文档库 最新最全的文档下载
当前位置:文档库 › 第十章 第十节 离散型随机变量的均值与方差、正态分布(理)

第十章 第十节 离散型随机变量的均值与方差、正态分布(理)

第十章    第十节      离散型随机变量的均值与方差、正态分布(理)
第十章    第十节      离散型随机变量的均值与方差、正态分布(理)

第十章 第十节 离散型随机变量的均值与方

差、正态分布(理)

1.

其中m ,n ∈[0,1),且EX =1

6,则m ,n 的值分别为 ( )

A.112,12

B.16,16

C.14,13

D.13,14 解析:由p 1+p 2+…+p 6=1,得m +n =712

, 由EX =16,得12-m =16,∴m =13,n =14.

答案:D

2.有10件产品,其中3件是次品,从中任取两件,若X 表示取到次品的个数,则EX 等于________.

解析:X =0时,P =C 27C 210;X =1时,P =C 17C 1

3

C 210

X =2时,P =C 23

C 210

∴EX =0×C 27C 210+1×C 17C 1

3C 210+2×C 23

C 210=7×3+2×3C 2

10=35

. 答案:3

5

3.(2009·重庆高考)为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,1

6.现有3

名工人独立地从中任选一个项目参与建设. (1)求他们选择的项目所属类别互不相同的概率;

(2)记X 为3人中选择的项目属于基础设施工程或产业建设工程的人数,求X 的分布列

及数学期望.

解:记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件 A i ,B i ,C i ,i =1,2,3.由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2, C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3,且i ,j ,k 互不相同)相互独立,且P (A i )=12,

P (B i )=13,P (C i )=1

6

.

(1)他们选择的项目所属类别互不相同的概率 P =3!P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3) =6×12×13×16=1

6

.

(2)法一:设3名工人中选择的项目属于民生工程的人数为Y ,由已知,Y ~B (3,1

3),

且X =3-Y ,所以

P (X =0)=P (Y =3)=C 33(13)3=1

27, P (X =1)=P (Y =2)=C 23(13)2(23)=29, P (X =2)=P (Y =1)=C 13(13)(23)2=49, P (X =3)=P (Y =0)=C 03(23)3=827. 故X 的分布列为:

X 的数学期望

EX =0×127+1×29+2×49+3×8

27

=2.

法二:记第i 名工人选择的项目属于基础设施工程或产业建设工程分别为事件D i ,i = 1,2,3.由已知,D 1,D 2,D 3相互独立,且P (D i )=P (A i +C i )=P (A i )+P (C i )=12+16=2

3,

所以X ~B (3,2

3

),

即P (X =k )=C k 3(23)k (13

)3-k

,k =0,1,2,3.

故X 的分布列是:

X 的数学期望EX =3×2

3

=2.

4.设X 是服从二项分布B (n ,p )的随机变量,又EX =15,DX =

45

4

,则n 与p 的值为( ) A .60,34 B .60,14 C .50,34 D .50,1

4

解析:由X ~B (n ,p ),有EX =np =15, DX =np (1-p )=454,∴p =1

4

,n =60. 答案:B

5.已知随机变量X 的分布列为

若EX =15

8,则DX 等于 ( )

A.3364

B.5564

C.732

D.932 解析:由分布列的性质得x +y =0.5,

又EX =158,所以2x +3y =118,解得x =18,y =38.

所以DX =(1-158)2×12+(2-158)2×18+(3-158)2×38=5564

. 答案:B

6.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号. (1)求X 的分布列、期望和方差;

(2)若Y =aX +b ,EY =1,DY =11,试求a ,b 的值. 解:(1)X 的分布列为:

∴EX =0×12+1×120+2×110+3×320+4×1

5

=1.5,

DX =(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×1

5=2.75.

(2)由D (Y )=a 2DX ,得a 2×2.75=11,即a =±2. 又E (Y )=aEX +b ,

∴当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.

∴????? a =2,b =-2或?????

a =-2,

b =4,

即为所求.

7.都要负担这辆车的各种管理费100元,如果在一个月内该车被租的概率是0.8,租金是2 600元,那么公司每月对这辆车收入的期望值为________元. 解析:设公司每月对这辆车收入为X 元,则其分布列为:

故EX =(-100)×0.2+答案:1 980

8.利用下列盈利表中的数据进行决策,应选择的方案是________.

