文档库 最新最全的文档下载
当前位置:文档库 › 碳基复合材料研究现状及发展趋势

碳基复合材料研究现状及发展趋势

碳基复合材料研究现状及发展趋势
碳基复合材料研究现状及发展趋势

碳基复合材料研究现状及发展趋势

摘要:碳基复合材料由于其优异的各项性能在航空航天工业、能源技术、信息技术等方面有着很好的应用前景,国内外对高性能复合材料的研究也日趋加深,本文主要从材料的性能来分析其应用及其在未来主要领域的发展趋势。

1 碳基复合材料的特点

碳纤维增强碳复合材料(碳基复合材料,C/C)是具有特殊性能的新型工程材料,是以碳或石墨纤维为增强体,碳或石墨为基体复合而成的材料。碳基复合材料几乎完全是由碳元素组成,故能承受极高的温度和极大的加热速度。该材料具有极高的烧蚀热、低的烧蚀率、抗热冲击,并在超热环境下有高强度,被认为是再入环境中高性能的抗烧蚀材料。它抗热冲击和抗烧诱导能力极强,且具有良好的化学惰性。碳基复合材料做导弹的鼻锥时,烧蚀率低且烧蚀均匀,从而可提高导弹的突防能力和命中率。碳基复合材料还具有优异的耐磨差性能和高的导热,使其在飞机、汽车刹车片和轴承等方面得到应用。

碳基复合材料不仅具有其它复合材料的优点,同时又有很多独到之处。碳基复合材料的特点如下:

(1)整个系统均由碳元素构成,由于碳原子彼此间具有极强的亲和力,使碳基复合材料无论在低温下还是在高温下,都有很好的稳定性。同时,碳素材料高熔点的本性,赋予了该材料优异的耐热性,可以经受住2000℃左右的高温,是目前在惰性气氛中高温力学性能最好的材料。更重要的是碳基复合材料随着温度的升高,其强度不降低,甚至比室温还高,这是其他材料无法比拟的。

(2)密度低(小于2.0g/cm3),仅为镍基高温合金的1/4,陶瓷材料的1/2。

(3)抗烧蚀性能良好,烧蚀均匀可以用于3000 ℃以上高温短时间烧蚀的环境中,可作为火箭发动机喷管、喉衬等材料。

(4)耐摩擦,耐磨损性能优异,其摩擦系数很小,性能稳定,是各种耐磨和摩擦部件的最佳候选材料。

(5)良好的生物相容性,具有与人体骨骼相当的密度和模量,在人体骨骼修复与替代材料方面具有较好的应用前景。

2 碳基复合材料的制备工艺

碳基复合材料制备过程包括:增强体碳纤维及其织物的选择、基体碳先驱体

的选择、碳基复合材料预成型体的成型工艺、碳基体的致密化工艺以及最终产品的加工、检测等。选择用何种工艺来制备碳基复合材料时,首先应根据碳基复合材料的应用要求选择使用什么样的纤维和基体,进而确定制备工艺。

预制体是按照产品形状和性能要求先把碳纤维成型为所需结构形状的毛坯,以便进一步进行碳基复合材料密化工艺。对于预制体的编织技术可分为机器编织和手工编织,机器编织技术因其产品易起毛或断裂而未能得到广泛应用;手工编织技术因其产品不存在机器编织的确定性而得到广泛的应用。目前使用较多的是手工缠绕编织和交叉编织,比较先进的是穿刺编织技术。

碳基复合材料致密化工艺过程就是基体碳形成的过程,实质是用高质量的碳填满碳纤维周围的空隙以获得结构、性能优良的碳基复合材料。对于致密化工艺最常用的有两种制备工艺:化学气相渗透法和液相浸渍法。形成碳基体的先驱物有用于化学气相沉积的碳氢化合物,如甲烷、丙烯、天然气等;有用于液相浸渍的热固性树脂,如酚醛树脂、糖醛树脂等,热塑性沥青如煤沥青、石油沥青。化学气相渗透(CVI)工艺就是把碳纤维织物预制体放入专用CVI炉中,加热至所要求的温度,通入碳氢气体,这些气体分解并在织物的碳纤维周围和空隙中沉积上碳。根据制品的厚度、所要求的致密化程度与热解碳的结构来选择CVI工艺参数。化学气相渗透工艺又包括等温CVI法、热梯度CVI法、脉冲压力CVI法、微波CVI法,以及等离子体强化等种类,可根据对产品的性能要求选择不同的方法。

3 碳基复合材料的性能

3.1 力学性能

碳基复合材料属于脆性材料,断裂破坏时断裂应变很小。碳基复合材料的强度与增强纤维的方向和含量密切相关,在平行于纤维轴向的方向上拉伸强度和模量较高,在偏离纤维轴向的方向上拉伸强度和模量较低。碳基复合材料的强度同样受界面结合的影响较大。碳纤维与碳基体的界面结合过强,碳基复合材料发生脆性断裂,拉伸强度偏低,剪切强度较好。界面强度过低基体不能把载荷传递到纤维,纤维容易拔出,拉伸模量和剪切强度降低。界面结合强度适中,使碳基复合材料具有较高的拉伸强度和断裂应变。

高温石墨化处理可显著提高碳基复合材料强度和模量,经石墨化处理后碳碳复合材料强度增加29.5%,模量增加119.2%。石墨化处理提高了材料的性能指标,但并未改变材料的损伤破坏模式(图1),仍是纤维脆性断裂,只是损伤的扩展阶段不同。

图1 3D编织碳基复合材料弯曲应力—应变曲线

材料的界面状况在石墨化处理后发生了变化,纤维与基体之间的结合明显弱化,基体碳层之间界面结合强度也明显的低于石墨化处理前(图2)。石墨化处理后的碳基复合材料表现出有纤维的拔出,纤维上仍包覆有基体,表明纤维与基体间结合较为适宜,热解碳层间结合较弱。碳基复合材料在高温下进行石墨化处理,因纤维和基体的线膨胀系数不同,增加了微裂纹,同时也改变了裂纹的结构形状,从而改变了裂纹扩展的途径,使材料拥有一个更有利的能量耗散机制,因此控制了碳基复合材料的断裂过程。

a b

图2 3D-碳基复合材料室温弯曲破坏形貌

a-未石墨化处理;b-石墨化处理

3.2 热物理性能

碳基复合材料的热物理性能具有碳和石墨材料的特征,从宏观上考虑是一种多相非均质混合物,基本结构为乱层石墨结构或介于乱层石墨结构与晶体石墨结构之间的过渡形态。碳基复合材料具有较高的热导率,其导热机理应该是介于金属材料和非金属材料之间,既有声子导热,又有电子导热,其导热率随着石墨化程度的提高而增加,随密度增高而增高,此外还与纤维的方向有关;抗热震性好,碳纤维的增强作用以及材料结构中的空隙网络,使得碳基复合材料对于热应力并

不敏感。不会像陶瓷材料和一般石墨材料那样产生突然地灾难性损毁;线膨胀系数较小,多晶碳和石墨的线膨胀系数主要取决于晶体的取向度,同时也受到孔隙度和裂纹的影响。因此,碳基复合材料的线膨胀系数随着石墨化程度的提高而降低。线膨胀系数小使得碳基复合材料结构在温度变化时尺寸稳定性特别好,抗热应力性能比较好。所有这些性能对于在宇航方面的设计和应用非常重要。

3.3 抗烧蚀性能

这里“烧蚀”是指导弹和飞行器再入大气层在热流作用下,由热化学和机械过程引起的固体表面的质量迁移(材料消耗)现象。在现有的抗烧蚀材料中,碳基复合材料是最好的抗烧蚀材料。碳基复合材料是一种升华—辐射型烧蚀材料,具有较高的烧蚀热、较大的辐射系数与较高的表面温度,在材料质量消耗时吸收的热量大,向周围辐射的热流也大,具有很好的抗烧蚀性能。

