文档库 最新最全的文档下载
当前位置:文档库 › 220kV变电站主变中性点接地方式的选择

220kV变电站主变中性点接地方式的选择

220kV变电站主变中性点接地方式的选择
220kV变电站主变中性点接地方式的选择

220kV变电站主变中性点接地方式的选择摘要:变电器的中性点接地方式对供电的可靠与安全性有重要影响。对电网主变中性点接地方式的选择方法进行介绍,在选择电网中主变中性点接地运行方式时,应做到既不使接地点数目过多,也不能使接地点太少来提高网络运行的可靠、安全性。

关键词:变压站中性点接地方式

中图分类号:tm862 文献标识码:a 文章编号:1007-3973(2013)001-051-02

1引言

随着电力工业的发展和超高压输电线路的建设以及城市电网改造的大规模进行,面临着如何选择变压器中性点接地的安全问题。电网中性点接地是一个综合的,系统的问题,既涉及到电网的安全可靠性,也涉及电网的经济性,中性点接地方式之家影响到系统电压水平,继电保护方式,系统的可靠运行。如何正确选择接地方式,关系到系统运行的可靠性和设备的安全性。因此,对变压器中性点的接地方式进行探讨。

2变压器中性点接地方式

中性点直接接地方式又称大接地电流系统,其优点是一相接地时其它两相电压不升高,不存在间歇电弧造成的过电压危险。因此,可选择额定电压低的避雷器作为系统大气过电压的保护,可降低系统的绝缘水平。ll0kv及以上电网普遍采用直接接地方式,这样可

接地网对变电站安全运行的影响正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 接地网对变电站安全运行 的影响正式版

接地网对变电站安全运行的影响正式 版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 0引言 接地网作为变电站交直流设备接地及防雷保护接地,对系统的安全运行起着重要的作用。变电站接地包含工作接地、保护接地、雷电保护接地。工作接地即在电力系统电气装置中,为运行需要所设的接地;保护接地即为电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏使其有可能带电,为防止其危及人身和设备的安全而设的接地;雷电保护接地则是为雷电保护装置向大地泄放雷电流而设的接地。所以变电站接地系统的合理与

否是直接关系到人身和设备安全的重要问题。 1接地网设计 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。 1.1变电站的接地网上连接着全站高低压电气设备的接地、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网的网格设计不合理,则可能造成接地系统电位分

变电站接地网优化设计

编号:SM-ZD-35401 变电站接地网优化设计Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

变电站接地网优化设计 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220 kV 新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC 接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。 关键词:变电站接地网设计 随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3 m ,5 m ,7 m

,10 m 等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220 kV 新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。 1 接地网优化设计的合理性 1.1 改善导体的泄漏电流密度分布 面积为190 m ×170 m 的新塘变电站接地网,在导体根数相同的情况下,分别按10 m 等间距布置和平均10 m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于中部导体③、④、⑤,不等间距

配电网中性点接地方式分析及选择参考文本

配电网中性点接地方式分析及选择参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

配电网中性点接地方式分析及选择参考 文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1问题的提出 电力系统中性点接地方式是一个涉及电力系统许多方 面的综合性技术课题,它不仅涉及到电网本身的安全可靠 性、过电压绝缘水平的选择,而且对通讯干扰、人身安全 有重要影响。 2中性点不同接地方式的比较 (1)中性点不接地的配电网。中性点不接地方式,即中 性点对地绝缘,结构简单,运行方便,不需任何附加设

备,投资省,适用于农村10kV架空线路长的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,流过故障点的电流仅为电网对地的电容电流,其值很小,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,避免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动消弧,非故障相电压升高不大,不会破坏系统的对称性,可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 (2)中性点经传统消弧线圈接地。采用中性点经消弧线圈接地方式,即在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流对接地电容电流进行补偿,使流过接地点的电流减小到

