文档库 最新最全的文档下载
当前位置:文档库 › 压轴题之轨迹问题

压轴题之轨迹问题

压轴题之轨迹问题
压轴题之轨迹问题

1、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.

问题思考:

如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.

(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.

问题拓展:

(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O 所经过的路径的长.

(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB 的最小值.

2、正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,

AB上,将△RPQ沿着边AB,BC,CA逆时针连续翻转(如图所示),直至点P第一次回到原来位

置,则点P运动的路径长为_______ cm.(结果保留π)

3、如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC

于D,当点C在⊙O上运动一周,点D运动的路径长为_______

4、如图,一块边长为6cm的等边三角形木板ABC,在水平桌面上绕C点按顺时针方向旋转到△A′B′C′的位置,则边AB的中点D运动的路径长是_______

5、如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.

(1)求O点所运动的路径长;

(2)O点走过路径与直线L围成图形的面积.

6、如图,OA⊥OB,垂足为O,P、Q分别是射线OA、OB上两个动点,点C是线段PQ的中点,且PQ=4.则动点C运动形成的路径长是______

7、如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,内心I所经过的路径长为______.

8、如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=____ ,PD=____

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;

(3)如图2,在整个运动过程中,求出线段PQ中点M所

经过的路径长.

9、如图,在直角坐标系中,A点坐标为(0,6),B点坐标为(8,0),点P沿射线BO以每秒2个单位的速度匀速运动,同时点Q从A到O以每秒1个单位的速度匀速运动,当点Q运动到点O时两点同时停止运动.

(1)设P点运动时间为t秒,M为PQ的中点,请用t表示出M点的坐标为________ (2)设△BPM的面积为S,当t为何值时,S有最大值,最大值为多少?

(3)请画出M点的运动路径,并说明理由;

(4)若以A为圆心,AQ为半径画圆,t为何值时⊙A与点M的运动路径只有一个交点?

10、在等腰梯形中AD//BC,AB=CD=5cm,AD=2cm,AE⊥BC于点E,DF⊥BC于点F,AE=4cm。点M、N分别在线段AE、DF上,顺次连接B、M、N、C,线段BM,MN,NC,CB所围成的封闭图形记为P,若点M在线段AE上运动时,点N也随之在线段DF上运动,使图形P的形状发生改变,但图形P的面积始终为15cm2.设EM=xcm,FN=ycm,解答:①求y与x之间的函数关系式,并写出自变量x的取值范围;②当x取何值时,图形P成为等腰梯形?当x取何值时,图形P成为三角形?③直接写出线段MN在运动过程中所能扫过的区域的面积

11、在直角坐标系中,O是坐标原点,点A坐标为(0,-1),点C是x轴上一个动点。

(1)如图1,△AOB和△BCD都是等边三角形,当点C在x轴上运动时,请探究点D的运动轨迹;(2)如图2,△ABO和△ACD都是等腰直角三角形,当点C在x轴上运动时,请探究点D的运动轨迹;(3)如图3,四边形OABE是正方形,请你画出正方形BCDF(BCDF按照逆时针顺序),并探究当点C 在x轴上运动时,点D的运动轨迹。

12、如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);

(2)当△APD是等腰三角形时,求m的值;

(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

13、如图,抛物线y=ax2+bx+3过点A(1,0),B(3,0),与y轴相交于点C.

(1)求抛物线的解析式;

(2)若点E为抛物线对称轴上的一点,请探索抛物线上是否存在点

F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,请求

出所有点F的坐标;若不存在,请说明理由;

(3)若点P为线段OC上的动点,连接BP,过点C作CN垂直于直

线BP,垂足为N,当点P从点O运动到点C时,求点N运动路径的

长.

14、如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B 重合).

(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?

(2)求点C在x轴上移动时,点P所在函数图象的解析

式.

15、如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA,过点P作PD⊥OB于点D.

(1)填空:PD的长为用含t的代数式表示);(2)求点C的坐标(用含t的代数式表示);(3)在点P从O向A运动的过程中,△PCA能否成为直角三角形?求t的值.若不能,说理由;(4)填空:在点P从O向A运动的过程中,点C运动路线的长为 .

16、等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P. (1)若AE=CF.①求证:AF=BE,并求∠APB的度数.②若AE=2,试求AP AF

的值.

(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长

.

17、如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接

BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________ .

20、在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.

(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;

(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;

(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).

18、如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作⊙O,点F为⊙O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与⊙O相交于点G,连接CG.