3.4 摩擦磨损性能

碳基复合材料具有比强度、比模量和断裂韧性高、密度低、热性能、摩擦磨损性能及承载能力优良,使用寿命长的特点,作为摩擦元件已广泛用做新一代民用及军用飞机刹车材料。碳基复合材料作为摩擦制动材料具有一些列优点,如质量轻、寿命长、刹车过程平稳、热容高、高温稳定性好及可超载使用等。影响碳基复合材料摩擦磨损性能的因素很多,如材料的制备工艺、纤维体积分数、结构、纤维增强形式、摩擦面方向和实际使用条件。

(1)基体类型对碳基复合材料摩擦磨损性能的影响。在二维的不同密度的碳基复合材料中,中等密度的碳基复合材料具有良好的摩擦性能,其摩擦系数较低,磨损量也比低密度和高密度的碳基复合材料低一个数量级。在摩擦磨损的过程中各种碳基复合材料的摩擦系数的变化情况也不尽相同。基体为粗糙层结构的碳基复合材料,具有较高的石墨化程度和摩擦系数。基体为光滑层结构的碳基复合材料,石墨化度低,摩擦系数小,磨损量小。

(2)纤维取向对碳基复合材料磨损性能的影响。碳纤维取向对碳基复合材料摩擦磨损性能有强烈的影响。在低转速下,当纤维平行于摩擦面时,磨损率比纤维垂直于摩擦面方向要低的多,而摩擦系数比纤维垂直于摩擦面方向要高的多;在高转速下,摩擦系数和磨损率都没有大的差别。Z向纤维的含量增加,能提高碳基复合材料的热导率,降低摩擦面的温度,也会影响碳基复合材料的摩擦磨损性能。

(3)环境气氛对碳基复合材料摩擦磨损性能的影响。碳基复合材料在用于飞机刹车的过程中,表面会产生高温。在有空气存在的环境下,碳会迅速发生氧化反应生成碳化物,氧化作用将对材料的摩擦磨损性能产生显著地影响。碳基复

合材料在超负荷落地制动时,其氧化损失的磨损量占总磨损量的60%以上,并且氧化减弱了摩擦面表层和压表层的强度。在干燥的CO2气氛中和相对湿度为50%的情况下,碳基复合材料的摩擦系数较低,这是由于氧和水蒸气在碳表面发生吸附。氧在碳表面是化学吸附,依靠氧的化学键力,强度高,只有在高温时才会发生脱附作用;而水蒸气的吸附为物理吸附,依靠的是范德华力,在低温下发生脱附。在潮湿环境下,开始时由于水分子的吸附作用及摩擦表面的温度较低,摩擦系数较低,随着水分的蒸发和温度的上升,摩擦系数将会增大。

3.5 生物相容性

碳单质材料被认为是所有已知材料中生物相容性最好的材料。碳基复合材料克服了单一碳材料的脆性,继承了碳材料的生物相容性,同时兼有纤维增强复合材料的高韧性、高强度等特点,且力学性能可设计、耐疲劳、摩擦性能优越、质量轻,具有一定的假塑性,且微孔有利于组织生长,特别是它的弹性模量与人骨相当,能够克服其他生物材料的不足,是一种综合性能优越、具有潜在力的骨修复和替代生物材料。若将碳基复合材料与生物活性材料复合,既保持了生物材料所需的力学性能,又具有生物活性,生物活性涂层能够使植入体与骨组织间形成直接的化学键性结合,有利于植入体早期稳定,缩短手术后的愈合期。

4 碳基复合材料抗氧化技术

碳基复合材料具有高强高模性、高热稳定性、高导热导电能力、低密度、低热膨胀系数、耐烧蚀、耐腐蚀、摩擦系数稳定等特点,而且这些性能可以在2000℃以上的高温下保持,使其成为高温结构材料的首选材料之一,特别是它随温度升高依然保持其室温下力学性能的特性,被大量用于航空、航天及民用工业领域。然而这些优异的性能只能在惰性环境中保持。碳基复合材料在400℃的有氧环境中就开始氧化,而且氧化速率随着温度的升高而迅速增加,因此在高温氧化环境中应用时将会引起灾难性后果,所以碳基复合材料抗氧化技术是其作为高温结构材料应用的关键。

目前碳基复合材料的抗氧化设计思路有两种:基体改性技术和抗氧化涂层技术。基体改性技术为碳基复合材料在低温段的抗氧化提供了一条有效途径。表面涂层技术是目前研究的比较多的方法,并取得了长足发展,可制备出多层梯度涂层使在碳基复合材料1600℃下长时间服役。

4.1 基体改性技术

基体改性技术的具体做法是合成碳基复合材料时,在碳源前驱体里加入阻氧成分,这样,基体碳和阻氧微粒一同在碳纤维上进行沉积,就能形成具有自身抗

氧化能力的碳基复合材料。同样,基体改性技术的阻氧成分选择要满足一定条件其中应包括:

( 1) 与基体碳之间具备良好的化学相容性;

( 2) 具备较低的氧气、湿气渗透能力;

( 3) 不能对氧化反应有催化作用;

( 4) 不能影响碳基复合材料原有的优秀机械性能。

由于抗氧化涂层与C/ C 复合材料基体之间的热膨胀系数匹配性的问题一直没有得到根本解决,涂层在高温下会产生裂纹,为氧气扩散提供通道,失去对碳基复合材料的保护作用。这一缺陷大大限制了抗氧化涂层技术向更高工作温度,更长工作寿命的方向发展。另外,由于涂层的制备工艺较为复杂,合成条件要求严格,使得C/ C 复合材料本来就已经很高的制作成本一加再加。因此,研究者提出了从材料本身出发的设计构想,在C/ C 复合材料成型前,就对碳纤维和基体碳进行改性处理,使他们本身就拥有较强的抗氧化能力,这就是基体改性技术。到目前为止,有关此项技术的研究并没有取得突破性的进展,抗氧化温度也只停留在1000℃因此只能用于较低温度下的氧化保护,或者与涂层技术相结合,进行高温氧化防护。

4.1.1 基体浸渍技术

研究发现,用磷酸或硼酸液体对C/ C 复合材料进行物理浸渍处理可以有效地提高材料的抗氧化性。其抗氧化机理是由于浸渍膜可以有效掩蔽材料表面的氧化活性中心,阻碍材料与氧气的反应,并与基体中对氧化反应有催化性的杂质金属微粒生成盐,达到反催化的目的。但这种浸渍剂在高温下易挥发,在潮湿条件下易水解,很容易失效,只能用于一般性的抗氧化防护。

4.1.2 玻璃体系基体改性技术

这一类基体改性技术是以能形成玻璃体系的硼化物为主要是阻氧添加剂( B4C,B2O3,BN) ,有时还加入硅化物( Si,Si3N4,SiO2) 陶瓷微粒,进行抗氧化防护。它的抗氧化机理是:利用硼化物在高温下被氧化为玻璃态固熔体所形成的具有自弥合功能的保护膜,有效地对C/ C 复合材料表面缺陷进行掩蔽,减少了氧化活性中心,并进一步为氧气的内部扩散提供屏障。目前,进一步的研究是将某些具备优秀耐火性的金属氧化物( 如ZrO2) 、金属硼化物( 如ZrB2) 作为阻氧成分,进行基体改性实验。但此项研究进展不大,抗氧化温度并没有显著提高。