中性点接地方式

中性点接地方式 1.前言:1、集中电网系统规划、电气主接线、厂用电和设备选择等单元中有关中性点接地方式内容,统一讲解,建立系统概念; 2.内容包括中压、高压、超高压特高压系统,重点是中压。 一、概述 1、中性点接地的意义 三相交流电流系统的三相交汇处与参考地之间多种多样的关系。称之谓中性点接地方式。它是工作接地、安全接地和保护接地。选择不同的接地方式,对电力系统建设和运行的安全性、可靠性、先进性和经济性意义重大。 2、中性点接地方式的种类 序号接地方式 中压电网高压电网超高压电网特高压电网 3—66KV 110—220KV 330—500KV 750—1000KV 1 中性点不接地★ 2 中性点直接接地★★ 3 中性点选择性直接接地★★ 4 中性点经电抗接地★★★ 5 中性点经电阻接地★★ 6 中性点经阻抗接地★ 3、中性点接地方式的性质 有效接地和非有效接地的零序阻抗范围: X O/X1<3 R O/X1<1 基于对电网绝缘配合的考量,对工频过电压和短路电流的限制是其出发点。

4、选择接地方式要考虑的因素 电压等级 网络结构 安全性 供电可靠性和连续性 环境保护 过电压水平 绝缘配合和避雷器选择 设备耐压水平 短路电流的控制 导体和设备选择 继电保护及其配合 高海拔地区 经济性 二、3—66KV中压电网的接地方式 1、沿革 2、中性点不接地方式 1)特点及适用范围 ——单相接地不跳闸、连续运行; ——接地点电流为容性,易发生间歇性弧光接地过电压;——工频过电压高,内部过电压高; ——架空网络多为瞬时性可恢复;

——避雷器选择100%。 适用于单相接地电容电流小于7~10A的场合。 2)单相接地故障 流过的是电容电流 3)间歇性弧光接地过电压 ——接地点多次重燃引起; U,稳态电压为线电压。——非故障相的最大过电压3.5 xg ——波及整个电网; ——时间持续很长; ——没有有效的保护设备,避雷器要避免动作,消弧柜的动作时间跟不上; ——接地点位置不易确定; ——易使P.T饱和引发谐振。 4)电容电流的限值 6~66KV电网:10A 6~10KV厂网:7A 5)电容电流计算 近似计算:6KV架空C I=0.015~0.017A∕Km 10KV 0.025~0.029A∕Km 35KV 0.1A∕Km 另一种估算通式:

0.4KV变电所接地方式探讨

10/0.4KV变电所接地方式探讨 10/0.4KV变电所的接地,变压器中性线套管出线应在何处接地,不同的规范标准有多种不同的接地方式。 根据民用建筑电气设计与施工防雷接地03D501(08D800-8)图集,TN-S、TN-C、TN-C-S 系统变压器中性线(PNE)的接地安装方式均为自变压器套管处采用电缆穿保护管敷设接至变压器室接地端子板上(即变压器处直接接地)。同时在低压配电柜内对TN-C方式的PEN 母排、PN-C-S方式的PN母排又进行了接地,可谓是两处接地。

韩老师推荐TN-S方式单台变压器较为合理的接线方式为图7、图8所示。

根据上述两图的接地方式,增加了变压器外壳至低压配电柜PE母排的这段导体。 (原文:连接变压器外壳至低压配电柜PE母排的这段导体为变压器的保护接地导体,在变压器本身发生接地故障时,该段导体会流过故障电流,因此要求其截面不应小于低压开关柜PE母排截面)。 图7变压器外壳与中性线套管出线直接在变压器室接地,图8则在低压配电柜内接地,均为一处接地。 上述接地方式与众多文章介绍中认为低压配电柜与变压器之间的联接采取五线制是没有必要相违背。变压器外壳与PE母排相连接介决了变压器低压侧绕组发生对外壳短路时,接地故障电流以最短路径返回变压器中性点问题。缺憾是增加了变压器至低压配电室一段PE 母排。 按照国际电工IEC/60364标准的规定,一建筑物内的PEN线因含有通过三相不平衡电流的中性线,只能在建筑物内作一点接地。如果多点接地,部分中性线电流将通过其它并联通路返回电源,此部分被称为杂散电流可能导致电气火灾,设备干扰等不良后果。并规定不允许在变压器处直接接地,只允许在变电所低压配电柜内进行接地。 下图为众多老师、专家所认可推荐的在同一电源可引出TN-S、TN-C、TN-C-S、TT系统的接地方式:

变电站主接地网施工工艺流程及操作要点

变电站主接地网施工工艺流程及操作要点 变电站防雷接地是为防止电气设备意外带电造成电网、设备、人身事故的基本措施。本文从施工实际角度简述主接地网施工工艺流程及操作要点,力求能促进工程施工技术水平的提高,保证防雷接地工程的施工质量。从而确保接地装置安全运行,将对保障变电站运行安全有着十分重要的意义。 1、施工工艺流程