(1)试说明四边形EFCG是矩形;

(2)当⊙O与射线BD相切时,点E停止移动.在点E移动的过程中,

①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;

②求点G移动路线的长.

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

圆的标准方程和一般方程

§4-1 圆的标准方程和一般方程 1. 圆心为A (a ,b ),半径长为r 的圆的方程可表示为 ,称为圆的标准方程. 2. 圆的一般方程为 , 其中圆心是 ,半径长为 . 圆的一般方程的特点: ① x 2和y 2的系数相同,不等于0; ② 没有xy 这样的二次项; ③ 2240D E F +-> 3.求圆的方程常用待定系数法:大致步骤是: ①根据题意,选择适当的方程形式; ②根据条件列出关于a,b,c 或D,E,F 的方程组; ③解出a,b,c 或D,E,F 代入标准方程或一般方程. 另外,在求圆的方程时,要注意几何法的运用. 4. 点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)当满足 时,点在圆外; (2)当满足 时,点在圆上; (3)当满足 时,点在圆内.

1. 圆22(2)(3)2x y -++=的圆心和半径分别是( ). A .(2,3)-,1 B .(2,3)-,3 C . (2,3)- D .(2,3)- 2. 方程224250x y x y m ++-+=表示圆的条件是 A. 114 m << B. 1m > C. 14 m < D. 1m < ( ) 3.若(2,1)P -为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程是( ). A. 30x y --= B. 230x y +-= C. 10x y +-= D. 250x y --= 4. 一曲线是与定点O (0,0),A (3,0)距离的比是12 的点的轨迹,求此曲线的轨迹方程.

5. 求下列各圆的方程: (1).过点(2,0) -; A-,圆心在(3,2) (2).求经过三点(1,1) C-的圆的方程. B、(4,2) A-、(1,4) 6. 一个圆经过点(5,0) x y --=上,求此圆的 B-,圆心在直线3100 A与(2,1) 方程.

求圆的轨迹方程练习题汇总

求圆的轨迹方程练习 1、 点P 00(,)x y 是圆224x y +=上的动点,点M 为OP (O 为原点)中点,求 动点M 的轨迹方程。 2、 已知两定点A(-2,0)、B(1,0),若动点P 满足|PA |=2|PB |,则点P 轨迹方程所包围的图形面积等于 3、 等腰三角形ABC 底边一个端点B(1,-3),顶点A(0,6),求另一个端点C 的轨迹方程。 4、设A 为圆22(1)1x y -+=上的动点,PA 是圆的切线且|PA |=1,求P 的轨迹方程。 5、 已知BC 是圆2225x y +=的动弦,且|BC |=6,求BC 中点轨迹方程。 6、 长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,求线 段AB 的中点的轨迹方程。 7、 已知点M 与两个定点O (0,0),A(3,0)的距离的比为12 ,求点M 的轨迹方程。 8、 已知半径为1的动圆与圆22(5)(7)16x y -++=相切,求动圆圆心轨迹方程。 9、 点A(0,2)是圆2216x y +=内定点,B,C 是这个圆上的两动点,若BA CA ⊥, 求BC 中点M 的轨迹方程,并说明它的轨迹。 10、 已知点M (x,y )与两个定点A 、B 距离的比是一个正数m ,求点M 的 轨迹方程,并说明轨迹是什么图形(考虑 11m m =≠和两种情形) 1、22x y 1+= 2、4π 3、22(6)82x y +-=(除(-1,15)、(1,-3)) 4、22(1)2x y -+= 5、2216x y += 6、222x y a += 7、 224x+1y +=() 8、22(5)(7)x y 25-++=或22(5)(7)x y 9-++= 9、解法一:设BC 中点M (x,y)

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点 M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(2 2 =++y x 上 运动,求AB 的中点M 的轨迹。 在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为 32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2 =36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. M B A

解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2 )又|AR |=|PR |=22)4(y x +-所以有(x -4)2 +y 2 =36-(x 2 +y 2 ),即x 2 +y 2 -4x -10=0因此点R 在一 个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 0,241+= +y y x ,代入方程x 2+y 2 -4x -10=0,得2 44)2()24(22+? -++x y x -10=0整理得:x 2+y 2 =56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴 是PBQ ∠的角平分线,证明直线l 过定点。 二、椭圆类型: 3、 定义法:(选修2-1P 50第3题)点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为 2 1 ,求点M 的轨迹方程.(圆锥曲线第二定义) 讨论:当这个比例常数不是小于1,而是大于1,或等于1是的情形呢?(对应双曲线,抛物线)