4.1.3 基体改性制备工艺

基体改性技术的制备过程是让阻氧成分与碳源前驱体一同进行沉积,在C/ C 复合材料自身的制备过程中一次性完成,因此原有的传统工艺,如CVD法、CVI

法、液相浸渍法都可以继续用于基体改性材料的制备,本文不再一一叙述,这里介绍一种新的合成方法,即快速致密化工艺。美国的快速致密化专利技术是以具有高孔隙结构的碳纤维织体为预成型体,以液态碳氢化合物为碳源前驱体来制备C/ C 复合材料。反应时,对浸入在前驱体中的预成型体直接加热,进行快速升温处理,这样从预成型体内部到外部的液态前驱体形成温度梯度。因汽化温度较低,与预成型体界面接触的液态前驱体受热转化为气态,通过预成型体的孔隙结构迅速渗入预成型体内部,并在温度梯度作用下从内而外的进行热解碳化沉积,最后获得均匀致密的C/ C 复合材料。其改性处理是对C/ C 复合材料进行多次碳源前驱体和Si 基陶瓷材料前驱体的交替沉积,最终,无论是材料表面,材料孔隙壁,还是孔隙结构内部都覆盖着硅化物均匀弥散的基体碳成分。此外,发明者还推荐使用金属有机化合物( 甲苯中的Ti,Zr,Hf ) 、陶瓷氮化物进行改性处理,甚至建议将上述金属的粉末直接弥散入碳源前驱体进行沉积。另外在沸腾的氨水中加入硅的氯化物( 如三氯甲基硅烷) 作为前驱体,可进行以Si3N4为主要成分的改性处理。由于该项技术已经申请专利,其技术细节无法得知,合成材料性能也未见报道,但它对C/ C 复合材料合成思路的创新性是不容忽视的。而且,此项技术具备成本低,合成周期短的优势,是目前最有发展前途的C/ C 复合材料制备方法。

4.2 抗氧化涂层技术

由于该项技术是在已经制得的C/ C 复合材料外表面合成抗氧化涂层,其初衷是要防止氧气与材料的接触,阻挡氧气在材料内部的扩散,从而达到高温氧化防的目的。因此,具有保护功效的涂层必须符合以下几项基本要求:(1)能够提供有效的防护屏障,以阻止氧气在材料外界面和组织结构内部的扩散;

(2)具有低挥发性,以防止材料在高速气流中或高温条件下工作时,涂层因过度损耗而失效;

(3)涂层与材料固体表面要有较好的结合能力,不易剥落;

(4)涂层与基体材料有良好的化学与机械相容性。

在C/C 复合材料表面进行涂层可以把基体材料和氧化环境隔离,能大幅度提高C/C 复合材料在氧化环境中的使用温度。目前根据涂层的形式来分主要有单层涂覆、双层复合涂覆、功能梯度涂覆以及其它多层涂覆。

4.2.1 单层涂覆

在目前的抗氧化涂层中,硅基的涂层研究较为广泛,它的抗氧化机理是通过在材料表面合成硅基陶瓷化合物涂层,其中所含的硅化物先与氧反应生成硅氧化

合物,形成保护层,进而实现抗氧化的目的。李瑞珍等采用化学气相渗透碳和硅蒸汽与碳直接反应的化学气相反应法相结合,制备了针刺碳布C/C- SiC 复合材料,经1160℃、65min 氧化后,失重率仅为2.6% 。硅基单层涂层主要用于温度较低、抗氧化时间较短的环境,而且弥合由于高温制备和热膨胀系数不匹配产生的裂纹的性能较低,其应用受到一定的限制。最近在C/C 复合材料表面涂覆TaC 有所进展。闫志巧等对C/C 复合材料加压浸渍Ta 有机溶剂,经固化、热处理后可制备成分均匀的C/C- TaC 复合材料,Ta 有机溶剂在热处理时先生成中间相的氧氟化钽,再转化为Ta2O5,最后在1109℃被C 还原成TaC,在1500- 2000℃范围内,TaC 颗粒尺寸对热处理温度不敏感,但其抗氧化性并未见报道。李国栋等用低功率激光仪对TaC 涂层进行不同时间的烧蚀实验证明TaC涂层有可能提高C/C 复合材料高温环境下的抗氧化性。

4.2.2 双层复合涂覆

双层复合涂覆一般以硅化物为内涂层( 阻挡层) ,给氧的扩散提供保障;以高温玻璃涂层为外层( 封填层),利用其良好的高温愈合性来愈合由于涂层和C/C 复合材料热膨胀系数不匹配产生的裂纹,实现在避免每一层缺点的同时发挥各自的独特性能。方勋华等研究制备了一种具有愈合功能的C/C 复合材料抗氧化涂层,主要由SiC 和Si- B- Al- Cr- Zr 系陶瓷氧化物构成。涂层在1000℃以内的干燥静态空气中的平均氧化失重在10- 7-10- 6g/(cm2·s)数量级,具有良好的抗氧化性能。曾燮榕等对碳/ 碳复合材料MoSi/SiC 涂层试样分别在1100-1500℃下进行了燃气高质流冲刷环境下的氧化试验。结果表明,MoSi/SiC 防氧化涂层体系在这个温度范围内具备良好的抗氧化和抗高质气流冲刷的能力。

4.2.3 功能梯度涂覆

功能梯度材料是一种集各组分( 如金属、陶瓷、纤维、聚合物等) 、结构和物理、化学、生物等单一或综合性能都呈连续变化,以适应不同环境,实现某一特殊功能的一类新兴材料。一个功能梯度涂层体系由四部分组成,由内到外依次是:过渡层,用来解决C/C 复合材料界面之间热膨胀系数不匹配的问题;阻挡层,阻止氧扩散和碳逸出,防止材料氧化;封填层,降低裂纹生成温度和隔离原子氧;耐烧蚀层,阻止内层在高速气流中冲刷损失、高温下的蒸发损失以及在苛刻气氛里的腐蚀损失。成来飞等用液态渗硅法制备SiC 作为过渡层,用CVD法制备SiC 作为阻挡层,用液相反应生成法制备高温玻璃作为封填层,制备出的C/C 复合材料在1600℃工作168h 以上。刘摈等设计并制备出了一种C/C 复合材料抗氧化涂层,其基本结构为浸渍过渡层/ 陶瓷相阻挡层/ 玻璃相封填层,涂覆这种结构的C/C 复合材料试样在空气中于900℃下氧化10h 的失重率仅为0.034%g/cm2,氧化失重速率为5.67×10- 5g/ (cm2·min);900℃- 室温空气中急

冷急热10h 循环100次后,失重率为8.41% ,涂层没有剥落,具有良好的高温抗氧化性和抗热震性能。

4.2.4 其它多层涂覆

来忠红等以Mo 粉和Si 粉为原始粉末,采用熔浆法在C/C 复合材料表面原位合成了Si3N4-MoSi2/Si- SiC(MSN)系多层抗氧化涂层,结果表明:Si 浆料中添加适量Al 可以有效地阻止液态Si 渗入C/C 基材内部,3% Al- Si 涂层具有最好的阻止Si 渗入作用;Al 含量超过3% 时,Si 的渗入随Al 含量的增加而加剧;涂层中MoSi2的理论含量超过50% ,MSN- C/C复合材料1400℃的抗氧化性能随MoSi2含量的增加而显著下降;只有MSN30- C/C复合材料表现出抗1450℃氧化能力。来忠红等采用熔浆法,在烧结过程中通入氮气,开发Si3N4-MoSi2/Si- SiC多层抗氧化涂层。与真空中合成的涂层相比,抗氧化温度提高到1400- 1450℃。冉丽萍等采用两段式包埋法和封闭处理的复合新工艺制得抗氧化优良的MoSi2/SiC复合梯度C/C 复合材料的高温抗氧化多层涂层,涂层结构由内至外为:SiC过渡层- SiC致密层- MoSi2/SiC 双相层- MoSi2为主的外层。用正硅酸四乙酯对涂层封闭处理,氧52h仍然只1.28%的增重,比未封闭处理的涂层抗氧化性能好。