2、施工工艺流程及操作要点 2.1前期准备工作 2.1.1施工技术资料的准备 开工前首先应组织有关人员熟悉施工图及有关设计文件,了解设计意图,并按照设计要求做好接地施工方案、作业指导书编制等技术准备工作,并进行技术交底工作。其次根据经会审后的设计施工图编制材料清册,并校对材料规格和数量。 2.1.2施工材料的准备及材料质量保证措施 施工材料到达现场后,应对材料的规格、数量及外观质量进行检查。同时将材料厂家的产品合格证、质保书及厂家资质证明等相关文件报监理项目部审核,业主确认后方可进场使用。严禁不合格材料进入施工程序。 2.1.3施工前应配置最基本的施工人员和配备足够完好的施工机具 表1 主要施工机具的配置表 表2 主接地网施工施工人员配置表

2.1.4施工现场准备 根据业主指定的区域,首先设置接地材料加工棚、生活临时设施等。其次根据施工图纸和现场实际情况在预施工区域设置安全围栏,并悬挂安全标示牌等安全防护措施。 2.2接地沟开挖 2.2.1根据主接地网设计图纸要求,对对接地体(网)的敷设位置、网格大小进行放线。 2.2.2按照设计或规范要求的接地敷设深度进行接地沟开挖,深度按照设计或规范要求的最高标准为 准,超挖50-100mm左右。宽度为一般为500-1000mm,沟壁需放坡处理,底部如有石块应清除。 开挖完成的接地沟 2.2.3接地沟宜按场地或分区域进行开挖,充分利用土建开挖,减少重复工作,同时应及时恢复各类 安全防护措施,确保安全文明施工。 进行接地沟深度深测量 2.3垂直接地体安装 2.3.1按照设计或规范长度进行进行采购垂直接地体。 2.3.2垂直接地极采用人力锤击方式的安装,为避免垂直接地体施工时顶部敲击部位的损伤,在垂直 接地体顶部进行保护(如加自制钢管金属保护帽)。碰到强风化石时采用机械成孔安装。 2.3.3按设计图纸的位置安装垂直接地体。 2.3.4垂直接地体的埋入深度、间距必须满足设计要求。 2.3.5接地体安装结束后,顶部敲击部位应进行防腐处理。

变电站接地设计及防雷技术正式样本

文件编号:TP-AR-L6587 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 变电站接地设计及防雷 技术正式样本

变电站接地设计及防雷技术正式样 本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 变电站接地系统的合理与否是直接关系到人身和 设备安全的重要问题。随着电力系统规模的不断扩 大,接地系统的设计越来越复杂。变电站接地包含工 作接地、保护接地、雷电保护接地。工作接地即为电 力系统电气装置中,为运行需要所设的接地;保护接 地即为电气装置的金属外壳、配电装置的构架和线路 杆塔等,由于绝缘损坏有可能带电,为防止其危及人 身和设备的安全而设的接地;雷电保护接地即为为雷 电保护装置向大地泄放雷电流而设的接地。变电站接

地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。 1 变电站接地设计的必要性 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。 变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力

