破坏正常的细胞组织。虽然当今治疗癌症的水平与技术在不断地发展着,但是距离人们的预期还是有一定的距离。不论是原有的技术,还是新的发现,还是需要一定的时间去深化和发展。本文作者以癌细胞为中心,对最新成果、目前现状、未来展望进行了综述。 关键词:癌细胞、发展、综述 1.癌细胞的特点: 1.1癌细胞从整体上看的特点:无限增殖:在适宜条件下,癌细胞能无限增殖。接触抑制现象丧失。癌细胞间粘着性减弱。易于被凝集素凝集。粘壁性下降。细胞骨架结构紊乱。产生新的膜抗原。对生长因子需要量降低等等。 1.2单个癌细胞的特征:癌细胞核可比正常大1-5倍。核大小不等。核畸形核膜增厚。核深染。核质比例失常。癌细胞具有丰富的游离核糖体。癌细胞的表面发生了变化,由于细胞膜上的糖蛋白等物质减少,使得细胞彼此之间黏着性显著降低,容易在体内分散和转移。 2.癌细胞的细胞活动 2.1癌变 癌变是癌变发生的一个很重要的原因是因为细胞基因组发生了突变,继而出现细胞生长和分裂的异常,并将有缺陷的遗传物质传递下去,直至癌组织的出现。癌细胞也有可能是由于致癌基因激活,细胞发生转化引起的。具体来说,人和动物细胞的染色体上普遍存在着致癌基因。在正常情况下,染色体上的遗传物质随着细胞分裂,一代一代传下去,致癌基因处于抑制状态。一旦细胞的正常调节过程受到阻碍,就可能使致癌基因转变成激活状态,这个细胞转化成为癌细胞。2.2增殖 癌细胞的增殖过程为不受控制的快速有丝分裂。在增殖过程中,癌细胞癌细胞分泌特殊物质,溶解及破坏周围组织,提供空间。据Sun RC 2014 年 2 月7 日[Cell Metabol,2014,19(2):285-292.]报道,美国俄亥俄州立大学研究人员通过研

(完整版)第三章细胞生物学研究方法总结

第三章 细胞生物学研究方法 第一节细胞形态结构的观察方法 分辨率: 肉眼0.2mm 光镜0.2μm 电镜0.2nm 一、光学显微镜技术 (light microscopy ) (一)普通复式光学显微镜技术 a . 光学放大系统:目镜和物镜 光镜 照明系统:光源、折光镜和聚光镜,有时另加各种滤光片 组成 机械和支架系统 b .分辨率D :分开两个质点间的最小距离。 0.61 λ 其中: λ为光源波长 D = α为物镜镜口张角 N ·sinα/2 N 为介质折射率 c.普通光镜样品制备: 固定(如甲醛)、包埋(如石蜡)、切片(约5μm)、染色 (二)荧光显微镜技术(fluorescence microscopy 光镜水平对特异蛋白定性定位) 1.FM 包括免疫荧光技术和荧光素直接标记技术 2.不同荧光素的激发光波长范围不同,所以同一样品可以同时用两种以上荧光 素标记。荧光显微镜中只有激发荧光可以成像。 (三)激光共焦点扫描显微镜技术(laser scanning confocal microscopy ) 1.特点:瞬间只用很小一部分光照明,保证只有来自焦平面的光成像,成像清晰 分辨率比普通荧光显微镜提高1.4-1.7倍。 通过改变焦平面位置可以观察较厚样品的内部构造,进行三维重构。 2. 共焦点是指物镜和聚光镜同时聚焦到同一小点。 (四)相差和微分干涉显微镜技术 1.相差显微镜(phase-contrast microscopy ) 光线通过不同密度物质产生相位差,相差显微镜将其变成振幅差。它与普通光镜 的不同是其物镜后有一块“相差板”,夸大了不同密度造成的相位差。 2.微分干涉显微镜(differential -interference microscopy )——用的是平面偏振光 光经棱镜折射成两束,通过样品相邻部位,再经棱镜汇合,使样品厚度上的微 小 差别转化为明暗区别,使样品产生很强的立体感。 二、电子显微镜技术(electron microscope ) (一)电子显微镜基本知识 1.与光镜的基本区别:电子束作光源、电磁透镜聚焦、镜筒高真空、荧光屏等成像 2.分辨本领与有效放大倍数: 分辨率0.2nm ,比肉眼放大有效放大倍 数 分辨本领指电镜处于最佳状态下的分辨率。 实际情况中,分辨率受样品限制。 3.电子显微镜 电子束照明系统:电子枪、聚光镜 基本构造 成像系统:物镜、中间镜、投影镜等 真空系统:用两级真空泵不断抽气 记录系统:荧光屏或感光胶片成像 (二)主要电镜制样技术介绍

