文档库 最新最全的文档下载
当前位置:文档库 › 立体几何最值问题求解策略

立体几何最值问题求解策略

立体几何最值问题求解策略
立体几何最值问题求解策略

立体几何中的截面(解析版)

专题13 立体几何中的截面 【基本知识】 1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。 2、正六面体的基本斜截面: 3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。 【基本技能】

技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题; 技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能 ... 是() 分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。 例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题: ①水的部分始终呈棱柱状; ②水面EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当容器倾斜到如图5(2)时,BE·BF是定值; 其中正确的命题序号是______________ A C B D

分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为 BC BF BE V ??= 2 1 水是定值,又BC 是定值,所以BE ·BF 是定值,即④正确。所以正确的序号为①③④. 例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( ) A . 21 B .87 C .12 11 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为 8 7 12121211=???- =V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211 112121311=????-=V , 故选C 。 例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是 AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值. C 1 A B C D A 1 D 1 B 1 E G F 图(1) C 1 A B C D A 1 D 1 B 1 E G F 图(2)

立体几何新题型的解题技巧

立体几何新题型的解题技巧 立体几何新题型的解题技巧 【命题趋向】 在高考中立体几何命题有如下特点: 1.线面位置关系突出平行和垂直,将侧重于垂直关系. 2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现. 3.多面体及简单多面体的概念、性质多在选择题,填空题出现. 4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

数学竞赛中代数式最值问题的解题策略

数学竞赛中代数式最值问题的解题策略 邮编:422200 作者:湖南隆回一中 邹启文 数学竞赛中最值问题,有一定难度,但只要我们去认真的分析,仔细地思考,不管问题再难,其实万变不离其宗,总离不开所学过的知识点和基本方法。如不等式法(包含非负数性质a ≥0,2a ≥0, a ≥0,一元二次方程判别式△≥0,整体大于部分等等),公式法(包括二次函数顶点坐标公式、三角函数公式、完全平方公式等等),区间取值法(包括一次函数线段端点取值与曲线在某区间内的最值求取等等),在求解方法上也有其规律性,如夹逼法、递推法、枚举法、放缩法、排序法,还有转化为几何图形法等等。近两年来的各级各类初中数学竞赛中的最值问题,在题型上已呈现出一个崭新的形势,其变化之多、涉及面之广、形式之灵活可谓达到了空前的程度,同时最值的求法也有了较大的拓展,打破了原有的思维定势,但仍然是有章可循的。 例1:已知设1x 、2x 、3x 、……n x 均为连续正整数,且1x <2x <3x <……<n x , 1x +2x +, 3x +……+n x =2005,则n x 的最大值是____最小值____(2005年 自编题) 分析:这是一道须利用不等式求解的试题,由于有1x +2x +3x +……+n x =2005,所以应当想到这些数的平均数必与中位数接近,于是可由此确定3x 的数值或范围。然后再求n x 的最大与最小数值。 解:由题意可设1x +2x +3x +……+n x =1+2+3+……+n =2005,由高斯求和公式可 得 ()200521=+n n ,解得63≈n ,但当63=n 时()()201632632 1636321=?=+=+n n 当62=n 时()()195363312 1626221=?=+=+n n ,∵1953≤2005≤2016,且n 是整数,∴n ≠62或63,我们又观察到平均值()?=++++n n n x x x x 13211ΛΛ40152005?=,

高考数学玩转压轴题专题4.4立体几何中最值问题

专题4.4 立体几何中最值问题 一.方法综述 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。 二.解题策略 类型一距离最值问题 AB=,若线段DE上存在点P 【例1】如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且2 ⊥,则边CG长度的最小值为() 使得GP BP A. 4 B. 43 C. D. 23 【答案】D

又22002B G a (,,),(,,),所以2,2,,,2,.2 2ax ax BP x GP x a ???? =--=-- ? ?????u u u r u u u r () 24022ax ax PB PG x x a ?? =-++-= ??? u u u n r u u u r .显然0x ≠且2x ≠.所以22 1642a x x =--. 因为()0,2x ∈,所以(]2 20,1x x -∈.所以当221x x -=, 2a 取得最小值12.所以a 的最小值为23. 故选D. 【指点迷津】利用图形的特点,建立空间直角坐标系,设CG 长度为a 及点P 的坐标,求BP GP u u u r u u u r 与的坐标, 根据两向量垂直,数量积为0,得到函数关系式22 16 42a x x = --,利用函数求其最值。 举一反三 1、如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,点E 、F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是_____。 【答案】 3254 2?? ??