基于变电站接地系统应用的研究

基于变电站接地系统应用的研究 发表时间:2019-08-30T16:42:07.120Z 来源:《基层建设》2019年第16期作者:潘家豪 [导读] 摘要:本文主要对变电站接地系统应用进行分析和了解。 佛山市南海区南三路7号供电所大厦 摘要:本文主要对变电站接地系统应用进行分析和了解。电力系统的接地问题是一个看似简单、而实际上却非常复杂又至关重要的问题,它直接关系到人身及设备的安全。为了正确应用接地技术,提高电网防雷击,避免短路电流造成人员伤害,有必要对电网接地技术进行深入的研究。 关键词:变电站;接地系统;分类;作用 引言 接地系统对于维护电力系统的安全可靠运行以及保障电气设备与运行人员安全有着至关重要的意义。所谓接地就是将电力系统及其电气设备的某些部分与大地相连接,提供故障电流及雷电流的泄流通道,稳定电位。就其功能而言主要分为:工作接地、保护接地和防雷接地。一个良好的接地系统是这三者的统一,可以在短路故障电流或雷击等大电流冲击入地时及时抑制接地网的地电位升高,将电流顺利由接地体引入地下,确保站内工作人员和电气设备的安全。 一、接地系统的基本概念 接地,比较直观的就是接大地。实际上,接地是一个系统级的概念,接大地已经不能清晰地描述系统接地的概念了。为了清楚表达接地的概念,可以引用亨利.奥特的定义:“接地是为电流返回其源提供的低阻抗通道”。从工程实用观点来看就是在线路或电气设备发生接地故障时为故障电流流回电源提供一条低电阻路径。因此,接地就是把电气系统、电路或设备与大地连接,或者与范围广泛且能用来代替大地的等效金属导体连接。其目的在于确定与之相连接的导体电位并使之大致维持在大地电位或维持在代替大地的等效金属导体的电位,以便传导电流来往于大地或等效金属导体之间。 接地的目的主要是防止人身触电伤亡、保证电力系统正常运行、保护输电线路和变配电设备以及用电设备绝缘免遭损坏;预防火灾、防止雷击损坏设备和防止静电放电的危害等。接地的作用主要是利用接地极把故障电流或雷电流快速自如地泄放进大地土壤中,以达到保护人身安全和电气设备安全的目的。 二、接地系统分类 1.工作接地 为了满足电力系统或电气设备的运行要求,而将电力系统的某一点进行接地,称为工作接地,如电力系统的中性点接地、电力系统中性经消弧线圈接地、在直流系统中还包括相线接地等。工作接地是为电路正常工作而提供的一个基准电位。这个基准电位一般设定为零,该基准电位可以设为电路系统中的某一点、一段或一块等,当该基准电位与大地连接时,视为相对的零电位。工作接地的接地线是电气设备工作回路的一个组成部分,其作用是稳定电网对地电位,从而可使对地绝缘降低,如发电机或变压器的中性点接地。其功能是保证电力系统在正常及故障情况下具有适当的运行条件,保证电力设备绝缘所需的工作条件和保证继电保护及自动装置的正常工作。 2.防雷接地 为了防止雷电过电压对人身或设备产生危害而设置的过电压保护设备的接地,称为防雷接地,如避雷针、避雷器的接地。防雷接地的作用是被雷电电流引入大地。建筑物和电气设备的防雷主要是用避雷器。在架空输电线路的设计中,防雷设计是决定输电线路可靠性的一个重要因素。随着电网的发展,由于雷击输电线路引起的事故也日益增多,尤其在雷电活动强烈、土壤电阻率高、地形复杂的地区,雷击输电线路而引起的变电站跳闸开率导致事故率更高,这将给社会带来巨大的经济损失。接地是避雷技术最重要的环节,不管是直击雷、感应雷、或其他形式的雷,最终都是把雷电流送入大地。因此没有合理而良好的接地系统是不可能可靠接地避雷的。接地电阻越小,散流就越快,被雷击物体高电位保持时间就越短,危险性就越小。 3.保护接地 保护接地是指电气装置正常情况下不带电的金属部分与接地装置连接起来,以防止该部分在故障情况下突然带电而对人体造成伤害的接地方式。在电力系统中,由于电气装置绝缘老化、磨损或被过电压击穿等原因,都会使原来不带电的部分带电,或者使带低压电的部分带上高压电,这些意外的不正常带电将会引起电气设备损坏和人身触电伤亡事故。为了避免事故,通常采用保护接地的防护措施。保护接地适用于电源中性点不接地或经阻抗接地的系统。对于电源中性点直接接地的农村低电压电网和由城市公用配电变压器供电的低压用户,由于不便于统一管理,为了避免接地与保护接零混用而引起事故,所以也应采用保护接地方式。 三、接地系统的理论基础 利用边界积分方程法作为接地研究的理论基础,进而开展一系列的计算,包括接地电阻、跨步电势及接触电势值的计算,特别适合计算基于分块均匀土壤介质中复杂的接地系统,并根据计算结果提出相应满足设计要求的方案,其原理的实际应用案例己有研究及论证。边界积分方程用于计算变电站接地系统主要基于以下步骤: 恒定电流场的电位Ψ满足拉普拉斯方程:▽2Ψ=0 及边界条件:Ψ=Ψ0在接地导体表面 设接地体表面上任一点尸的电流密度为δP,把整个大地看成是一个均匀媒介,并设均匀媒介的电阻率为ρ0,把媒介分界面条件用一个等效源来等效,并设分界面上任意一点Q的等效电流密度为δQ,则可得任意一点M的电位为: 其中S包括接地体表面和媒介分界面,δ包括接地体表面的电流密度和媒介分界面上的等效电流密度,r(M,N)为M点到N点之间的距离。 四、变电站接地系统的选型及作用 变电站接地系统一般采用网格状型式布置,对于一些土壤电阻高,接地电阻不易降到规程要求的许可值,或者由于地理环境限制,无法大面积敷设接地网的变电站,近些年来出现了一种新型的接地型式,如深井压力灌注式、电解地极等型式、复合接地网等型式。网格状