以细胞骨架为靶点抗癌药物的研究进展_张_鹏_综述_张_旭_审校

解放军医学院学报 Acad J Chinese PLA Med Sch Jun 2013,34(6)https://www.wendangku.net/doc/10394361.html, 以细胞骨架为靶点抗癌药物的研究进展 Advances in cytoskeleton-targeted anti-cancer drugs 张 鹏 综述 张 旭 审校 解放军总医院 泌尿外科,北京 100853 摘要:本文详细介绍了细胞骨架的构成及其在肿瘤发生、发展和转移中所发挥的作用,对以细胞骨架主要组成成分为靶点的抗癌药物的最新研究进展进行总结,并对以细胞骨架及其相关调控因子为靶点开发新型抗肿瘤相关药物给予了展望。 关键词:细胞骨架;细胞骨架相关蛋白;抗肿瘤药物 中图分类号:R 73-36 文献标志码:A 文章编号:121061 DOI: 网络出版时间: 网络出版地址: 肿瘤是由多个基因调控而发生和发展的,肿瘤研究涉及到分子生物学及遗传学等学科领域。近年来,细胞骨架被认为与肿瘤的发生和转移有着密切关系。细胞骨架是真核细胞质内蛋白质丝组成的复杂立体网状结构,充满了整个细胞质空间,由细胞微管、细胞微丝和中间纤维组成。它主要决定和维持着细胞的形态,并构成了胞膜和核膜的相互联系;此外,也参与细胞的运动、细胞极性、细胞分裂、胞浆运输,对信号传到也有着及其重要的意义。近年来的多项研究证实,细胞骨架与肿瘤发生、发展等生命现象密切关联[1-4]。本文对细胞骨架与肿瘤发生、发展、转移以及细胞骨架相关的抗肿瘤药物研究进展方面做一综述。 1 细胞微管及其与肿瘤发生发展的关系以及针对细胞微管的抗肿瘤药物 细胞微管主要存在于细胞质中,是细胞纺锤体、真核细胞纤毛、中心体等细胞器的组成成分,由分子量各约为55 kd的α微管蛋白和β微管蛋白组成。细胞微管的形成是一个较为复杂的过程,涉及到多个分子,如微管折叠辅助因子(TBCs)A、B、C、D、E以及多个微管结合蛋白的参与。α微管蛋白和β微管蛋白组成异二聚体,由13个二聚体围成一圈盘绕形成直径约为25 nm的微管管状结构[5]。值得一提的是微管处于一个异二聚体的聚合和解聚的动态平衡中,维持着细胞的多项功能,也就是说一些调控或者干预α微管蛋白和β微管蛋白聚合和解聚动态平衡的因素会对细胞功能造成重大的影响,这其中就包括细胞的癌变[6]。 细胞微管在细胞进行有丝分裂时发挥着巨大的作用,细胞进入有丝分裂后,微管会解聚并重新聚合形成纺锤丝,引导细胞器特别是染色体的转移和分裂[7]。当某些外在或内生的刺激因素诱导细胞微管发生异常时,细胞的极性将会受到很大影响,这往往会导致染色体核型的异常,继而出现低级别的染色体错误分布,如多倍体的产生和某些重要基因的细胞内缺失,最终导致细胞的癌变。在多项研究中,医学家都发现在胃癌、直肠癌、前列腺癌和肺癌组织中组成细胞微管的α微管蛋白和β微管蛋白表达出现异常[8-11]。此外,细胞微管是细胞内外以及细胞间信息传递的重要通路,细胞微管的改变可导致细胞间信息传递异常,使得细胞之间黏附性下降,细胞接触抑制生长的机制减弱,也有利于肿瘤的发生。更重要的是细胞微管本身的异常与肿瘤的转移也存在着密切的关系。最新的一项研究发现,肿瘤细胞需要通过一个叫做侵袭性伪足的结构来实现穿透组织基底膜从而发生局限性或远处的转移。细胞微管的完整性对该侵袭性伪足的功能有着至关重要的作用,因为这种侵袭性伪足的延伸正是通过细胞微管的伸长实现的[12]。此外,有研究还发现细胞微管可实现金属蛋白酶(MMPs)由胞内向胞外的运输,继而使肿瘤细胞有可能突破组织基底膜,为肿瘤细胞的转移提供可能[12]。 一些与细胞微管折叠相关的蛋白也被研究证实与肿瘤的发生和转移有着密切的关系,其中,微管折叠辅助因子B在乳腺癌组织中表达明显升高,过表达微管折叠辅助因子B可促进乳腺癌细胞的某些肿瘤相关的生物学功能[13]。另一项研究还提出了微管折叠辅助因子C可抑制肿瘤生长,同时提高肿瘤对化疗的敏感性[14]。 一直以来,肿瘤细胞的微管都被视为抗肿瘤药物的良好靶点,微管蛋白抑制剂被作为最有效的抗肿瘤临床一线药物。许多化疗药物正是通过于微管作用,抑制微管聚合,干扰纺锤体的正常形成,促使细胞分裂停止在有丝分裂中期;也有部分药物通过促进微管的聚合、抑制微管解聚而抑制细胞有丝分裂。较为经典的如紫杉醇类抗肿瘤药物可选择性的与微管蛋白的多聚体结合,形成稳定的微管束,使微管动力学改变,并改变微管的稳定性,干扰微管的解聚,影响纺锤体的形成,诱导细胞周期停滞和肿瘤细胞凋亡;长春碱类和鬼臼霉素类也可与微管蛋白结合,阻滞微管蛋白聚合成微管,影响微管蛋白稳定性,干扰纺锤体的形成,阻滞有丝分裂的进行,使细胞分裂停滞在中期[15]。近年来, 收稿日期:2012-12-27 基金项目:国家高技术研究发展计划(2012AA021101) Supported by the National High Technology Research and Development Program of China(2012AA021101) 作者简介:张鹏,男,硕士,医师。专业方向:肾癌的基础研究。 Email: alwaysjumper@https://www.wendangku.net/doc/10394361.html, 通信作者:张旭,男,博士,主任医师,教授,主任。Email: xzhang@ https://www.wendangku.net/doc/10394361.html, 2013-03-21 09:41https://www.wendangku.net/doc/10394361.html,/kcms/detail/11.3275.R.20130321.0941.001.html

相关文档
相关文档 最新文档