5 碳基复合材料的应用

5.1 高性能刹车材料的应用

碳基复合材料刹车盘目前已广泛用于高速军用飞机和大型高超音速民用客机,作为飞机的刹车材料。一半以上的碳基复合材料用在飞机刹车装置。高性能刹车材料要求高比热容、高熔点以及高温下的强度,碳基复合材料质量轻、耐高温、吸收能量大、摩擦性能好的特点,正好适应了这一要求,制作的飞机刹车盘重量轻、耐温高、比热容比钢高2.5倍;其刹车系统比常规钢刹车装置减轻质量40%。碳刹车盘的使用寿命是金属基的5-7倍,刹车力矩平稳,刹车时噪音小,而且特别耐磨,当起飞遇到紧急情况需要及时刹车时,碳基刹车片能够经受住摩擦产生的高温,而到600℃钢刹车片制动效果就急剧下降。因此碳刹车盘的问世被认为是刹车材料发展史上的一次重大的技术进步。

碳基复合材料用于刹车盘有许多优异的性能,然而碳基复合材料在400℃有氧环境中就开始发生氧化,而且氧化速率随着温度的升高而迅速增加,因此在高温氧化环境中应用时将会引起灾难性的后果,所以碳基复合材料抗氧化技术是其作为高温结构材料应用的关键。

目前碳基复合材料的抗氧化设计思路有两种:基体改性技术和抗氧化涂层技

术。基体改性技术为碳基复合材料基体在低温段抗氧化提供了一条有效地途径。表面涂层技术是目前研究的比较多的方法,并取得了长足的发展,可制备出的多层梯度涂层使在碳基复合材料1600℃下长时间服役。

5.2 耐烧蚀材料的应用

碳基复合材料作为抗烧蚀材料,已使用在洲际导弹弹头的鼻锥帽、固体火箭喷管和航天飞机鼻锥帽和机翼前缘上。导弹鼻锥帽利用碳基复合材料质量轻,高温强度高,抗烧蚀、抗侵蚀、抗热震好的优点,使导弹弹头再入大气层时免遭损毁。固体火箭发动机喷管最早采用碳基复合材料喉衬,现在已研制出整体碳基复合材料喷管,是一种烧蚀型材料,除了上述特点外,还要耐气流和粒子冲刷。烧蚀型碳基复合材料结构往往只使用一次,高温下工作时间也很短。在液体火箭发动机领域,碳基复合材料可用于推力室衬里、游动推力室、喷管延展锥、热屏蔽等部位。

5.3 生物医学方面的应用

碳基复合材料作为生物医用材料,主要具有以下优点:(1)生物相容性好,整体结构均由碳构成,机体组织对其适应性好;(2)在生物体内稳定、不被腐蚀,也不会像医用金属材料那样会由于生理环境的腐蚀而造成金属离子向周围组织扩散及植入材料自身性质的锐变;(3)具有良好生物力学相容性,与骨的弹性模量十分接近,可减弱由假体应力遮挡作用引起的骨吸收等并发症;(4)强度高、耐疲劳、韧性好,并可以通过结构设计,对材料性能进行调整以满足特定的力学性能。

碳基复合材料的出现,从根本上改善了碳材料的强度与韧性解决了植入体与人体骨骼模量不匹配问题。虽然目前碳基复合材料植入体的实际临床应用还不多,但其潜在的优势注定了它在生物医用材料方面良好的应用前景。

除了这些应用之外碳基复合材料还可用于自润滑轴承、机械紧固件、热压磨具及氦冷却的核反应堆热交换管道、化工管道和容器衬里、高温密封件和轴承、拉晶机部件等。

6 碳基复合材料的发展趋势

从技术发展来看,碳基复合材料以从烧蚀碳基走向多功能碳基、热结构碳基;从2D-碳基发展为3D-碳基、多项碳基复合材料;从三向块状编织发展为多维异型程控编织、混杂编织,出现了先进混杂(编织、基体)碳基。碳基复合材料在宇航方面已成为成熟应用的材料并且还在不断扩大应用,在民用工业方面也已开始找到用途。当前,碳基复合材料的研究活动集中在三个方面:改进基体性能(特

别是沿平面方向的剪切和垂直平面方向的拉伸);改进抗氧化涂层(使其具有更高的使用温度和更长的使用寿命);寻找低成本的生产方法。

碳基复合材料研究现状及发展趋势

碳基复合材料研究现状及发展趋势 摘要:碳基复合材料由于其优异的各项性能在航空航天工业、能源技术、信息技术等方面有着很好的应用前景,国内外对高性能复合材料的研究也日趋加深,本文主要从材料的性能来分析其应用及其在未来主要领域的发展趋势。 1 碳基复合材料的特点 碳纤维增强碳复合材料(碳基复合材料,C/C)是具有特殊性能的新型工程材料,是以碳或石墨纤维为增强体,碳或石墨为基体复合而成的材料。碳基复合材料几乎完全是由碳元素组成,故能承受极高的温度和极大的加热速度。该材料具有极高的烧蚀热、低的烧蚀率、抗热冲击,并在超热环境下有高强度,被认为是再入环境中高性能的抗烧蚀材料。它抗热冲击和抗烧诱导能力极强,且具有良好的化学惰性。碳基复合材料做导弹的鼻锥时,烧蚀率低且烧蚀均匀,从而可提高导弹的突防能力和命中率。碳基复合材料还具有优异的耐磨差性能和高的导热,使其在飞机、汽车刹车片和轴承等方面得到应用。 碳基复合材料不仅具有其它复合材料的优点,同时又有很多独到之处。碳基复合材料的特点如下: (1)整个系统均由碳元素构成,由于碳原子彼此间具有极强的亲和力,使碳基复合材料无论在低温下还是在高温下,都有很好的稳定性。同时,碳素材料高熔点的本性,赋予了该材料优异的耐热性,可以经受住2000℃左右的高温,是目前在惰性气氛中高温力学性能最好的材料。更重要的是碳基复合材料随着温度的升高,其强度不降低,甚至比室温还高,这是其他材料无法比拟的。 (2)密度低(小于2.0g/cm3),仅为镍基高温合金的1/4,陶瓷材料的1/2。 (3)抗烧蚀性能良好,烧蚀均匀可以用于3000 ℃以上高温短时间烧蚀的环境中,可作为火箭发动机喷管、喉衬等材料。 (4)耐摩擦,耐磨损性能优异,其摩擦系数很小,性能稳定,是各种耐磨和摩擦部件的最佳候选材料。 (5)良好的生物相容性,具有与人体骨骼相当的密度和模量,在人体骨骼修复与替代材料方面具有较好的应用前景。 2 碳基复合材料的制备工艺 碳基复合材料制备过程包括:增强体碳纤维及其织物的选择、基体碳先驱体

