文档库 最新最全的文档下载
当前位置:文档库 › 高考含绝对值不等式的解法

高考含绝对值不等式的解法

高考含绝对值不等式的解法
高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法

类型一:形如)()(,)(R a a x f a x f ∈><型不等式

解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.

1、当0>a 时,

a x f a a x f <<-?<)()(

a x f a x f >?>)()(或a x f -<)(

2、当0=a

a x f <)(,无解

?>a x f )(使0)(≠x f 的解集

3、当0

a x f <)(,无解

?>a x f )(使)(x f y =成立的x 的解集.

例1 (2008年四川高考文科卷)不等式22<-x x 的解集为(

A.)2,1(-

B.)1,1(-

C.)1,2(-

D.)2,2(-

解:

因为

22<-x x ,

所以

222<-<-x x .

?????<-->+-0

20222x x x x , 解得:

?

??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><

解法:将原不等式转化为以下不等式进行求解:

b x f a a b b x f a <><<)()0()( 或a x f b -<<-)(

需要提醒一点的是,该类型的不等式容易错解为:

b x f a a b b x f a <><<)()0()(

例2 (2004年高考全国卷)不等式311<+

A .)2,0( B.)4,2()0,2(Y -

C .)0,4(- D.)2,0()2,4(Y --

解:

311311<+

20<

类型三:形如)()(x g x f <,)()(x g x f >型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下

解法:把)(x g 看成一个大于零的常数a 进行求解,即:

)()()()()(x g x f x g x g x f <<-?<,

)()()()(x g x f x g x f >?>或)()(x g x f -<

例3 (2007年广东高考卷)设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是

解:

53125)(≤++-?≤x x x f

2122212+-≤-≤-?+-≤-?x x x x x

???+-≤--≥-?2

12212x x x x 111

1≤≤-????≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:

22

)()()()(x g x f x g x f

0)]()()][()([0)]([)]([22<-+?<-?x g x f x g x f x g x f 例4 (2009年山东高考理科卷)不等式0212<---x x 的解集为

解:

2120212-<-?<---x x x x

0)2()12(212222

2<---?-<-?x x x x

0)]2()12)][(2()12[(<----+-?x x x x 11<<-?x 所以原不等式的解集为{}11<<-x x 类型五:形如)()(),()(x f x f x f x f ><型不等式

解法:先利用绝对值的定义进行判断,再进一步求解,即:

)()(x f x f <,无解

0)()()(x f x f x f

例5 (2004年海南卷)解关于x 的不等式

a x x a x x +-->+--1111 解:

011

1111<+--?+-->+--a x x a x x a x x a x a x -<-?<+-?1

1011 (1) 当0=a 时,原不等式等价于:

101

1a 时,原不等式等价于:

111011<<-?<-<-x a

x a

(3) 当0

01<-x 或a

x 11->- 1

x 11-

> 综上所述

(1) 当0=a 时,原不等式的解集为: {}1

(2) 当0>a 时,原不等式的解集为:

?

?????<<-111x a x (3) 当0

????

??->

()()()m n n x m x n x m x c n x m x c -=---=---≥?---≥max ;

()()()m n n x m x n x m x c n x m x c -=---=---≤?-+-≤min ;

例6 (2010高考安徽卷)不等式a a x x 3132-≤--+对任意的实数恒成立,则实数a 的取值范围是( )

A .(][)+∞-∞-,41,Y B.(][)+∞-∞-,52,Y

C.[]2,1

D.(][)+∞-∞-,21,Y

解:

设函数

()()41313)(=--+≤--+=x x x x x f

所以

4)(max =x f 而不等式a a x x 3132-≤--+对任意的实数x 恒成立

故41432≥-≤?≥-a a a a 或,故选择A

类型七:形如

,)()(a x g x f <-()为常数a a x g x f >-)()(

)()()(x h x g x f <-,)()()(x h x g x f >-

,)()(a x g x f <+()为常数a a x g x f >+)()(

)()()(x h x g x f <+,)()()(x h x g x f >+

1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,去掉所求解集,亦可集合图像进行求解.