立体几何中的最值与动态问题

2 5 立体几何中的最值问题 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在 试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO⊥平面ABCD 于O,SO=2,底面边长为,点P、Q 分别在线段BD、SC 上移动,则P、Q 两点的最短距离为() A. B. 5 5 C. 2 D. 1 解析:如图1,由于点P、Q 分别在线段BD、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当 OQ 最小时,PQ 最小。过O 作OQ⊥SC,在Rt△SOC 中,OQ = 中。又P 在BD 上运动,且当P 运动 5 到点O 时,PQ 最小,等于OQ 的长为,也就是异面直线BD 和SC 的公垂线段的长。故选B。 5 图 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB⊥CD,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为。 解析:如图2,过点B 作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。过B 作BE//CD 交平面α 于E,则BE=CD。连结AE,因为AB⊥CD,故AB⊥BE。则在Rt△ABE 中,BE=AB·tan∠BAE≥AB·tan ∠BAO=3·tan30°= 。故CD ≥ 3 。 2 5 2 5 2 5 3

图 2 三、展成平面求最值 例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a,AC=BD=b,AD=BC=c。平面α分别截棱AB、BC、CD、DA 于点P、Q、R、S,则四边形PQRS 的周长的最小值是() A. 2a B. 2b C. 2c D. a+b+c 图3-1 解析:如图3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且AB=CD,AC=BD, AD=BC,所以,A 与A’、D 与D’在四面体中是同一点,且AD // BC // A' D' ,AB // CD' ,A、C、A’共 线,D、B、D’共线,AA'=DD' = 2BD 。又四边形PQRS 在展开图中变为折线S’PQRS,S’与S 在四面体中是同一点。因而当P、Q、R 在S’S 上时,S ' P +PQ +QR +RS 最小,也就是四边形PQRS 周长最小。又S ' A =SA',所以最小值L =SS '=DD' = 2BD = 2b 。故选B。 图3-2 四、利用向量求最值 例4. 在棱长为1 的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的最小值为。 解析:以A 为坐标原点,分别以AB、AD、AE 所在直线为x,y,z 轴,建立如图 4 所示的空间直角坐标 →→ 系,则B(1,0,0),G(1,1,1)。根据题意设P(x,0,x),则BP=(x-1,0,x),GP=(x-1,-1,x-1),那么

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

走进2018年中考数学专题复习几何最值问题解题策略

走进2018年中考数学专题复习第七讲几何最值问题解题策略【专题分析】 最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题. 【知识归纳】 1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可. 2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可. 【题型解析】 题型1: 三角形中最值问题 例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0) 【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标. (方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标. 【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示. 令y=x+4中x=0,则y=4, ∴点B的坐标为(0,4); 令y=x+4中y=0,则x+4=0,解得:x=﹣6,

立体几何中的最值

立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 三、展成平面求最值 例 3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 四、利用向量求最值 例4. 在棱长为1的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的 最小值为_______。

一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

高中数学复习提升专题05 立体几何中最值问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题05 立体几何中最值问题 类型 对应典例 利用侧面展开图求最值 典例1 利用目标函数求最值 典例2 利用基本不等式求最值 典例3 【典例1】【河南省非凡吉创联盟2020届调研】 如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,33PA =,点C 是圆柱底面圆周上的点. (1)求三棱锥P ABC -体积的最大值; (2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值. 【典例2】【江西省新余市第四中学2020届月考】 已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2 π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值; (2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值. 【典例3】【北京市昌平区2020届模拟】

如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G . (I )证明:AD ∥平面EFGH ; (II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值. 【针对训练】 1. 【广东省佛山市第一中学2020届月考】 如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==. (1)当x 为何值时,三棱锥1B BEF -的体积最大? (2)求异面直线1A E 与1B F 所成的角的取值范围. 2.【安徽省安庆市2020届模拟】 如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,3AB EB == (1)求证:DE ⊥平面ADC ; (2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值.

立体几何解题方法总结

1.判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 2.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 3.空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量 分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线所成的角θ∈(0,2 π ], 直线与平面所成的角θ∈0,2π?? ????,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0, π ]. 对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的, 如求异面直线所成的角常用平移法(转化为相交直线)与向量法;求直线与平面所成的角常利用射影转化为相交直线所成的角;而求二面角-l -的平面角(记作)通常有以 下几种方法: (1) 根据定义; (2) 过棱l 上任一点O 作棱l 的垂面 ,设 ∩ =OA , ∩ =OB ,则∠AOB = ; (3) 利用三垂线定理或逆定理,过一个半平面内一点A ,分别作另一个平面的垂线 AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB = 或∠ACB =-; (4) 设A 为平面外任一点,AB ⊥ ,垂足为B ,AC ⊥ ,垂足为C ,则∠BAC = 或 ∠BAC =-; (5) 利用面积射影定理,设平面 内的平面图形F 的面积为S ,F 在平面 内的射影图形