解析:利用方案A 1、A 2、A 3、A 4盈利的期望分别是: 50×0.25+65×0.30+26×0.45=43.7; 70×0.25+26×0.30+16×0.45=32.5; -20×0.25+52×0.30+78×0.45=45.7; 98×0.25+82×0.30-10×0.45=44.6. 答案:A 3

9.(2010·徐州模拟)某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是1/3.每次测试通过与否互相独立.规定:若前4次都没有通过测试,则第5次不能参加测试. (1)求该学生考上大学的概率;

(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为X ,求X 的分布列及X 的数学期望.

解:(1)记“该生考上大学”的事件为事件A ,其对立事件为A ,则P (A )=C 14(13)(23)3(23)+(23)4=64243+1681=112243. ∴P (A )=1-P (A )=

112243=131

243

. (2)该生参加测试次数X 的可能取值为2,3,4,5. P (X =2)=(13)2=1

9,

P (X =3)=C 12·13·23·13=4

27

, P (X =4)=C 13·13·(23)2·13+(23)4=427+1681=2881, P (X =5)=C 14(13)·(23)2=3281. 故X 的分布列为:

EX =2×19+3×427+4×2881+5×3281=32681.

10.111222则有( ) A .μ1<μ2,σ1<σ2

B .μ1<μ2,σ1>σ2

C .μ1>μ2,σ1<σ2

D .μ1>μ2,σ1>σ2

解析:μ反映正态分布的平均水平,x =μ是正态曲线的对称轴,由图知μ1<μ2,σ反 映正态分布的离散程度,σ越大,曲线越“矮胖”,表明越分散,σ越小,曲线越“高

瘦”,表明越集中,由图知σ1<σ2.

答案:A

11.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),若X在(0,1)内取值的概率为0.4,则X在(0,2)内取值的概率为________.

解析:在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0),正态分布图像的对称轴为x=1,X在(0,1)内取值的概率为0.4,可知,随机变量X在(1,2)内取值的概率与X 在(0,1)内取值的概率相同,也为0.4,这样随机变量X在(0,2)内取值的概率为0.8.

答案:0.8

12.已知随机变量X服从正态分布N(0,σ2),且P(-2≤X≤0)=0.4,则P(X>2)=________.

解析:∵P(-2≤X≤0)=0.4,∴P(-2≤X≤2)=0.8,

∴P(X>2)=P(X<-2)=0.1.

答案:0.1

均值、方差、正态分布__学生用

§12.6 离散型随机变量的均值与方差、正态分布 1.离散型随机变量的均值与方差 若离散型随机变量X (1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D X 为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b . (2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=__p __,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=__np __,D (X )=np (1-p ). 4.正态分布 (1)正态曲线:函数φμ,σ(x )=1 2πσ e -x -μ2 2σ2 ,x ∈(-∞,+∞),其中μ和σ为参数(σ>0, μ∈R ).我们称函数φμ、σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质: ①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1 σ2π; ④曲线与x 轴之间的面积为__1__; ⑤当σ一定时,曲线的位置由μ确定,曲线随着__μ__的变化而沿x 轴平移,如图甲所示; ⑥当μ一定时,曲线的形状由σ确定,σ__越小__,曲线越“瘦高”,表示总体的分布越集中;σ__越大__,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.

随机变量的均值与方差、正态分布(专题复

教学过程 一、课堂导入 “离散型随机变量的分步列,均值和方差”在“排列与组合”知识的延伸,在本讲的学习中,同学们将通过具体实例理解随机变量及其分布列、均值和方差的概念,认识随机变量及其分布对于刻画随机现象的重要性.要求同学们会用随机变量表达简单的随机事件,会用分布列来计算这类事件的概率,计算简单离散型随机变量的均值、方差,并能解决一些实际问题.在高考中,这部分知识通常有一道解答题,占12─14分左右,主要考查学生的逻辑推理能力和运算能力,凸显数学的应用价值.

二、 复习预习 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)随机变量的均值是常数,样本的平均值是随机变量,它不确定. ( ) (2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小. ( ) (3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差. ( ) (4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布. ( ) 2.设随机变量ξ的分布列为P (ξ=k )=1 5(k =2,4,6,8,10),则D (ξ)等于 ( ) A .5 B .8 C .10 D .16 3.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 等于 ( ) A .3 B.5 3 C .5 D.73 4.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X 表示取到次品的件数,则D (X )=________.