例7 (2009年高考福建理科卷)解不等式112+<-x x

分析:找出零点:

21,0=

=x x 确定分段区间:

2

1,210,0≥<≤

解:(1)当0

112+-<+-x x

解得:

0>x

因为 0

(2)当2

10<≤x 时,原不等式可化为: 112+<+-x x

解得:

0>x

又因为

2

1<≤x x , 所以

2

1<

解得:

2

2

1≥x , 所以

22

1<≤x 综上所述,原不等式的解集为:{}20<

2、特别地,对于形如

,)()(a x g x f <+()为常数a a x g x f >+)()(

)()()(x h x g x f <+,)()()(x h x g x f >+

型不等式的解法,除了可用零点分段法外,更可转化为以下不等式,即:

?<+)()()(x h x g x f

??

???<-<+)()()()()()(x h x g x f x h x g x f )()()(x h x g x f >+?)()()(x h x g x f >+或)()()(x h x g x f >-

例8 (2009年辽宁高考理科卷)设函数a x x x f -+-=1)(

(1)若1-=a ,解不等式3)(≥x f

(2)如果,2)(,≥∈?x f R x 求a 的范围

解:

(1) 当时,1-=a

11)(++-=x x x f

由3)(≥x f 得:

311)(≥++-=x x x f

即:

()()311≥++-x x 或 ()()311≥+--x x

解得:

32≥x ,即:23-≤x 或 2

3≥x 故不等式3)(≥x f 的解集为:

?

?????≥-≤2323x x x 或 (2)由2)(≥x f 得:

21≥-+-a x x

即:

()()21≥-+-a x x 或 ()()21≥---a x x

即:

()212≥+-a x 或 21≥-a

因为2)(,≥∈?x f R x 恒成立, 所以21≥-a 成立,解得:

1-≤a 或 3≥a

故a 的取值范围为:

(][)+∞-∞-,31,Y

绝对值不等式一直是高中教学中的一个难点,我们通过化归思想将其进行等价变换,从而避免了繁琐的讨论,减小了运算量,以上所介绍的七种类型的含有绝对值的不等式总体上囊括了近几年高考中有关的题目,当然方法可能并不为一,在解决此类问题的时候很多人也比较喜欢使用数形结合的方法来处理,这其实也体现了数学形式多样化的统一美.

方法是多种多样的,只是无论多么优秀的方法最终也是用来解题的工具,如果我们仅仅是停留在最求方法的多样化而忽略了数学的本质——思想,那么就有点得不偿失了.

高考数学经典专题:绝对值不等式含参数成立问题(含详解答案)

高考数学经典专题:绝对值不等式中含参数成立问题 1.已知函数()|1||2|f x x x m m =-+-∈R ,. (1)当3m =时,解不等式()3f x ≥; (2)证明:当0m <时,总存在0x 使00()21f x x <-+成立 2.已知函数()32f x x =-. (1)若不等式213f x t ? ?+≥- ???的解集为11,,33????-∞-?+∞ ??????? ,求实数t 的值; (2)若不等式()3133y y f x x m -≤+++?对任意x ,y 恒成立,求实数m 的取值范 围. 3.已知函数()2f x x a =-,()|1|g x a x =-,a R ∈. (Ⅰ)若1a =,求满足()(1)1g x g x +->的实数x 的取值范围; (Ⅱ)设()()()h x f x g x =+,若存在12,[2,2]x x ∈-,使得()()216h x h x -≥成立,试求实数a 的取值范围. 4.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -剟 . (1)求a 的值; (2)若()()3 f x f x k +-<存在实数解,求实数k 的取值范围. 5.已知函数f (x )=|2x ﹣a |+|x ﹣a +1|. (1)当a =4时,求解不等式f (x )≥8; (2)已知关于x 的不等式f (x )2 2 a ≥在R 上恒成立,求参数a 的取值范围. 6.已知定义在R 上的函数2 ()|24|f x x a x a =-+-. (1)当1a =时,解不等式()5f x ≥; (2)若2()4f x a -≥对任意x ∈R 恒成立,求a 的取值范围. 7.已知,a b 均为实数,且3410a b += . (Ⅰ)求22a b +的最小值; (Ⅱ)若2232x x a b +--≤+对任意的,a b ∈R 恒成立,求实数x 的取值范围.

