文档库 最新最全的文档下载
当前位置:文档库 › 探讨6KV高压柜触头过热原因及避免方法

探讨6KV高压柜触头过热原因及避免方法

探讨6KV高压柜触头过热原因及避免方法
探讨6KV高压柜触头过热原因及避免方法

探讨6KV高压柜触头过热原因及避免方法

发表时间:2016-05-30T15:16:06.110Z 来源:《电力设备》2016年第3期作者:魏旭

[导读] (辽化炼油厂辽宁省辽阳市 111003)运行中的电力设备经常发生接头发热现象,如不及时发现并处理就会导致严重的生产事故。(辽化炼油厂辽宁省辽阳市 111003)

摘要:运行中的电力设备经常发生接头发热现象,如不及时发现并处理就会导致严重的生产事故。结合生产实践,我们发现接头发热事故主要发生在负荷较重的6 kV小车式封闭开关柜内,并以6 kV小车式封闭开关柜为对象对此类事故进行分析。

关键字:封闭式开关柜触头

一、6 kV封闭式开关柜概况

1.1 6 kV封闭式开关柜的应用概况

封闭式高压开关柜以其安全可靠、结构紧凑、占地省、操作方便等优点,在开闭站、小区配电室、变电站内广泛使用。在我厂变电站内目前6 kV密封式高压开关柜共有280台。其中运行时间最长的是B16、B20变电站的固定式开关柜,1993年出厂,由丹东红光开关厂生产;最新投产的变电站型号为ZN1的小车式开关柜,由ABB开关厂生产。目前使用中的6 kV开关柜主要存在设备型号多样、质量参差不齐、备品备件不全、部分设备严重老化等问题。

1.2 封闭式开关柜结构特点

在开关室内的主开关上一般有6个主插头,有18个流过负荷电流的连接点;在出线室有连接出线电缆的3个主触头与连接旁路刀闸的十几个接点。以上所说连接点直接流过负荷电流,当负荷较大时存在隐患的连接点就会发热。由于发热点在密封柜内,运行中的柜门禁止打开,值班人员无法通过正常的监视手段发现发热缺陷。发热严重时触头会变红甚至熔断,直接造成生产事故。

1.3 封闭式高压开关柜触头事故统计

封闭式高压柜内触头发热事故在近几年屡有发生。6 kV开关直接承担用户负荷,其中不少是重要负荷,如果发生突然停电事故,不但会造成不良的社会影响,而且给供电部门造成很大的经济损失。

二、事故原因分析

事故分析发现,发生事故的原因主要有:检修试验人员工作失误,设备安装连接工艺不当,负荷变化,设备老化变形等。

2.1 检修试验人员工作失误

检修人员进行开关检修或试验时必须拆开部分连接点,工作结束时再恢复原样。由于工作人员失误,本来应该安装4根紧固螺栓的触头,只装了3根甚至只装了1根。线路负荷较小时这样的隐患不会被立即发现,当负荷突增时该触头就会过热。这样的情况一般出现在电流互感器的连接点。事故的主要原因是检修人员的工作态度与责任心的问题,此类事故主要发生在1997年以前,近几年随着检修工作责任制的推行,此类现象已经大大减少。

2.2 设备的安装、连接工艺不当

设备的安装工艺不当主要是施工质量问题,封闭式高压柜内小车式开关插嘴的位置与固定的插头位置如有偏差,开关推入后插头部分就可能接触不实,造成发热。这是施工安装时的问题,需要运行人员在设备验收时把好关。另一个连接工艺问题出在出线电缆与开关引出线的连接处。6kV连接开关的引线一般使用40 mm宽铝排,旁路刀闸一般安装在铝排上,出线电缆也在这一位置。6kV电缆较粗,通常只使用1根螺栓来连接运行与备用2条电缆,连接的受力面较小,电流通过的有效截面减小,于是造成发热。

2.3 负荷突变的影响

电力负荷的变化会影响设备的温度,正常的负荷变化引起的温度升高不会超过规定的75℃。如果负荷增加的较多时(如比平时增加了1倍或几倍),或者线路受到短路电流冲击后,设备的薄弱环节就会发热,发热后连接点的材料会发生变形、氧化等物理或化学变化。发热后如不及时发现,再次受负荷冲击后,又会过热,经过多次反复的恶性循环,触头的连接状况越来越差,最后直至造成触头熔断事故。

2.4 设备变形老化

随着电网改造的进一步深入,新材料、新工艺、新设备大量在电网中推广应用,设备的健康水平也有了明显提高,但是仍有很多老旧设备还在运行。我厂变电站的高压开关柜在1995年之前出厂的还有121台仍在使用中。因此设备的质量与新旧程度参差不齐,也是发生问题的重要原因,老旧设备触头发热发生的几率普遍较高。