变电站接地网优化设计

编号:AQ-JS-05799 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 变电站接地网优化设计 Optimization design of substation grounding grid

变电站接地网优化设计 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 摘要:接地网等间距布置存在地电位分布不均匀的问题。在建220kV新塘变电站采用了不等间距布置,即从地网边缘到中心,均压导体间距按负指数规律增加。运用GPC接地参数计算程序对两种方法进行分析和计算,结果表明接地网优化设计能显著地改善导体的泄漏电流密度分布,使土壤表面的电位分布均匀,提高安全水平,节省钢材和施工费用。 关键词:变电站接地网设计 随着电力系统容量的不断增加,流经地网的入地短路电流也愈来愈大,因此要确保人身和设备的安全,维护系统的可靠运行,不仅要强调降低接地电阻,还要考虑地网上表面的电位分布。在以往接地设计中,接地网的均压导体都按3m ,5m ,7m

,10m 等间距布置,由于端部和邻近效应,地网的边角处泄漏电流远大于中心处,使地电位分布很不均匀,边角网孔电势大大高于中心网孔电势,而且这种差值随地网面积和网孔数的增加而加大。本文结合在建工程220kV新塘变电站的接地网设计,阐释了接地网不等间距布置的方法及其合理性。 1接地网优化设计的合理性 1.1改善导体的泄漏电流密度分布 面积为190m ×170m 的新塘变电站接地网,在导体根数相同的情况下,分别按10m 等间距布置和平均10m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差0.3%);对于

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

中性点接地方式及其影响(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 中性点接地方式及其影响(通用 版)

中性点接地方式及其影响(通用版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 关键词:中性点接地方式 1中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

变电站接地网测试的方法分析及研究

变电站接地网测试的方法分析及研究 【摘要】在城市化进程不断加快的今天,城乡电网改革的大力推行,我国的电力系统尤其是变电站的有关技术方面又一次面临了技术跨时代的改革和挑战。本文通过对变电站接地网的相关问题进行探讨,包括接地电阻对变电站重要性以及接地电阻测试案例分析,总结了在接地电阻测试过程中容易引起测量结果偏差的几种不同因素,并作分析,提出了相应的解决方法。 【关键词】变电站;接地网;接地电阻;测量 1引言 变电站接地网是变电站的重要组成部分,在电力系统中,它的正常运行离不开接地网的安全设置和有效保护,是保证电力系统可靠顺利运行不可缺少的安全装置。倘若达不到要求的变电站接地网,就会发生变电站继保系统设备损害以及人员安全等事故。所以在管理变电站的过程中,接地网的交直流设置和防雷设置应引起相关单位的大力重视。由于接地网在设计和施工都不易达到精确的控制,特别是隐蔽性及运行维护困难的特点,使得接地网建设成为变电站工程建设中的难点之一,下文就对相关问题进行浅析,谈谈如何改进我国变电站中现存的接地问题。 2关于变电站接地的问题

所谓接地是将电力设备和用电装置的外壳、支架及中性点用导体与接地装置做良好的电气连接。近年来,由于接地网年久腐蚀,焊点开焊、脱焊等问题逐渐表现出来,对电力系统造成很大的危害,所以因地制宜地选择合适的接地方案很重要,接地装置是确保电气设备在正常及故障情况下均能安全运行的重要保护措施之一。 在变电站的接地网的连接过程中,有一个影响接地质量的因素,那就是接地网同设备引线之间的连接问题。也就是在接地网的连接时,及时各项指标已经达到了相关的变电运行要求,但是由于设备导线接触问题处理不当,也容易引发接地故障。这类问题通常表现为地网焊接不良、接头不合格等。这种情况下,接地网在运行的过程中的有效截面就会减小,形成短路。针对以上这些问题我们可以使用集中方法进行解决,均压法就是其中一种,在高压配电装置地面下设置水平接地网,使其外缘闭合,内部敷设均压带,并利用建筑物的钢筋与地网可靠连接,形成通路。这是一种十分有效的均压措施。由于均压带的存在,配电装置区域内的电位分布比单独接地体和简单的环路接地体要均匀的多,所以接触电压和跨步电压的数值大为降低,实现了均衡电位接地。 3变电站接地电阻的测试方法 常用的现场测量接地网电阻的方法主要有电流电压法、比率计法与电桥法等。这几种方法除了所采用的电源形