绝对值不等式,高考历年真题

温馨提示: 高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。 【考点35】绝对值不等式 2009年考题 1、(2009全国Ⅰ)不等式 1 1 X X +-<1的解集为( )(A ){x }}01{1x x x ??? (B){ }01x x ??(C ){}10x x -?? (D){ }0x x ? 【解析】选D. 0040)1()1(|1||1|11 1 22

【解析】原不等式等价于不等式组①221(2)0x x x ≥??---解得 又 0,x x <∴不存在; 当1 02 x ≤< 时,原不等式可化为211,0x x x -+<+>解得 又11 0,0;22 x x ≤<∴<< 当1 11 ,211,222 22 x x x x x x ≥-<+<≥∴≤<原不等式可化为解得又 综上,原不等式的解集为|0 2.x x <<

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

绝对值不等式例题解析

典型例题一 例1 解不等式2321-->+x x 分析:解含有绝对值的不等式,通常是利用绝对值概念? ??<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. 解:令01=+x ,∴ 1-=x ,令032=-x ,∴2 3=x ,如图所示. (1)当1-≤x 时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解. (2)当2 31≤ <-x 时,原不等式化为2)32(1--->+x x . ∴ 0>x ,故2 30≤x 时,原不等式化为 2321-->+x x .∴6<-+-有解的条件为32 7<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ;

当4>x 时,得a x x <-+-)3()4(,即27+< a x ,有解的条件为42 7>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a . 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的距离之和小于a . 因为1=AB ,故数轴上任一点到A 、B 距离之和大于(等于1),即134≥-+-x x ,故当1>a 时,a x x <-+-34有解. 典型例题三 例3 已知),0(,20,2M y a b y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b y a x --,. 证明:ab ya ya xy ab xy -+-=- ε=ε?+ε?<-?+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法. 典型例题四 例4 求证 b a a b a -≥-22 分析:使用分析法 证明 ∵0>a ,∴只需证明b a a b a -≥-222,两边同除2 b ,即只需证明 b a b a b b a -≥-2222 2,即 b a b a b a -≥-22)(1)( 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

绝对值不等式解法问题—7大类型专题

绝对值不等式解法问题—7大类型 类型一:形如型不等式 解法:根据的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当时, 或 2、当 ,无解 使的解集 3、当时, ,无解 使成立的的解集. 例1不等式的解集为() A. B. C. D. 解: 因为,所以. 即 , 解得:

, 所以,故选A. 类型二:形如型不等式 解法:将原不等式转化为以下不等式进行求解: 或 需要提醒一点的是,该类型的不等式容易错解为: 例2 不等式的解集为() A. B. C. D. 解: 或 或,故选D 类型三:形如,型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把看成一个大于零的常数进行求解,即: , 或 例3设函数,若,则的取值范围是 解:

,故填:. 类型四:形如型不等式 解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即: 例4不等式的解集为 解: 所以原不等式的解集为 类型五:形如型不等式 解法:先利用绝对值的定义进行判断,再进一步求解,即: ,无解 例5解关于的不等式 解:

(1)当时,原不等式等价于: (2)当时,原不等式等价于: (3)当时,原不等式等价于: 或 或 综上所述 (1)当时,原不等式的解集为: (2)当时,原不等式的解集为: (3)当时,原不等式的解集为: 类型六:形如使恒成立型不等式. 解法:利用和差关系式:,结合极端性原理

即可解得,即: ; ; 例6不等式对任意的实数恒成立,则实数a 的取值范围是() A. B. C. D. 解: 设函数 所以 而不等式对任意的实数恒成立 故,故选择A 类型七:形如 , , 1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解

高考中常见的七种含有绝对值的不等式的解法

常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x , 所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ???<<-∈2 1x R x , 所以 )2,1(-∈x ,故选A.