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

高中数学立体几何中的最值问题、内接外切、球面距离

立体几何中的最值问题、内接外切、球面距离 1. 一条长为2,a b 的三条线段,则ab 的最大值为 A B C . 52 D .3 【答案】C 【解析】构造一个长方体,让长为2的线段为体对角线,由题意知2222221,1,3a y b x x y =+=++=,即22222325a b x y +=++=+= ,又2252a b ab =+≥,所以5 2 ab ≤ ,当且仅当a b =时取等号,所以选C. 2. 四棱锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶点都在一 个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为该球表面积为 A.12p B.24p C.36p D.48p 【答案】A 3. 若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =, 60BAC ∠=?,则球O 的表面积为 ( ) A .64π B .16π C .12π D .4π 【答案】B 【解析】因为1AB =,2AC =,60BAC ∠=?,所以2212212cos603BC =+-??= ,所以BC =。所 以90ABC ∠= ,即ABC ?为直角三角形。因为三棱锥S ABC -的所有顶点都在球O 的球面上,所以斜边AC 的中点是截面小圆的圆心'O ,即小圆的半径为122 r AC = =.,因为,OA OS 是半径,所以三角形AOS 为等 腰三角形,过O 作OM SA ⊥,则M 为中点,所以1'22 OO AM SA == ==所以半径

2OA ====,所以球的表面积为2416R ππ=,选B. 4. 已知正四棱柱ABCD-A 1B 1C 1D 1的高为323 p ,则A 、B 两点的球面距离为____________. 【答案】 23 π 【解析】因为正四棱柱外接球的体积为 323p ,所以343233 R p p =,即外接球的半径为2R =,所以正四棱柱的体对角线为24R =,设底面边长为x ,则 22 2 )2) 4+=,解得底面边长2x =。所以三角形AOB 为正三角形,所以 3 AOB π ∠= ,所以A 、B 两点的球面距离为 23 3 R π π = . 5. 设A 、B 、C 、D 为球O 上四点,若AB 、AC 、AD 两两互相垂直,且AB AC =2AD =,则A 、D 两点间的球面距离 。 【答案】 23 π 【解析】因为AB 、AC 、AD 两两互相垂直,所以分别以AB 、AC 、AD 为棱构造一个长方体,在长方体的体对角线为 球的直径,所以球的直径24R = ==,所以球半径为2R =,在正三角形AOD 中, 3 AOD π ∠= ,所以A 、D 两点间的球面距离为 23 3 R π π= . 6. 如图,某三棱锥的三视图都是直角边为2的等腰直角三角形,则该三棱锥的外接球的体积是

立体几何的解题方法小结

立体几何中的存在惟一性问题 存在惟一问题是立体几何中的重要题型,但往往被同学们所忽视。下面介绍其证明方法。 解决这类题型必须分两步论证。先证存在性,常用构造法,即作出符合题意的图形,再证惟一性,常用反证法(或同一法)。 例:求证:过两条异面直线中一条有且仅有一个平面与另一条直线平行。 分析;“有一个”——说明图形存在。“仅有一个”——说明图形惟一。 证明:(1)存在性 ∴a b // 这与a 、b 是异面直线相矛盾,于是假设不成立 故过b 有且仅有一个平面α与直线a 平行 立体几何中公理2的一个应用 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线。 此公理是立体几何中关于平面的基本性质之一,它除了能判断两个平面是否相交之外,还能得出如下性质: 若A A l ∈∈=αβαβ,,且I ,则A l ∈。用此性质可解决如下题型:证明点在直线上。 以下举例说明。 例1. 已知?ABC 的三边AB 、BC 、AC 所在的直线分别与平面α相交于E 、F 、G 三点,求证:E 、F 、G 三点共线。 证明:如图1,ΘI I AB E BC F EF EF ααα==?.,,联结,则

又平面平面又, ,平面,即是平面与平面的公共点。因此,、、三点共线。 EF ABC ABC EF AC G G G ABC G ABC G EF E F G ?∴==∴∈∈∴∈ααααI I . . 图1 例2. 如图2,在正方体ABCD —A 1B 1C 1D 1中,E 为AB 中点,F 为AA 1中点,求证:CE 、D 1F 、DA 相交于一点。 图2 证明:ΘE AB F AA 为的中点,为的中点,1 ∴∴EF A B A B D C EF D C //////1111又因, 评注:证明三点共线或三线共点常常转化为证明点在直线上。