构造地质学研究现状和发展趋势.docx

构造地质学研究现状和发展趋势 构造地质学是地质学分支学科之一,以岩石圈的各种地质体作为研究对象,探究其组合形式及形成、发育、变形、破坏规律。一般根据其研究对象和研究内容的差异,分为狭义构造地质学和广义构造地质学。狭义构造地质学侧重于对中、小型地质体的研究,主要研究这些构造的几何形态、产状、规模、形成演化等。广义构造地质学的研究范围更加广阔,从地壳演变至岩石圈结构,从重要造山带至板块边界,从显微构造到晶格错位,几乎涵盖了10_8?108cm的所有地质体。近代以来,构造地质学研究获得了空前发展。20世纪60年代以来,板块构造理论体系得以建立和完善;20世纪70年代以来,大陆构造研究得到了重视;20世纪80年代以来,重点研究岩石圈的演化和三维岩石圈的建立;20世纪90年代以来,大陆动力学研究兴起。这些研究使得构造地质学在研究深度和研究广度上取得了重要进展。 1.构造解析构造学本质上是对地质体变形和演化的认识,构造地质学强调野外实地观测,其主要研究方法是构造解析法。构造解析是对地质体空间关系和形成规律的分析解释,内容包括对地质体的几何学、运动学和动力学的分析气几何学解析是指对地质体的产状、规模、组合形式进行研究,进而概化为构造模式。运动学解析主要研究地质体在构造作用中发生的变形和位移。动力学解析是在几何学解析和运动学解析的基础上,反推构造应力的性质、大小、方向,分析和解释该研究区域的构造演化史。 2.研究现状步人20世纪后,构造地质学开始从形态描述逐渐进人对地质体的成因和力学分析研究中,由定性观察转入定量研究,由几何学研究转人运动学、动力学的领域。相关学科的新方法、新思路的引人,使得构造地质学获得了极大地进步,促进了构造地质学和其他学科的交流融合。尤其20世纪60年代后,以板块构造为主的各种新理论的提出,促使构造地质学的发展进入全新阶段。 2.1板块构造理论体系相关研究1968年前后,地质学家归纳了大陆漂移和海底扩张的研究成果,并在此基础上从全球统一的角度提出了板块构造理论,该理论将固体地球表层在垂向上划分为刚性岩石圈和塑性软

砷化镓材料国内外现状及发展趋势

砷化镓材料国内外现状及发展趋势 中国电子科技集团公司第四十六研究所纪秀峰 1 引言 化合物半导体材料的研究可以追溯到上世纪初,最早报导的是1910年由Thiel等人研究的InP材料。1952年,德国科学家Welker首次把Ⅲ-Ⅴ族化合物作为一种新的半导体族来研究,并指出它们具有Ge、Si等元素半导体材料所不具备的优越特性。五十多年来,化合物半导体材料的研究取得了巨大进展,在微电子和光电子领域也得到了日益广泛的应用。 砷化镓(GaAs)材料是目前生产量最大、应用最广泛,因而也是最重要的化合物半导体材料,是仅次于硅的最重要的半导体材料。由于其优越的性能和能带结构,使砷化镓材料在微波器件和发光器件等方面具有很大发展潜力。目前砷化镓材料的先进生产技术仍掌握在日本、德国以及美国等国际大公司手中,与国外公司相比国内企业在砷化镓材料生产技术方面还有较大差距。 2 砷化镓材料的性质及用途 砷化镓是典型的直接跃迁型能带结构,导带极小值与价带极大值均处于布里渊区中心,即K=0处,这使其具有较高的电光转换效率,是制备光电器件的优良材料。 在300 K时,砷化镓材料禁带宽度为1.42 eV,远大于锗的0.67 eV和硅的1.12 eV,因此,砷化镓器件可以工作在较高的温度下和承受较大的功率。 砷化镓(GaAs)材料与传统的硅半导体材料相比,它具电子迁移率高、禁带宽度大、直接带隙、消耗功率低等特性,电子迁移率约为硅材料的5.7倍。因此,广泛应用于高频及无线通讯中制做IC器件。所制出的这种高频、高速、防辐射的高温器件,通常应用于无线通信、光纤通信、移动通信、GPS全球导航等领域。除在I C产品应用以外,砷化镓材料也可加入其它元素改变其能带结构使其产生光电效应,制成半导体发光器件,还可以制做砷化镓太阳能电池。 表1 砷化镓材料的主要用途

新型碳材料的发展

新型碳材料的发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型碳材料的发展 The development trend of Several Kinds of New Carbon Materials 摘要及概述 碳是世界上含量极广的一种元素。碳材料在人类发展史上起着主导性的作用,应用最为出众的一次就是第二次工业革命。有人预言,21世纪是“超碳时代”。金刚石的人工合成、石墨层间化合物的研究、富勒烯(碳笼原子簇)、碳纤维、C60、碳纳米管、碳素系功能材料的发现及研究都取得了令人瞩目的进展。这些以单质碳为基础的无机碳化学给人们展现了无限的想象空间。 关键词 碳材料碳纳米管碳纤维活性炭材料微孔碳金刚石膜富勒烯柔性石墨插层化合物 C/C复合材料纳米碳管生物碳材料核石墨 前言 碳元素是自然界中存在的与人类最密切相关、最重要的元素之一,它具有多样的电子轨道特性(sp、sp2、sp3杂化),再加之sp的异向性而导致晶体的各向异性和其排列的各向异性,因此以碳元素为唯一构成元素的碳材料具有各式各样的性质,并且新碳素相和新型碳材料还不断被发现和人工制得。事实上,没有任何元素能像碳这样作为单一元素可形成如此之多的结构与性质完全不同的物质。可以说碳材料几乎包括了地球上所有物质所具有的性质,如最硬-最软;绝缘体-半导体-良导体;绝热-良导热;全吸光-全透光等。随着科学技术的进步,人们发现碳似乎蕴藏着无限的开发可能性。碳的用途也十分广泛,从史前的木炭、近代工业的人造石墨和炭黑、当代的原子炉用高纯石墨和飞机用碳/碳复合材料刹车片、现今的铿

国内外研究现状及发展趋势

国内外研究现状及发展趋势 世界银行2000年研究报告《中国:服务业发展和中国经济竞争力》的研究结果表明,在中国有4个服务性行业对于提高生产力和推动中国经济增长具有重要意义,它们是物流服务、商业服务、电子商务和电信。其中,物流服务占1997年服务业产出的42.4%,是比重最大的一类。进入21世纪,中国要实现对WTO缔约国全面开放服务业的承诺,物流服务作为在服务业中所占比例较大的服务门类,肯定会首先遭遇国际物流业的竞争。 物流的配送方式从手工下单、手工核查的方式慢慢转变成现今的物流平台电子信息化管理方式,从而节省了大量的人力,使得配送流程管理自动化、一体化。 当今出现一种智能运输系统,即是物流系统的一种,也是我国未来大力研究的方向。它是指采用信息处理、通信、控制、电子等先进技术,使人、车、路更加协调地结合在一起,减少交通事故、阻塞和污染,从而提高交通运输效率及生产率的综合系统。我国是从70年代开始注意电子信息技术在公路交通领域的研究及应用工作的,相应建立了电子信息技术、科技情报信息、交通工程、自动控制等方面的研究机构。迄今为止以取得了以道路桥梁自动化检测、道路桥梁数据库、高速公路通信监控系统、高速公路收费系统、交通与气象数据采

集自动化系统等为代表的一批成果。尽管如此,由于研究的分散以及研究水平所限,形成多数研究项目是针对交通运输的某一局部问题而进得的,缺乏一个综全性的、具有战略意义的研究项目恰恰是覆盖这些领域的一项综合性技术,也就是说可以通过智能运输系统将原来这些互不相干的项目有机的联系在一起,使公路交通系统的规划、建设、管理、运营等各方面工作在更高的层次上协调发展,使公路交通发挥出更大的效益。 1.国内物流产业发展迅速。国内物流产业正处在前所未有的高速增长阶段。2008年,全国社会物流总额达89.9万亿元,比2000年增长4.2倍,年均增长23%;物流业实现增加值2万亿元,比2000年增长1.9倍,年均增长14%。2008年,物流业增加值占全部服务业增加值的比重为16. 5%,占GDP的比重为6. 6%。预计“十一五”期间,我国物流产业年均增速保持在15%以上,远远高于美国的10%和加拿大、西欧的9%。 2.物流专业化水平与服务效率不断提高。社会物流总费用与GDP 的比例体现了一个国家物流产业专业化水平和服务效率。我国社会物流总费用与GDP的比例在近年来呈现不断下降趋势,“十五”期间,社会物流总费用占GDP的比例,由2000年的19.4%下降到2006年的18. 3%;2007年这一比例则下降到18. 0%,标志着我国物流产业的专业化水平和服务效率不断提高。但同发达国家相比较,我国物流