变电站接地网材料的选择

变电站接地网材料的选择 编辑:万佳防雷-小黄 电力系统的接地是对系统和网上电气设备安全可靠运行及操作维护人员安全都起着重大的作用。研究接地体的布置、连接,接地体的材质等是保证系统安全稳定运行的必要措施之一,所以说设计、施工高标准的接地系统的变电站防雷工作的重中之重。 一、变电站接地网作用概述 接地网作为变电站交直流设备接地极防雷保护接地,对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故扩大问题屡有发生。因此,接地问题越来越受到重视。变电站接地网因其在安全中的重要地位,一次性建设、维护苦难等特点在工程建设中受到重视。另外,在设计及施工时也不易控制,这也是工程建设中的难点之一。因此,为保证电力系统的安全运行,降低接地工程造价,应采用最经济、合理的接地网设计思路,本文拟重点就材料选用方面进行相关探讨。 二、变电站接地网常用材料比较 目前广泛使用的接地工程材料有各种金属材料、非金属接地体、降阻剂和离子接地系统等。 1、金属接地材料。金属接地材料(主要指铜材和钢材),由于其具备良好的导电性和经济性,很长时期以来一直是接地工程中最重要的材料之一。但是由于金属材料存在容易腐蚀的问题,对接地电阻的影响也比较大,是安全生产中的一个大的隐患,这个问题一直困扰着用户。同时,近年生产资料价格猛涨造成接地成本增加,使得金属接地材料的缺点逐渐突显,一些行业或地区已经在渐渐地减少金属接地材料的使用,转而使用其它新型的接地材料。 2、非金属接地体。非金属接地材料是目前行业里新生的一种金属接地体的替换产品,由于其特有的抗腐蚀性能和良好的导电性和较高的性价比被广大用户所接受。目前非金属接地产品主要是以石墨为主要材料。基本成分是导电能力优越的非金属材料材料符合加工成型的,加工方法有浇注成型和机械压模成型。一般来说浇注成型的产品结构松散、强度低、导电性能差,而且质量不稳定,一些小型厂家少量生产使用这样的办法:机械压模法,是使用设备在几到十几吨的压力下成型的,不仅尺寸精度较高、外观较好,更重要的是材料结构致密、电学性能好、抗大电流冲击能力强,质量也相当稳定,但是生产成本较高,批量生产多采用。选型时,尽量采用后者,特别是接地体有抗大电流或打冲击电流的要求(如电力工作地、防雷接地)时,不宜采用浇注成型的非金属接地体。非金属接地体的特点是稳定性优越,其气候、季节、寿命都是现有接地材料中最好的,是不受腐蚀的接地体,所以,不需要地网维护,也不需要定期改造,但是,非金属接地体施工需要的地网面积比传统接地面积小很多,但是在不同地质条件下也需要的保证足够接地面积才可以达到良好的效果。 3、降阻剂。降阻剂分为化学降阻剂和物理降阻剂,化学降阻剂自从发现有污染水源事故和腐蚀地网的缺陷以后基本上没有使用了,现在广泛接受的是物理降阻剂(也称为长效型降阻剂)。物理降阻剂是接地工程广泛接受的材料,属于材料学中的不定性复合材料,可以根据使用环境形成不同形状的包裹体,所以使用范围广,可以和接地环或接地体同时运用,包裹在接地环和接地体周围,达到降低接触电阻的作用。并且,降阻剂有可扩散成分,可以改善周边土壤的导电属性。 现在的较先进降阻剂都有一定的防腐能力,可以加长地网的使用寿命,其防腐原理一般来说有几种:牺牲阳极保护(电化学防护),致密覆盖金属隔绝空气,加入改善界面腐蚀电位的