公开课:几何“最值问题”常见解题思路

《专题:几何“最值问题”常见解决思路》公开课 蓝溪中学林子旭2016.04.20 一、教学目标:让学生通过复习、练习、比较熟悉地掌握解决几何最值问题的通常思路和常见模型 二、教学重点:掌握解决最值问题的理论依据与常用模型,能根据不同特征转化成相应的模型是解决最值问题的关键. 三、主要理论依据及模型 1、两点之间线段最短; 2、直线外一点与直线上所有点的连线段中,垂线段最短; 3、三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 4、构造函数,利用函数的性质解决 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向1、2、3依据靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN 为直线l上的一条动线段,求 AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重 合,然后作其中一个定点关于 定直线l的对称点 作其中一个定点关于定直线 l的对称点 四、模型应用与练习: (一)线段和(PA+PB)最小: 1、正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一点,则PE+PB的最小值为. 2、⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC 的最小值是; 3、如图1,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,则△PQR 周长的最小值是. 4、如图2,点A(a,1)、B(-1,b)都在双曲线y= 3 x -(x<0)上,点P、Q分别是x轴、y轴上 的动点,当四边形PABQ的周长取最小值时,PQ在直线的解析式是(). A、y=x B、y=x+1 C、y=x+2 D、y=x+3 图3 5、如图5,当四边形P ABN的周长最小时,a=. (二)线段差(PA-PB)最大 1、如图6,一次函数y=-2x+4的图象与x、y轴分别交于点A,B, D为AB的中点,C、A关于原点对称.P为OB上一动点,请直接写出︱ PC-PD︱的范围:___________________. A A C D O P x y 图6

立体几何中的最值问题答案

立体几何中的最值问题 一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22AN AM +=22)12(1++=10 (2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2. 则MN =??-+120cos 222AN AM AN AM =2 1 312)3(122???++= 34+ ∵34+<10 ∴min MN =34+. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1, ∴2==BF AC , 21,21a BQ a CP = =, 即2 a BQ CP ==, ∴= +-==22)1(BQ CP PQ MN )20(2 1 )22()2 ( )2 1(222<<+- =+- a a a a (2)由(1)知: 2 2 22= = MN a 时,当,的中点时,分别移动到即BF AC N M ,, 2 2的长最小,最小值为 MN (3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN , ∴∠AGB 即为二面角α的平面角。又 4 6 ==BG AG ,所以由余弦定理有 314 6 4621 )46 ()46( cos 22-=? ?-+= α。故所求二面角)3 1 arccos(-=α。 例3. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)2 0(π θθ<<。点M 在AC 上,点N 在BF 上,若AM=FN ,(1)求 证:MN//面BCE ; (2)求证:MN ⊥AB; A

数学高考题型专题讲解44---立体几何中最值问题

数学高考题型专题讲解44 ---立体几何中最值问题 一.方法综述 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练. 立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体, 涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解. 二.解题策略 类型一距离最值问题 【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为() A.B.1 C.D.2 【答案】B 【解析】 以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z∈[0,4],F(x,0,0),x∈[0,4],则|AF|=x.=(4,4,4﹣z),=(x,0,﹣z).因为C1E⊥EF,

所以,即:z2+4x﹣4z=0,x=z﹣. 当z=2时,x取得最大值为1.|AF|的最大值为1. 故选:B. 【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D. 【举一反三】 1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为 A.B.C.D. 【答案】A 【解析】 解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() A.3B.3C.2D.3 考点:轴对称-最短路线问题. 分析:由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值. 解答:解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=3, 连接AE,线段AE的长即为PE+PC最小值, ∵点E是边BC的中点, ∴AE⊥BC, ∴AE===3, ∴PE+PC的最小值是3. 故选D. 点评:本题考查的是轴对称﹣最短路线问题,熟知等边三角形的性质是解答此题的关键. 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() A.50B.50C.50﹣50D.50+50 考点:轴对称-最短路线问题;坐标与图形性质.

专题:压轴题. 分析:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F点,截取NF=AF,连接MN交X,Y轴分别为P,Q点,此时四边形PABQ的周长最短,根据题目所给的条件可求出周长. 解答:解:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F 点,截取NF=AF,连接MN交x,y轴分别为P,Q点, 过M点作MK⊥x轴,过N点作NK⊥y轴,两线交于K点. MK=40+10=50, 作BL⊥x轴交KN于L点,过A点作AS⊥BP交BP于S点. ∵LN=AS==40. ∴KN=60+40=100. ∴MN==50. ∵MN=MQ+QP+PN=BQ+QP+AP=50. ∴四边形PABQ的周长=50+50. 故选D. 点评:本题考查轴对称﹣最短路线问题以及坐标和图形的性质,本题关键是找到何时四边形的周长最短,以及构造直角三角形,求出周长. 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为() A.30°B.40°C.50°D.60° 考点:轴对称-最短路线问题. 分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=70°,进而得出∠MAB+∠NAD=70°,即可得出答案.

相关文档
相关文档 最新文档