类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<, )()()()(x g x f x g x f >?>或)()(x g x f -< 例3 设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解: 53125)(≤++-?≤x x x f 2122212+-≤-≤-?+-≤-?x x x x x ???+-≤--≥-?2 12212x x x x 1111≤≤-?? ??≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

解绝对值不等式的解法

解绝对值不等式题型探讨 题型一 解不等式2|55|1x x -+<. [题型1]解不等式2|55|1x x -+<. [思路]利用|f(x)|0) -a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即22551(1)551 (2)x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x >12或无解,所以原不等式的解集是{x |x >1 2 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2226360(3)(2)032(1)(6)0 16263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x [请你试试4—1] ???

高考中常见的七种含有绝对值的不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x , 所以 222<-<-x x . 即 ?????<-->+-02 222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A.

类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下 解法:把)(x g 看成一个大于零的常数a 进行求解,即: )()()()()(x g x f x g x g x f <<-?<, )()()()(x g x f x g x f >?>或)()(x g x f -< 例3 (2007年广东高考卷)设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解: 53125)(≤++-?≤x x x f 2122212+-≤-≤-?+-≤-?x x x x x ? ??+-≤--≥-?212212x x x x 111 1≤≤-????≤-≥?x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

高考知识点绝对值不等式

第1节绝对值不等式 最新考纲 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a. 知识梳理 1.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集 (2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②|ax+b|≥c?ax+b≥c或ax+b≤-c; (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想; ③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立. (2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.

诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)若|x|>c的解集为R,则c≤0.() (2)不等式|x-1|+|x+2|<2的解集为?.() (3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.() (4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.() (5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.() 答案(1)×(2)√(3)×(4)×(5)√ 2.不等式|x-1|-|x-5|<2的解集是() A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5) 解析①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当10,|x-1|

高中数学 绝对值不等式高考题合集详解

绝对值不等式 1.(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( ) A .(-∞,4) B .(-∞,1) C .(1,4) D .(1,5) 解析 当x ≤1时,不等式可化为(1-x )-(5-x )<2,即-4<2,满足题意; 当1a 的解集为M ,且2?M ,则a 的取值范围为( ) A.? ????14,+∞ B.???? ??14,+∞ C.? ????0,12 D.? ?? ??0,12 解析 由已知2?M ,可得2∈?R M 。 于是有???? ??2a -12≤a , 即-a ≤2a -12≤a ,解得a ≥14,故选B 。 答案 B 3.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .4

解析 ∵|x -1|+|x |+|y -1|+|y +1| =(|1-x |+|x |)+(|1-y |+|1+y |) ≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3, 当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时取等号, ∴|x -1|+|x |+|y -1|+|y +1|的最小值为3。 答案 C 4.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________。 解析 当a ≤-1时, f (x )=|x +1|+2|x -a |=????? -3x +2a -1,x -1, 所以f (x )在(-∞,a )上单调递减,在(a ,+∞)上单调递增, 则f (x )在x =a 处取得最小值f (a )=-a -1, 由-a -1=5得a =-6,符合a ≤-1; 当a >-1时, f (x )=|x +1|+2|x -a | =????? -3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a , 3x -2a +1,x >a 。 所以f (x )在(-∞,a )上单调递减,在(a ,+∞)上单调递增, 则f (x )在x =a 处取最小值f (a )=a +1, 由a +1=5,得a =4,符合a >-1。 综上,实数a 的值为-6或4。 答案 -6或4

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 \ 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. ' 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| · B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 : B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 、 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准.