变压器中性点接地方式的选择

变压器中性点接地方式的选择 变压器中性点接地方式的选择原则: 系统中变压器的中性点是否接地运行原则是:应尽量保持变电所零序阻抗基本不变,以保持系统中零序电流的分布不变,并使零序电流电压保护有足够的灵敏度和变压器不致于产生过电压危险,一般变压器中性点接地有如下原则: (1)电源端的变电所只有一台变压器时,其变压器的中性点应直接接地运行。 (2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,再将另一台中性点不接地变压器改为中性点直接接地运行。若由于某些原因,变电所正常情况下必须有两台变压器中性点直接接地运行,则当其中一台中性点直接接地变压器停运时,应将第三台变压器改为中性点直接接地的运行。 (3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地的方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时,应将另一台中性点不接地变压器改为中性点直接接地运行。 (4)低电压侧无电源的变压器的中性点应不接地运行,以提高保护的灵敏度和简化保护接线。 (5)对于其他由于特殊原因的不满足上述规定者,应按特殊情况临时处理,例如,可采用改变保护定值,停用保护或增加变压器接地运行台数等方法进行处理,以保证保护和系统的正常运行。

系统中各变压器中性点接地情况: 已知条件已给出: (1)网络运行方式 最大运行方式:机组全投 最小运行方式:B厂停1号机组,D厂停2号机组。 (2)各变压器中性点接地情况 发电厂B: 最大运行方式运行时,变压器2号(或3号)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换。 最小运行方式运行时, 3号变压器中性点直接接地。 发电厂D: 最大运行方式运行时,110KV母线下,变压器1(或2)中性点接地,未接地的变压器中性点设置接地开关,用于接地倒换;35KV母线下,5号变压器中性点不直接接地。 最小运行方式运行时,110KV母线下,变压器1中性点接地,35KV母线下,5号变压器中性点不直接接地。 发电厂C: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂E: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。 发电厂F: 由于变压器1、2的低压侧无电源,因此中性点不接地运行。

中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开

变电站接地网接地故障原因与改造建议

变电站接地网接地故障原因与改造建议 编辑:万佳防雷 变电站的接地网是维护电力系统安全可靠运行、保障运行人员和电气设备安全的重要措施。构成接地网的均压导体常因施工时焊接不良或漏焊、埋设深度不足、土壤的腐蚀、接地短路电流的电动力作用等原因 ,使地网均压导体之间或接地引线与均压导体之间存在电气连接不良故障点。若遇电力系统发生接地短路故障 ,将造成地网本身局部电位差和地网电位异常升高 ,除给运行人员的安全带来威胁外 ,还可能因反击或电缆皮环流使得二次设备的绝缘遭到破坏 ,高压窜入控制室 ,使监测或控制设备发生误动或拒动而扩大事故 ,带来巨大的经济损失和不良的社会影响。 一、原因分析 1、根据有关的开挖资料与地质资料调查情况,接地网腐蚀原因大致有以下特点:周围土壤盐碱化严重 , 导致接地体腐蚀程度高;地下水位高、土壤潮湿和容易积水使得接地体腐蚀严重 ; 接地引下线普遍在入地处和距地表面深100~400 mm 的地段腐蚀很严重; 接地体中水平敷设的扁钢因积水 ,腐蚀速度快 ,比与地面垂直敷设的钢管腐蚀严重; 厂址临近化工厂 , 大气质量恶劣 ,加重了其地网腐蚀 程度影响接地体金属腐蚀的主要因素。 ( 1)土壤的孔隙度较大 , 有利于氧和水分的保持 , 这是腐蚀发生的促进因素。当土壤含水量大于85 %时 , 氧的扩散渗透受到了阻碍 , 腐蚀减弱; 当土壤含水量小于 10 %时 ,由于水分的缺乏 ,阳极极性和土壤电阻比加大 ,腐蚀速度又急速降低。 (2) 土壤温度昼夜温差大 ,很容易在金属上凝结水分微粒 , 且因温差电池的 形成 , 加快腐蚀, 这也是开挖地网中发现同埋一处的水平接地体比垂直方向的接地体容易腐蚀的原因。 (3) 通常土壤中含盐量约为 80~1 500 mg/ L ,地处沿海地区大部分土壤的p H 值在 8. 4~9. 5 之间 ,从而加快了土壤的腐蚀速度。 (4) 土壤中含有硫酸盐 , 在缺氧的情况下 , 硫酸盐还原细菌就会繁殖起 来 , 利用金属表面的氢把SO42 -还原 , 在铁的表面的腐蚀产物是黑色 FeS。在多数情况下土壤腐蚀性均用土壤电阻率来衡量。 而土壤电阻率直接受土壤孔隙度、湿度、温度、酸度、含盐量和有机质的影响 , 因此土壤电阻率是反映土壤理化性质的一个综合指标。一般情况对于地网土壤电阻率为 30Ω·m ,腐蚀性质是非常强的。 2、据有关资料表明,在我国由于地网发生断裂、断点而引起的电力系统的事故时有发生,每次事故都带来了巨大的经济损失。总的归结发生断裂、断点的原因有: (1)在接地网竣工之后, 没有认真执行验收手续,接地网的均压导体常因施工时焊接不良或漏焊。在投入运行后发生接地短路故障,而短路故障电流的电动力作用,使地网均压导体之间或接地引线与均压导体之间存在电气连接断裂、断点现象。 (2)焊接处防腐处理不当,加上土壤的腐蚀以及可能由于热稳定不足在部分接地网在相间短路时烧断。