圆的一般方程与位置关系

11-12学年度下学期高一数学练习2(02)12-2-17 圆的一般方程、直线与圆的位置关系、圆与圆的位置关系 一.选择题.共6题小题,每题5分.每题有且仅有一个选项正确,所选答案填写到后面指定的表中. 1.两个圆C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线的条数是( ) A . 1 B . 2 C . 0或3 D .4 2.若两圆x 2+y 2=4与x 2+y 2-2ax +a 2-1=0相内切,则a 等于 ( ) A . 1 B . 1- C . 1或1- D .3.过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,则圆C 的方程为 ( ) A . 22(3)2x y -+= B . 22(3)2x y ++= C. 22(3)1x y -+= D. 22(3)1x y ++= 4.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦长 ( ) A . 2 B . C. 2 D. 5.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是 ( ) A. (-13,13) B. [13,13]- C. (-26,26) D. [26,26]- 6.若直线y =x +k 与曲线x =1-y 2 恰有一个公共点,则满足条件 ( ) A. k =-2 B.k ∈ (-1,1] C . k =±2或k ∈[-1,1] D . k =-2或k ∈ (-1,1] 二.填空题.共4道小题每小题5分.将最简的答案填在本大题后面指定的横线上. 7.与直线x +y -2=0和圆x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是___ _ ____. 8.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b 应满足的关系式是____ ____. 9.已知圆C 过点(1,0),且圆心在x 轴的正半轴上.直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为____ ____. 10.若圆x 2+y 2-ax +2y +1=0和圆x 2+y 2=1关于直线y =x -1对称,过点C (-a ,a )的圆P 与y 轴相切,则圆心P 的轨迹方程是___ _____.

轨迹方程的求法及典型例题(含答案)

" 轨迹方程的求法 一、知识复习 轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法 注意:求轨迹方程时注意去杂点,找漏点. 一、知识复习 例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。 { ]

例2、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠ APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. $ 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) ) 又|AR |=|PR |= 2 2)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,2 41+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. |

例3、如图, 直线L 1和L 2相交于点M, L 1 L 2, 点N L 1. 以A, B 为端点的曲线段C 上的 任一点到L 2的距离与到点N 的距离相等. 若 AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程. 、 解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。 依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点。 @ 设曲线段C 的方程为)0,(),0(22 >≤≤>=y x x x p px y B A , 其中x A,x B 分别为A ,B 的横坐标,P=|MN|。 ) 2(92)2() 1(172)2(3||,17||)0,2 (),0,2(22=+-=++==- A A A A px p x px p x AN AM p N p M 得 由所以 由①,②两式联立解得 p x A 4= 。再将其代入①式并由p>0解得??????====2214A A x p x p 或 因为△AMN 是锐角三角形,所以A x p >2,故舍去???==2 2A x p ∴p=4,x A =1

高考数学解析几何-轨迹方程的求法专题复习(专题训练)

专题八、解析几何(三) 点的轨迹方程 1.求点的轨迹方程的常用方法: (1)定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可根据已知条件和曲线的固有定义,求出轨迹方程。 (2)直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以用点P 的坐标(x ,y )表示出那些等量关系,化简即可得到轨迹方程。 (3)参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),再通过消去参数t ,得到关于x ,y 的轨迹方程F (x ,y )=0。 (4)代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 (5)几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标即可得到轨迹方程。 (6)点差法:圆锥曲线中与弦的中点有关的问题可用点差法。 (7)交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题先求解两动曲线方程组,得出它们的交点(含参数)坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法、点差法并用。 2.求轨迹方程的注意事项:求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。 (一)用定义法求点的轨迹方程 例1. 一动圆与圆22650x y x +++=外切,同时与圆22 6910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

求动点的轨迹方程(方法例题习题答案)

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法” 求动点轨迹的常用方法 动点P的轨迹方程是指点P的坐标(X, y)满足的关系式。 1.直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题已知直角坐标平面上点Q(2,0)和圆C: x2+y2=1,动点M到圆C的切线长等与MQ 求动点M的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN切圆C于NO 2 2 依题意:MQ=IMN ,即MQl = MN 而MNl=Mo — NO ,所以 2 2 MQ =IMO -1 2 2 2 2 (x-2) +y =X +y -1 化简得:X= 5。动点M的轨迹是一条直线。 2.定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出轨迹方程。 例题:动圆M过定点P (- 4,0 ),且与圆C:X2+y2—8χ = 0相切,求动圆圆心M的轨迹方程。解:设M(x,y),动圆M的半径为r。若圆M与圆C相外切,则有∣ MC I =r + 4