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

知识讲解离散型随机变量的均值与方差

知识讲解离散型随机变量的均值与方差(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有 =1p =2p …n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有 b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

高中数学--离散型随机变量的均值与方差、正态分布

高中数学--离散型随机变量的均值与方差、正态分布 1.已知随机变量X 服从二项分布,且E (X )=2.4,D (X )=1.44,则二项分布的参数n ,p 的值为( ) A .n =4,p =0.6 B .n =6,p =0.4 C .n =8,p =0.3 D .n =24,p =0.1 【解析】 由题意得??? ?? np =2.4, np 1-p =1.44, 解得??? ?? n =6, p =0.4. 【答案】 B 2.设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ2 2)(σ2>0)的密度函数图象 如图所示,则有( ) A .μ1<μ2,σ1<σ2 B .μ1<μ2,σ1>σ2 C .μ1>μ2,σ1<σ2 D .μ1>μ2,σ1>σ2 【解析】 根据正态分布N (μ,σ2)函数的性质:正态分布曲线是一条关于直线x =μ对称,在x =μ处取得最大值的连续钟形曲线;σ越大,曲线的最高点越低且较平缓;反过来,σ越小,曲线的最高点越高且较陡峭,故选A. 【答案】 A 3.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、c ∈(0,1)),已知他投篮一次得分的均值为

2,则2a +1 3b 的最小值为( ) A.323 B.283 C.143 D.163 【解析】 由已知得,3a +2b +0×c =2, 即3a +2b =2,其中0

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

2.5 随机变量的均值和方差

2.5随机变量的均值和方差 扬州市新华中学查宝才 教学目标: 1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; 2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点: 取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学方法: 问题链导学. 教学过程: 一、问题情境 1.情景. 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下. 2.问题. 如何比较甲、乙两个工人的技术? 二、学生活动 1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,

似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”? 3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三、建构数学 1.定义. 在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值. 类似地,若离散型随机变量X的分布列或概率分布如下: X x1x2…x n P p1p2…p n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ. 2.性质. (1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数) 四、数学应用 1.例题. 例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望. 分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30). 例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X). 说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np. 例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场, 那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1 2 ,试求需要比赛 场数的期望.

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

离散型随机变量的方差教案教学内容

精品文档 精品文档 离散型随机变量的方差 一、三维目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: b aE b a E +=+ξξ)( 5、如果随机变量X 服从二项分布,即X ~ B (n,p ),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义: 设离散型随机变量X 的分布为: 则(x i -EX)2描述了x i (i=1,2,…n)相对于均值EX 的偏离程度,而 DX 为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度。我们称DX 为随机变量X 的方差,其算术平方根DX 叫做随机变量X 的标准差. 随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。 (三)、基础训练 求DX 和 解:00.110.220.430.240.12EX =?+?+?+?+?= 104332221111+++++++++=X 2101 4102310321041=?+?+?+?=] )()()[(122212x x x x x x n s n i -++-++-=ΛΛ1 ])24()23()23()22()22()22()21()21()21()21[(10 1 22222222222=-+-+-+-+-+-+-+-+-+-=s 2 2222)24(101)23(102)22(103)21(104-?+-?+-?+-?=s ∑=-=n i i i p EX x 1 2)(DX

均值、方差、正态分布--学生用

! § 离散型随机变量的均值与方差、正态分布 1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为 X x 1 x 2 。 … x i … x n P p 1 p 2 … - p i … p n (1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (2)方差 称D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D X 为随机变量X 的标准差. 2.均值与方差的性质 , (1)E (aX +b )=aE (X )+b . (2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=__p __,D (X )=p (1-p ). (2)若X ~B (n ,p ),则E (X )=__np __,D (X )=np (1-p ). 4.正态分布 (1)正态曲线:函数φμ,σ(x )=1 2πσ e -x -μ2 2σ2 ,x ∈(-∞,+∞),其中μ和σ为参数(σ>0, μ∈R ).我们称函数φμ、σ(x )的图象为正态分布密度曲线,简称正态曲线. (2)正态曲线的性质: 、 ①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1 σ2π; ④曲线与x 轴之间的面积为__1__;

离散型随机变量的方差()