220KV变电站接地网的设计

220KV 变电站接地网的设计 庞国栋 (内蒙古送变电有限责任公司,内蒙古呼和浩特 010020) 摘 要:针对目前变电站和发电厂接地网的分布不均匀,以及接地电阻存在一定问题等缺陷,本文则是结合变电站接地网的设计原则,以220KV 变电站为参考地点,对接地网进行设计和计算。其中包括对短路电流和工频电阻以及均压带的计算。 关键词:变电站;接地网;短路电流;工频接地电阻;均压带 中图分类号:T M862+.3 文献标识码:A 文章编号:1006—7981(2012)12—0095—05 电力行业在我国的现代化建设中扮演着一个重要的角色,而变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用。随着现代社会快速化的发展,电力系统规模不断扩大,接地系统的设计也越来越复杂。所以变电站接地技术成为电力行业研究的重点之一。 接地网作为变电站交直流设备接地对系统的安全运行起着重要的作用。由于接地网作为隐性工程容易被人忽视,往往只注意最后的接地电阻的测量结果。随着电力系统电压等级的升高及容量的增加,接地不良引起的事故时有发生,因此,接地问题越来越受到重视。 而本设计结合变电站接地网的一般设计原则,具体内容包括:计算接地网的保护接地电阻和工频接地电阻,设计接地网的形状和均压带的布置方式,设计变电站接地网图。对变电站人员以及设备安全可靠,解决了一些个弊病。1 变电站接地网的设计1.1 220KV 变电站资料 图1 变电站一次系统接线图 V 变电站占地总面积3平方米,变电站的接地网要求采用水平接地作为主边缘闭合的复合接地网,土壤电阻率为6欧米。站中有主变压 器型号--180000/220三绕组变压器两台,各绕组间短路电压标幺值:U k1-1=14%,U k2-3=9%,U k1-3=24%。远期220KV 母线最大系统阻抗X 1=0.0080X 0=0.0133,接线组别为Y N ,Y n0,d 11,电压比220+8* 1.25%/121/38.5/10.5KV 。 本设计按两台变压器运行以某一台变压器中性点接地考虑计算短路电流,变压器容量基准值取100MVA 。 1.2 最大短路电流的计算 1.2.1 变压器正序阻抗的计算 设基准功率取S B =100MVA,额定功率取S e =180MVA,U B =230KV 三绕组变压器各绕组间短路电压百分比分别为:U k1-2=14%,U k2-3=9%,U k 1-3=24%则各绕组的电抗为: X 1=12(U k1-2+U 1-3-U k2-3)=12 (0.14+0. 24-0.09)=0.145 X 2=12(U 1-3+U k2-3-U 1-3)=1 2(0.14+0.09-0.24)≈0 X 3=12(U k2-3+U 1-3-U k1-2)=1 2(0.09+0.24-0.14)=0.095 转化为标幺值为: X *1=X 1S B S e =-0.145×100 180=0.0806 X * 2=X 2S B S e 0 X *3=X 3S B S e =0。095×100 180=0.05281.2.2 流经接地装置的短路电流计算 发生短路时,变压器按一台中性点接地考虑,设正序阻抗为X 、负序阻抗为X 、零序阻抗为,且X =X 。 95  2012年第12期 内蒙古石油化工 收稿日期35 2202842180.1212:2012-0-2

相关文档
相关文档 最新文档