高考数学含绝对值不等式专题训练(一)

1、(长葛市第三实验高中2012届高三数学调研) 已知函数()|2|,()|3|.f x x g x x m =-=-++ (1)解关于x 的不等式()10()f x a a R +->∈; (2)若函数()f x 的图象恒在函数()g x 图象的上方,求m 的取值范围。 【解析】(1)不等式()10f x a +->,即210x a -+->。 当1a =时,不等式的解集是(,2)(2,)-∞+∞ ; 当1a >时,不等式的解集为R ; 当1a <时,即21x a ->-,即21x a -<-或者21x a ->-,即1x a <+或者3x a >-,解集为(,1)(3,)a a -∞+-+∞ 。 (5分) (2)函数()f x 的图象恒在函数()g x 图象的上方,即23x x m ->-++对任意实数x 恒成立。即23x x m -++>对任意实数x 恒成立。 由于23(2)(3)5x x x x -++≥--+=,故只要5m <。 所以m 的取值范围是(,5)-∞。 2、(濮阳市华龙区高级中学2012届高三数学上学期摸底) 3、(哈尔滨市第六中学2011届高三数学第三次模拟) 若关于x 的方程 243x x a a -++-=0有实根 (1)求实数a 的取值集合A (2)若存在a A ∈,使得不等式22120t a t -+<成立,求实数t 的取值范围。 (1)0)3(416≥-+-=?a a 即 27 21≤≤-a 所以 ??? ??? -=27,21 A ---------5分 (2)令212)(t t a a f ++-= 即 0)(m in

【新人教】高考数学专题复习《含绝对值的不等式》测试题2013

第3课时 含绝对值的不等式的解法 一.课题:含绝对值的不等式的解法 二.教学目标:掌握一些简单的含绝对值的不等式的解法. 三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次 (二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解 过程中,集合间的交、并等各种运算. 四.教学过程: (一)主要知识: 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2.当0c >时,||ax b c ax b c +>?+>或ax b c +<-,||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. (三)例题分析: 例1.解下列不等式: (1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->. 解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为 17[2,)(,5]22 -- . (2)原不等式可化为22(2)(1)x x -<+,即12x >,∴原不等式解集为1[,)2+∞. (3)当12x ≤- 时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122 x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53 x >,此时2x ≥. 综上可得:原不等式的解集为(,1)(1,)-∞-+∞ . 例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞; (2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞. 解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <; (2)与(1)同理可得|1||3|4x x --+≤,∴4a >. 例3.设0,0a b >>,解关于x 的不等式:|2|ax bx -≥. 解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a b x -≥①或

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2 x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是{} a x a x <<-; 当0的解集是{} R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{} c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{} c b ax c x <+<-; 当0+的解集是{} R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >?? ==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于2 x x +<0?x(x+2)<0?-2<x <0。 (三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。 解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---< ?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ? 4 23 x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。 分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x <-2时,得2 (1)(2)5x x x <-??---+x 时,得1, (1)(2) 5.x x x >??-++

高一数学含绝对值不等式的解法练习题

含绝对值的不等式解法 一、选择题 1.已知a <-6,化简26a -得() +6 2.不等式|8-3x |≤0的解集是() A. C.{(1,-1)} D.? ?????38 3.绝对值大于2且不大于5的最小整数是() 4.设A ={x ||x -2|<3},B ={x ||x -1|≥1},则A ∩B 等于() A.{x |-1<x <5} B.{x |x ≤0或x ≥2} C.{x |-1<x ≤0} D.{x |-1<x ≤0或2≤x <5} 5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A Y 中的元素个数是() 6.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N () A.{4-≥y y }B.{51≤≤-y y }C.{14-≤≤-y y }D. 7.语句3≤x 或5>x 的否定是() 53<≥x x 或53≤>x x 或53<≥x x 且53≤>x x 且二、填空题 1.不等式|x +2|<3的解集是,不等式|2x -1|≥3的解集是. 2.不等式12 11<- x 的解集是_________________. 三、解答题 1.解不等式1.02122<--x x 2.解不等式x 2-2|x |-3>0 3.已知全集U =R ,A ={x |x 2-2x -8>0},B ={x ||x +3|<2},求: (1)A ∪B ,C u (A ∪B )(2)C u A ,C u B ,(C u A )∩(C u B ) 4.解不等式3≤|x -2|<97.解不等式|3x -4|>1+2x . 5.画出函数|21|x-||x y ++=的图象,并解不等式|x +1|+|x -2|<4.

相关文档
相关文档 最新文档