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

机器学习研究现状与发展趋势

机器学习研究现状与发展趋势 计算机科学与软件学院 引言: 机器能否象人类一样能具有学习能力呢?1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断的对奕中改善自己的棋艺。4年后,这个程序战胜了设计者本人。又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。 机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。 机器学习是关于理解与研究学习的内在机制、建立能够通过学习自动提高自身水平的计算机程序的理论方法的学科。近年来机器学习理论在诸多应用领域得到成功的应用与发展,已成为计算机科学的基础及热点之一。 机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。对机器学习的讨论和机器学习研究的进展,必将促使人工智能和整个科学技术的进一步发展。 一.机器学习的发展史 机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。 第一阶段是在50年代中叶到60年代中叶,属于热烈时期。…> 第二阶段是在60年代中叶至70年代中叶,被称为机器学习的冷静时期。 第三阶段是从70年代中叶至80年代中叶,称为复兴时期。 机器学习的最新阶段始于1986年。 机器学习进入新阶段的重要表现在下列诸方面: (1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。 (2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。 (3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。 (4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。 (5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。 二.机器学习分类 1、基于学习策略的分类 学习策略是指学习过程中系统所采用的推理策略。一个学习系统总是由学习和环境两部分组成。由环境(如书本或教师)提供信息,学习部分则实现信息转换,用能够理解的形

新型碳材料

新型碳材料 一.碳材料基础 碳作为生命组织的基本组成之一存在于所有有机材料和所有碳基高分子中。纯的碳很早以前就是重要的无机材料之一。碳有4种同素异形体:石墨、金刚石、富勒烯、卡宾碳,它们各有各自不同的特点及应用,总的来说它们几乎涵盖所有科学家及工程师所需要的特点。例如:石墨是最软的材料之一(显微硬度1GPa),通常用来作为固体润滑剂;金刚石是最硬的材料(显微硬度100GPa),通常作为切割工具;碳纳米管拥有与铜或硅相媲美的导电性。 传统碳材料(Classic Carbons) ?木炭,竹炭(Charcoals) ?活性炭(Activated carbons) ?炭黑(Carbon blacks) ?焦炭(Coke) ?天然石墨(Natural graphite)?石墨电极,炭刷 ?炭棒,铅笔新型碳材料(New Carbons) ?金刚石(Diamond) ?炭纤维(carbon fibers) ?石墨层间化合物(Graphite Intercalation compounds) ?柔性石墨(Flexible graphite) ?核石墨(Nuclear graphite)?储能用炭材料 ?玻璃炭(Glass-like carbons) 其中新型碳材料包含纳米碳材料:富勒烯、碳纳米管、纳米金刚石、石墨烯。二.新型碳材料 1.金刚石 自然界最硬的固体,有天然和人造两类。 钻石就是我们常说的金刚石,它是一种由纯碳组成的矿物。金刚石是自然界中最坚硬的物质,因此也就具有了许多重要的工业用途,如精细研磨材料、高硬切割工具、各类钻头、拉丝模。还被作为很多精密仪器的部件。 金刚石化学性质稳定,具有耐酸性和耐碱性,高温下不与浓HF 、HCl、HNO3作用,只在Na2CO3、NaNO3、KNO3的熔融体中,或与K2Cr2O7和H2SO4的混合物一起煮沸时,表面会稍有氧化;在O、CO、CO2、H、Cl、H2O、CH4的高温气体中腐蚀。 2.碳纤维 碳纤维(carbon fiber),顾名思义,它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。 碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。 化学性质:碳纤维是含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。碳纤维的轴向强度和模量高,无蠕变,耐疲劳性好,比热及

压力传感器研究现状及发展趋势

压力传感器研究现状及发展趋势 传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此,许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器) 之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和发展趋势。 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段[1 ] : (1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S. Smith) 与1945 发现了硅与锗的压阻效应[2 ] ,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为

电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯[3 ] 。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。 (3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术[4 ] ,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。 (4) 微机械加工阶段(1980 年- 今) :上世纪末出现的纳米技术,使得微机械加工工艺成为可能。 通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。 2 压力传感器国内外研究现状 从世界范围看压力传感器的发展动向主要有以下几个方向。 2. 1 光纤压力传感器[5 ]

碳材料介绍

碳材料介绍 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

新型碳材料的发展及简介 摘要:碳是世界上含量十分丰富的一种元素。碳材料在人类发展史上起着主导的作用,其应用最为出众的一次是在第二次工业革命。现代科技的发展使得人类又获得了几种新型的碳材料--碳纳米管、碳纤维、C60、碳素系功能材料等。 关键词:碳材料碳纳米管碳纤维 一、前言 碳是世界上含量及广的一种元素。它具有多样的电子轨道特性(SP、SP2、SP3杂化),再加之SP2的异向性而导致晶体的各向异性和其排列的各向异性,因此以碳元素为唯一构成元素的的碳材料,具有各式各样的性质。在历史的发展中传统的碳材料包括:木炭、竹炭、活性炭、炭黑、焦炭、天然石墨、石墨电极、炭刷、炭棒、铅笔等。而随着社会的发展人们不断地对碳元素的研究又发明了许多新型炭材料:金刚石、碳纤维、石墨层间化合物、柔性石墨、核石墨、储能型碳材料、玻璃碳等。其中新型纳米碳材料有:富勒烯、碳纳米管、纳米金刚石、石墨烯等。 没有任何元素能像碳这样作为单一元素可形成如此多类结构和性质不同的物质,可以说碳材料几乎包括了地球上所有物质所具有的性质,如最硬--最软、绝缘体--半导体--超导体、绝热-良导热、吸光--全透光等。随着时代的变迁和科学的进步,人们不断地发现和利用碳,可以这么说人们对碳元素的开发具有无限的可能性。 自1989年着名的科学杂志《Science》设置每年的“明星分子”以来,碳的两种同素异构体“金刚石”和“C ”相继于1990年和1991年 60 的三位科学家,连续两年获此殊荣,1996年诺贝尔化学奖又授予发现C 60 这些事充分反映了碳元素科学的飞速发展。但是由于碳元素和碳材料具

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

碳材料介绍

新型碳材料的发展及简介 摘要:碳是世界上含量十分丰富的一种元素。碳材料在人类发展史上起着主导的作用,其应用最为出众的一次是在第二次工业革命。现代科技的发展使得人类又获得了几种新型的碳材料--碳纳米管、碳纤维、C60、碳素系功能材料等。 关键词:碳材料碳纳米管碳纤维 一、前言 碳是世界上含量及广的一种元素。它具有多样的电子轨道特性(SP、SP2、SP3杂化),再加之SP2的异向性而导致晶体的各向异性和其排列的各向异性,因此以碳元素为唯一构成元素的的碳材料,具有各式各样的性质。在历史的发展中传统的碳材料包括:木炭、竹炭、活性炭、炭黑、焦炭、天然石墨、石墨电极、炭刷、炭棒、铅笔等。而随着社会的发展人们不断地对碳元素的研究又发明了许多新型炭材料:金刚石、碳纤维、石墨层间化合物、柔性石墨、核石墨、储能型碳材料、玻璃碳等。其中新型纳米碳材料有:富勒烯、碳纳米管、纳米金刚石、石墨烯等。 没有任何元素能像碳这样作为单一元素可形成如此多类结构和性质不同的物质,可以说碳材料几乎包括了地球上所有物质所具有的性质,如最硬--最软、绝缘体--半导体--超导体、绝热-良导热、吸光--全透光等。随着时代的变迁和科学的进步,人们不断地发现和利用碳,可以这么说人们对碳元素的开发具有无限的可能性。 自1989年著名的科学杂志《Science》设置每年的“明星分子”以来,碳 ”相继于1990年和1991年连续两年获此的两种同素异构体“金刚石”和“C 60 殊荣,1996年诺贝尔化学奖又授予发现C 的三位科学家,这些事充分反映了 60 碳元素科学的飞速发展。但是由于碳元素和碳材料具有形式和性质的多样性,从而决定了碳元素和碳材料人有许多不为人们知晓的未开发部分。 二、国内外新型碳材料的发展趋势