若圆M与圆C相内切,则有∣ MC ∣ =r-4 而∣ MP ∣ =r,所以 ∣ MCl - ∣ MP ∣ =± 4 动点M到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M的轨迹为双曲线。其中a=2, C=4。 动点的轨迹方程为: 2 2 4 12 3. 相关点法 若动点P(X,y)随已知曲线上的点Q(χ0,y0)的变动而变动,且χ0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点 P的轨迹方程。这种方法称为相关点法。例题:已知线段AB的端点B 的坐标是(4,3),端点A 在圆C :(x 1)2y^4 上运动,求线段AB 的 中点M的轨迹方程。 解:设M(x,y), A(X A V B),依题意有: 4 X A 3 y A X= , y= 2 2 则:X A=2X-4, y A =2y-3,因为点A(X A V B)在圆C: (x 1)2y^4 上,所以(2X-4)2 (2y -3)2=4

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

高考专题训练专题复习——求轨迹方程

专题复习——求轨迹方程 一. 本周教学内容: 专题复习——求轨迹方程 (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )() () (0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ?? ?=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 【典型例题】 例1. 的的中点求线段为定点上的动点是椭圆点M AB ,a , ,A b y a x B )02(122 22=+ 轨迹方程。 分析:题中涉及了三个点A 、B 、M ,其中A 为定点,而B 、M 为动点,且点B 的运动是有规律的,显然M 的运动是由B 的运动而引发的,可见M 、B 为相关点,故采用相关点法求动点M 的轨迹方程。 解:设动点M 的坐标为(x ,y ),而设B 点坐标为(x 0,y 0) 则由M 为线段AB 中点,可得

高三数学一轮复习曲线的轨迹方程的求法

2009届一轮复习曲线的轨迹方程的求法 高考要求: 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. 重难点归纳: 求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法. (1)直接法:直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求. (3)相关点法:根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程. 求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念. 典型题例示范讲解: 例1如图所示,已知P (4,0)是圆x 2+y 2 =36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的 顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线 的轨迹方程. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2 ) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2 +y 2 =36-(x 2 +y 2 ),即x 2 +y 2 -4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2 +y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2 =56,这就是所求的轨迹方程. 例2设点A 和B 为抛物线.y 2 =4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,

轨迹方程的求法及典型例题

轨迹方程的求法 一、知识复习 轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法 注意:求轨迹方程时注意去杂点,找漏点. 一、知识复习 例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。

例2、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |= 2 2)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,2 41+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.

例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若?AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程. 解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。 依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点。 设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A , 其中x A,x B 分别为A ,B 的横坐标,P=|MN|。 ) 2(92)2() 1(172)2(3||,17||)0,2 (),0,2(22=+-=++==- A A A A px p x px p x AN AM p N p M 得 由所以 由①,②两式联立解得 p x A 4= 。再将其代入①式并由p>0解得??????====2214A A x p x p 或

(整理)圆的一般方程

《圆的标准方程》教学设计 (教师用) 成都市洛带中学刘德军 一、教材分析 学习了“曲线与方程”之后,作为一般曲线典型例子,安排了本节的“圆的方程”。圆是学生比较熟悉的曲线,在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究它的方程,它与其他图形的位置关系及其应用王新敞同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其它圆锥曲线的方程奠定了基础王新敞也就是说,本节内容在教材体系中起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用。 二、学情分析 学生在初中的学习中已初步了解了圆的有关知识,本节将在上章学习了曲线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。 三、教学目标 (一)知识与技能目标 (1)会推导圆的标准方程。 (2)能运用圆的标准方程正确地求出其圆心和半径。 (3)掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程。 (二)过程与方法目标 (1)体会数形结合思想,初步形成代数方法处理几何问题能力。 (2)能根据不同的条件,利用待定系数法求圆的标准方程。 (三)情感与态度目标 圆是基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;圆在生活中很常见,通过圆的标准方程,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育. 四、重点、难点、疑点及解决办法 1、重点:圆的标准方程的推导过程和圆标准方程特征的理解与掌握。 2、难点:圆的标准方程的应用。 3、解决办法:充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法。 五、教学过程 首先通过课件展示生活中的圆,那么我们今天从另一个角度来研究圆。 (一)复习提问 在初中,大家学习了圆的概念,哪一位同学来回答? 问题1:具有什么性质的点的轨迹称为圆? 平面内与一定点距离等于定长的点的轨迹称为圆(教师在课件上画圆).

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,, ,,动点()P x y ,满足2PA PB x = ·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

相关文档
相关文档 最新文档