离散型随机变量的方差(一) 白河一中 邓启超 教学目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、常见特殊分布的变量的均值(期望) (1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np (2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则 E ξ= N M n (二)、讲解新课: 1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位: S ),X A 型手表 B 型手表 np EX =

问题:(1)分别计算X,Y 的均值,并进行比较; (2)这两个随机变量的分布有什么不同,如何刻画这种不同 分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。 进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列 2 8 9 10 0.4 0.2 0.4 分析: 甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差: 类似的,随机变量X 的方差: 222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-= =2)(EX X E i - 思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什 9 ,921==EX EX ? ? ????-++-+-=---2 n 22212)x (x )x (x )x (x n 1s ...n 1)x (x n 1)x (x n 1)x (x s 2n 22212? -++?-+?-=---...

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use

在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。 1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 21 3100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞ =1 k k k p x

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

均值与方差、正态分布

均值与方差、正态分布 时间:45分钟 分值:100分 一、选择题(每小题6分,共48分) 1.已知随机变量X 服从正态分布N (2,σ2),P (X ≤4)=0.84,则P (X <0)等于( ) A .0.16 B .0.32 C .0.68 D .0.84 【答案】 A 【解析】 P (X <0)=P (X >4)=1-P (X ≤4)=1-0.84=0.16. 2.一个袋子里装有大小相同的3个红球和2个黄球,从中随机取出2个,其中含有红球个数的数学期望是( ) A.3 2 B.5 3 C.6 5 D.35 【答案】 C 【解析】 根据超几何分布期望公式,E (X )=2×32+3=6 5. 3.(2012·黄冈期末)某市进行一次高三数学质量抽样检测,考试后统计所有考生的数学成绩服从正态分布,已知数学成绩平均分为90分,60分以下的人数占5%,则数学成绩在90分至120分之间的考生人数所占百分比约为( ) A .10% B .15% C .30% D .45% 【答案】 D 【解析】 ∵正态曲线对称轴为μ=90,P (x <60)=0.05,

∴P (90

随机变量的均值与方差的计算公式的证明

随机变量的均值与方差的计算公式的证明 姜堰市励才实验学校 姜近芳 组合数有很多奇妙的性质,笔者试用这些性质证明了随机变量的均值与方差的两组计算公式。 预备知识: 1. ()()()()11!!1!1! !!--=-?--?=-??=k n k n nC k n k n n k n k n k kC 2. k k n C 2=()1111111-------+=k n k n k n C k n nC nkC =()22111-----+k n k n C n n nC 3.N 个球中有M 个红色的,其余均为白色的,从中取出n 个球,不同的取法有: n N l n M N l M n M N M n M N M n M N M C C C C C C C C C =++++------- 22110 ()()M n l ,m i n =. 公式证明: 1.X ~()p n B , ()()X E 1.np =()()X V 2().1p np -= 证明:()n n p x p x p x p x X E ++++= 332211 ()()()n n n n n n n n n p nC p p C p p C p p C ++-+-+-?=-- 222110012110 ()()[] n n n n n n n p C p p C p p C n 11221110111------++-+-= ()[] 11-+-=n p p np .np = ()()()()n n p x p x p x X V 2 222121μμμ-++-+-= n n p x p x p x p x 2323222121++++= ()n n p x p x p x p x ++++- 3322112μ ()n p p p p +++++ 3212μ ()() 2222222112121μμ+-++-+-=--n n n n n n n p C n p p C p p C ()()[]11121110111-------++-+-=n n n n n n n p C p p C p C np ()()()[] 22223122022111μ-++-+--+-------n n n n n n n p C p p C p C p n n

离散型随机变量的方差

2.3.2离散型随机变量的方差 整体设计 教材分析 本课仍是一节概念新授课,方差与均值都是概率论和数理统计的重要概念,是反映随机变量取值分布的特征数.离散型随机变量的均值与方差涉及的试题背景有:产品检验问题、射击、投篮问题、选题、选课、做题、考试问题、试验、游戏、竞赛、研究性问题、旅游、交通问题、摸球问题、取卡片、数字和入座问题、信息、投资、路线等问题.从近几年高考试题看,离散型随机变量的均值与方差问题还综合函数、方程、数列、不等式、导数、线性规划等知识,主要考查能力. 课时分配 1课时 教学目标 知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差. 过程与方法 了解方差公式“D(aX+b)=a2D(X)”,以及“若X~B(n,p),则D(X)=np(1-p)”,并会应用上述公式计算有关随机变量的方差. 情感、态度与价值观 承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值. 重点难点 教学重点:离散型随机变量的方差、标准差. 教学难点:比较两个随机变量的均值与方差的大小,从而解决实际问题. 教学过程 复习旧知 1 则称Eξ=x1p1+x2p2+…+x i p i+…+x n p n为ξ的数学期望. 2.数学期望的一个性质:E(aξ+b)=aEξ+b. 3.若ξ~B(n,p),则Eξ=np. 教师指出:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.探究新知 已知甲、乙两名射手在同一条件下射击,所得环数ξ1、ξ2的分布列如下:

离散型随机变量的均值与方差正态分布含解析理

离散型随机变量的均值与方差正态分布含解析 理 -CAL-FENGHAI.-(YICAI)-Company One1

课后限时集训(五十八) (建议用时:60分钟) A 组 基础达标 一、选择题 1.(2019·孝感模拟)已知袋中有3个白球,2个红球,现从中随机取出3个球,其中取出1个白球计1分,取出1个红球计2分,记X 为取出3个球的总分值,则E (X )=( ) C .4 B [由题意知,X 的所有可能取值为3,4,5,且P (X =3)= C 33C 35=110,P (X =4)=C 23·C 12C 35 =3 5,P (X =5)=C 13·C 22 C 35 =310,所以E (X )=3×110+4×35+5×310=215.] 2.已知某批零件的长度误差ξ(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( ) (附:正态分布N (μ,σ2)中,P (μ-σ<ξ<μ+σ)= 6,P (μ-2σ<ξ<μ+2σ)= 4) A . 6 B . 9 C . 8 D . 4 B [因为P (-3<ξ<3)= 6,P (-6<ξ<6)= 4, 所以P (3<ξ<6)=1 2× 4- 6)= 9,故选B.] 3.已知随机变量ξ的分布列为 若E (ξ)=1 3,则D (ξ)=( ) A .1 D .2 B [∵ E (ξ)=1 3,∴由随机变量ξ 的分布列知,??? x +13+1 6+y =1, -x +16+2y =1 3, ∴??? x =5 18, y =2 9, 则 D (ξ)=????-1-132×518+????0-132×13+? ?? ?1-132×16+? ?? ?2-132×29=119.] 4.已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为ξ,则E (ξ)=( ) A .3 D .4

离散型随机变量的方差

2.3.2 离散型随机变量的方差 1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题.(重点) 3.掌握方差的性质以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.(难点 ) [基础·初探] 教材整理1 离散型随机变量的方差的概念 阅读教材P 64~P 66上面第四自然段,完成下列问题. 1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为 则(x i -E (X ))描述了i D (X )=∑i =1n (x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X ) 的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差. (2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小. 2.随机变量的方差与样本方差的关系 随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方

差越来越接近于总体的方差. 1.下列说法正确的有________(填序号). ①离散型随机变量ξ的期望E (ξ)反映了ξ取值的概率的平均值; ②离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平; ③离散型随机变量ξ的期望E (ξ)反映了ξ取值的波动水平; ④离散型随机变量ξ的方差D (ξ)反映了ξ取值的波动水平. 【解析】 ①错误.因为离散型随机变量ξ的期望E (ξ)反映了ξ取值的平均水平. ②错误.因为离散型随机变量ξ的方差D (ξ)反映了随机变量偏离于期望的平均程度. ③错误.因为离散型随机变量的方差D (ξ)反映了ξ取值的波动水平,而随机变量的期望E (ξ)反映了ξ取值的平均水平. ④正确.由方差的意义可知. 【答案】 ④ 2.已知随机变量ξ,D (ξ)=1 9,则ξ的标准差为________. 【解析】 ξ的标准差D (ξ)=19=13. 【答案】 1 3 3.已知随机变量ξ的分布列如下表: 则ξ的均值为【解析】 均值E (ξ)=x 1p 1+x 2p 2+x 3p 3=(-1)×12+0×13+1×16=-1 3; 方差D (ξ)=(x 1-E (ξ))2 ·p 1+(x 2-E (ξ))2 ·p 2+(x 3-E (ξ))2 ·p 3=5 9. 【答案】 -13 59 教材整理2 离散型随机变量的方差的性质

相关文档
相关文档 最新文档