国内外公路研究现状与发展趋势

第1章绪论 1.1我国公路现状 交通运输业是国民经济中从事运送货物和旅客的社会生产部门,是国民经济和社会发展的动脉,是经济社会发展的基础行业、先行产业。交通运输主要包括铁路、公路、水运、航空、管道五种运输方式,其中,铁路、水运、航空、管道起着“线”的作用,公路则起着“面”的作用,各种运输方式之间通过公路路网联结起来,形成四通八达、遍布城乡的运输网络。改革开放以来,灵活、快捷的公路运输发展迅速,目前,在综合运输体系中,公路运输客运量、货运量所占比重分别达90%以上和近80%。高速公路是经济发展的必然产物,在交通运输业中有着举足轻重的地位。在设计和建设上,高速公路采取限制出入、分向分车道行驶、汽车专用、全封闭、全立交等较高的技术标准和完善的交通基础设施,为汽车快速、安全、经济、舒适运行创造了条件。与普通公路相比,高速公路具有行车速度快、通行能力大、运输成本低、行车安全、舒适等突出优势,其行车速度比普通公路高出50%以上,通行能力提高了2~6倍,并可降低30%以上的燃油消耗、减少1/3的汽车尾气排放、降低1/3的交通事故率。 新中国成立以来,经过60多年的建设,公路建设有了长足发展。2011年初正值“十一五”规划结束,“十二五”规划伊始。“十一五”时期是我国公路交通发展速度最快、发展质量最好、服务水平提升最为显著的时期。经过4年多的发展,公路交通运输紧张状况已实现总体缓解,基础设施规模迅速扩大,运输服务水平稳步提升,安全保障能力明显增强,为应对国际金融危机、保持经济平稳较快发展、加快经济发展方式转变、促进城乡区域协调发展、保障社会和谐稳定、进一步提高我国的综合国力和国际竞争力作出了重要贡献。 “十一五”前4年,全国累计完成公路建设投资2.93万亿元,年均增长近16%,约为“十一五”预计总投资的1.2倍,也超过了“九五”和“十五”的投资总和。公路建设投资的快速增长,极大地拉动和促进了国民经济的迅猛发展。从公路建设投资占同期全社会固定资产总投资的比重来看,“十一五”期间基本保持在4.5%左右。 在投资带动下,公路网规模不断扩大,截至2009年底,全国公路网总里程达到386万公里,其中高速公路6.51万公里,二级及以上公路42.52万公里,分别较"十五"末增加36.4万公里、2.5万公里和9.4万公里;全国公路网密度由“十五”末的每百平方公里34.8公里提升至40.2公里。预计到2010年底,全国公路网总里程将达到395万公里,高速公路超过7万公里,分别较“十五”末增加45.3万公里与3万公里。农村公路投资规模年均增长30%,总里程将达到345万公里,实现全国96%的乡镇通沥青(水泥)路。 “十一五”期间公路的快速发展,为扩大内需、拉动经济增长作出了突出贡献。特别是2008年以来,为应对国际金融危机,以高速公路为重点,建设步伐进一步加快,“十一五”末高速公路里程将达到"十五"末的1.78倍。“十一五”期间全社会高速公路建设累计投资达2万亿元,直接拉动GDP增长约3万亿元,拉动相关行业产出

国内外研究现状和发展趋势

北京市绿化隔离带可持续经营技术及效益评价 二、项目所属领域国内外研究开发现状和发展趋势 1、由城市绿地到城市林业的发展 城市绿地是城市中一种特殊的生态系统,它是城市系统中能够执行“吐故纳新”负反馈调节机制的子系统。这个系统一方面能为城市居民提供良好的生活环境,为城市生物提供适宜的生境;另一方面能增强城市景观的自然性、促进城市居民与自然的和谐共生。它是城市现代化和文明程度的重要标志。 绿地(green space)一词,各国的法律规范和学术研究对它的定义和范围有着不同的解释,西方城市规划概念中一般不提城市绿地,而是开敞空间(Open Space),我国建国以来一直延用原苏联的绿地概念,包括城市区域内的各类公园、居住区绿地、单位绿地、道路绿化、墓地、农地、林地、生产防护绿地、风景名胜区、植物覆盖较好的城市待用地等。 尽管各国关于开敞空间(或绿地)的定义不尽相同,但它们都强调了开敞空间(或绿地)在城市中的自然属性,即都是为了保持、恢复或建立自然景观的地域。绿地作为城市的一种景观,是城市中保持自然景观,或使自然景观得到恢复的地域,是城市自然景观和人文景观的综合体现,是城市中最能体现生态性的生态空间,是构成城市景观的重要组成部分。在结构上为人工设计的植物景观、自然植物景观或半自然植物景观。绿地在城市中的功能和作用主要包括:组织城市空间的功能、生态功能(改善生态环境的功能、生物多样性保护功能)、游憩休闲功能、文化(历史)功能、教育功能、社会功能、城市防护和减灾功能。 城市绿地发展和研究进程包括:城市绿地思想启蒙阶段、城市绿地规划思想形成阶段、城市绿地理论和方法的发展阶段、城市绿地生态规划和建设阶段。 吴人韦[1]、汪永华[2]、胡衡生[3]等从城市公共绿地的起源开始介绍了国外城市绿地的发展历程,认为国外的城市绿地建设经历了从公园运动(1843~1887)、公园体系(1880~1890)、重塑城市(1898~1946)、战后大发展(1945~1970)、生物圈意识(1970年以后)等一系列由简单到复杂的城市绿地发展过程,其中“重塑城市”阶段提出了“田园城市”和城市绿带概念,绿带网络提供城区间的隔离、交通通道,并为城市提供新鲜空气。“有机疏散”理论中的城市与自然的有机结合原则,对以后的城市绿化建设具有深远的影响。1938年,英国议会通过了绿带法案(Green Belt Act)。1944年的大伦敦规划,环绕伦敦形成一道宽达5英里的绿带。1955年,又将该绿带宽度增加到6~10英里。英国“绿带政策”的主要目的是控制大城市无限蔓延、鼓励新城发展、阻止城市连体、改善大城市环境质量。早在1935年,莫斯科进行了第一个市政建设总体规划,规划在城市用地外围建立10公里宽的“森林公园带”;1960年调整城市边界时,“森林公园带”进一步扩大为10~15公里宽,北部最宽处达28公里;1971年,莫斯科采用环状、楔状相结合的绿地布局模式,将城市分隔为多中心结构。目前,德国城市森林建设已取得了让世人瞩目的成绩,其树种主要为乡土树种,基本上是高大的落叶乔木(栎类、栗类、悬铃木、杨树、核桃、欧洲山毛榉等)[4]。在绿化城

新型碳材料科学(双语)结课论文 XXX

华东理工大学化工学院2014(春) 本科生双语选修课《新型碳材料科学》课程考核学号 10110200 姓名 XXX 任课老师乔文明等成绩 论文题目:

摘要 石墨烯是碳的又一同素异形体,具有独特的二维结构和优异的力学、电学、光学、热学等性能,成为富勒烯和碳纳米管之后的又一研究热点。全面综述了近几年来石墨烯的制备方法,详细讨论了微机械剥离法、化学剥离法、化学合成法、外延生长法、电孤法、化学气相沉积法的优缺点,并针对制备方法存在的产量低、结构不稳定、高污染等问题,提出了一些大规模可控制备高质量石墨烯的建议。还结合石墨烯的结构和特性,概括了石墨烯在复合材料、微电子、光学、能源、生物医学等领域的应用进展,并展望了其主要研究方向和发展趋势。 关键词石墨烯制备方法应用 Abstract As an allotrope of carbon,graphene has become a research hotspot due to its unique two-dimensional structure and excellent mechanical,electrical,optical and thermal properties.Synthesis of graphene via different ap—proacbes,such as micro mechanical stripping,chemical stripping,chemical synthesis,epitaxial growth,arc dis—charge,and chemical vapor deposition,are discussed in detail,and strategies for producing homogeneous graphene with improved yield and structural stability while limiting its pollution are proposed.Also application progress of gre—phene in polymer composites,micro electronics,optics,energy and biomedicine are summarized,and the main re—search direction and development trend are imagined. Key words graphene,preparation methods,application

中国管理研究的现状及发展前景

徐淑英《光明日报》( 2011年07月29日11 版) 过去20多年来,中国管理学研究关注西方情境的研究课题,验证西方发展出来的理论,并借用西方的研究方法论。而旨在解决中国企业面临的问题和针对中国管理现象提出有意义的理论解释,这方面的研究却迟滞不前。围绕到底是追求“中国管理理论”(即在中国管理情境中检验西方理论)还是“管理的中国理论”(即针对中国现象和问题提出自己的理论)的争论,很多学者作出了积极探索。中国的管理学研究者应遵循科学探究的自主性原则,保持对常规科学局限性的警觉,从事既能贡献普遍管理知识,又能解决中国管理问题的研究。 国际管理学研究中的一个现象 全球化商业活动的增加,不仅使得全球化的跨国公司对管理知识的需求大大增加,而且那些处于新兴经济体(比如俄罗斯、印度和中国)中的公司,由于在国际市场上扮演越来越重要的角色,也非常渴望得到管理实践所需的知识。除了新兴经济体外,许多发达地区的管理研究也十分活跃。有学者观察到了国际学者的一种明显偏好:从主流管理学文献(基本上是基于北美,特别是美国的文献)中套用已有的理论、构念和方法来研究本土的现象。这导致了JamesMarch(詹姆斯·马奇)所认为的组织研究的“趋同化”。这个趋势是值得注意的,因为它有可能放慢有效的全球管理知识的发展速度,也会阻碍科学的进步。这样的趋势在中国也是存在的。

科学研究总是有目的的:执著于寻找真相(reality)和追求真理(truth)。科学的研究方法确保了科学家的发现是接近于真理的,这也是所有科学研究应该达到的严谨性(rigor)标准。然而对于管理学这门应用科学来说,真理本身是不够的。管理研究的第二个目标是获取有益于提高实践水平的知识,这就是管理学者应该达到的切题性(re levance)标准。但现在大部分的中国学者都是严谨有余,切题不足。 目前,套用西方发展起来的理论在中国进行演绎性研究主导了中国管理学研究领域。用这种方法进行的研究倾向于把成果发表在国际性杂志上,尤其是国际顶尖杂志。这类研究成果验证了已有理论或者对其情境性边界进行了延伸研究,说明了如何使用现有研究成果来解释一些新情境下出现的独特现象和问题。但这样的研究倾向对现有的理论发展只能提供有限的贡献,因为它的目的并非寻找对地方性问题的新的解释。这种方法也限制了对中国特有的重要现象以及对中国有重要影响的事件的理解。 笔者并不认为学者的目标就是发展新的理论,而是提请注意这一事实:绝大部分中国的研究都不约而同地采用西方已有理论来解释中国现象。这一趋势形成的原因可以从两个方面进行解释。 首先是因为缺乏先进的科学研究方法的训练和对科学目的的正确理解。一些研究者错误地认为,科学的目的是发表文章,而非寻找对重要现象的恰当理解和解释。中国学者可以很快学会如何正确使用研

新型生物质碳材料的研究进展

新型生物质碳材料的研究进展 摘要: 碳材料是重要的结构材料和功能材料,利用生物质原料制备各种碳材料,可以降低碳材料生产成本,实现碳材料的可持续发展。本文较系统地介绍了新型生物质碳材料的制备方法以及应用前景,总结了近年来国内外生物质碳纤维、生物质活性碳纤维、生物质碳分子筛等碳材料的相关研究报道。 关键词: 生物质;碳纤维;活性碳纤维;碳分子筛 碳材料以其优良的耐热性能、高导热系数、良好化学惰性、高电导率等优点,被广泛应用于冶金、化工、机械、电子、航空等领域。近年来,由于化石资源的短缺,碳材料的发展和应用受到了限制。生物质资源如林业生物质、农业废弃物、水生植物、能源植物等属于可再生资源而成为化石资源的替代品,而且大部分生物质资源都含有丰富的碳元素,成为制备各种碳材料的丰富原料。自碳材料诞生起,以可再生的生物质资源为原料制备各种碳材料一直都是研究者关注的重点.。 1. 新型生物质碳材料 目前,研究较多和应用比较广泛的新型生物质碳材料有各种生物质碳纤维、生物质活性碳纤维、生物质碳分子筛。 1.1 生物质碳纤维 碳纤维是纤维状的碳素材料,含碳量90%以上。它是利用各种有机纤维在惰性气体中、高温状态下炭化而制得。作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工

性,是先进复合材料最重要的增强材料。由于其特有的高比强度、高拉伸模量、低密度、耐高温、抗烧蚀、低热膨胀等特殊性能,已成为发展航天航空等尖端技术和军事工业必不可少的新材料。目前碳纤维制备方法主要有有机纤维法和气相生长法。以各种生物质原料为前驱体的碳纤维,其制备大多采用有机纤维法,即采用不同的有机纤维为原料,经纺丝、氧化、炭化、石墨化、表面处理、上胶、卷绕及包装,分别制得各种不同性能的碳纤维和石墨纤维。 1.2 生物质活性碳纤维 活性碳纤维(activatedcarbonfiber,ACF)是将碳纤维及可炭化纤维经过物理活化、化学活化或两者兼有的活化反应所制得的具有丰富和发达孔隙结构的功能型碳纤维。常使用的活化剂是水蒸气和二氧化碳(CO2)或两者同时使用。活性碳纤维多用作吸附材料、催化剂载体、电极材料等。有别于作为增强体的碳纤维ACF的力学性能并不高,不能用作结构材料件;但由于比一般活性碳有着更为优越的孔隙结构和形态,成为各国积极开发的第三代活性碳吸附材料。1.3生物质碳分子筛 碳分子筛(carbonmolecularsieves,简记CMS)是在20世纪末期发展起来的一种具有较为均匀微孔结构的碳质吸附剂材料。它具有接近被吸附分子直径的楔形狭缝状微孔,能够把立体结构大小有差异的分子分离开来。作为碳质吸附剂,CMS与活性碳在化学组成上并没有本质区别,但是CMS的孔隙率远低于活性碳,其孔隙以微孔为主,微孔孔径分布集中在013~110nm范围内。碳分子筛的吸附分离是基于

相关文档
相关文档 最新文档