三、预防触头发热事故的措施及方法

密封高压开关柜内的触头发热是生产中的难题,通过采取各种措施,如:实行检修人员责任制,更新老旧设备,改进触头的连接、安装工艺等,可以大大减少触头发热事故,但是从目前的设备状况看要想完全避免触头发热事故也是不现实的。

3.1 目前经常使用的柜内触头温度监视方法

现在经常使用的柜内触头发热监视方法主要有:在触头粘贴测温蜡片;手摸柜门感知柜内温度;通过异常气味发现设备过热;通过异常音响发现设备过热等。

3.2 预防封闭柜内触头发热事故的新方法

最初试验选择的是直接监测法,在触头上安装温度传感器,将温度信号集中处理,判断触头温度是否超过允许值。其技术难点是温度传感器的安装,温度信号由传感器到处理机的传送。要求温度传感器直接安装在6 kV电压的触头上,其体积有严格限制,不能影响开关的绝缘与正常运行。信号传送使用有线方式是绝对不允许的,通过无线发射存在强电场磁场干扰与发射装置电源不易解决的问题。这一方案最终没有试验成功。

随后又进行了间接监测的研究与试验。主要方案是在触头位置涂一种特种涂料,使其在规定温度时发出特定气体,在柜顶部安装特定气体的传感器,当气体浓度达一定值时发出报警信号。这一方法的技术难点之一是气体的选择,该气体要求在空气中含量少,不受被测物温升后挥发气体干扰,对此气体检测最好使用成熟的传感器。难点之二是发出气体的涂料的稳定性,要保证在室温中长期存放不挥发。选

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版)

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0148

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(最新版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

高压开关柜触头发热原因分析及其对策

封闭式高压开关柜触头发热原因分析及其对策 1.引言 运行中的电力发电厂、变电站的高压开关柜是重要的电器设备。而这些开关柜主要维护部位就是触头部位,如触头松动,弹性老化,接触面不洁等,都会引起触头温度的异常变化,以往由于没有可靠的手段在线检测触头运行温度,往往采用“计划维修”, 因此极易导致设备烧毁或突然停电等事故,在一定程度上影响了企业的效益。近几年电力生产中广泛运用各种先进的温度测试设备,如:光纤光栅测温,取得了很好的效果,开关柜触头的温度得到了有效监视,触头发热事故大大减少。 封闭式高压柜在运行中不能打开,因此无法测量运行中柜内触头的实际温度。封闭式开关柜内触头发热事故在近几年有增长的趋势,已经成为严重影响安全生产的难题。结合我公司实际,下面以6 kV金属铠装抽出式开关柜为对象对此类事故原因进行分析。 2、我公司6kV封闭式开关柜概况 2.1 6 kV封闭式开关柜的概况 恒通化工股份有限公司热电厂现有三台60MW发电机,三台15MW发电机,总装机容量22.5万kw,年发电量12.7亿度。我厂厂用电采用6kv供电,6kv封闭式高压开关柜采用常熟通用开关厂生产KYN18-12型户内交流金属铠装抽出式开关设备配用VD4真空断路器型号如下 额定电压6KV 动稳定电流100KA

额定电流1500A 4S热稳定电流40KA 额定开断电流40KA 防护等级IP4X 2.2封闭式开关柜结构特点 封闭式高压开关柜的设备分布在4个相互独立的隔室内,分别是断路器室、母线室、电缆室、控制室。按有关的规程要求,除实现电气连接、控制、通风而必须在隔板上开孔外,所有隔室呈封闭状态。由于发热点在密封柜内,运行中的柜门禁止打开,值班人员无法通过正常的手段检测到开关内部特别是触头的温度,所以一旦触头发热严重必然造成事故发生,影响系统安全运行。 3、我厂6KV封闭式开关柜发热事故统计 2007年3月,我厂6KV备用段6008#开关因触头发热故障减负荷。 2007年4月,我厂6KVI段进线开关6101#开关触头发热严重烧毁。 4、发热原因分析 4.1触头接触面氧化、脏污 高压开关柜的动静触头是最容易发热的部位,由于该部位接触不良、脏污等原因,接触电阻较大,在大电流情况下该处的热功率很大,其结果是接头发热严重,加剧接触面氧化,使得接触电阻进一步增大,形成恶性循环,发展到一定阶段后,则会造成严重的故障,破坏系统稳定运行。 4.2设备的安装、连接工艺不当 设备的安装工艺不当主要是施工质量问题,封闭式高压柜内小车式开关插嘴的位置与固定的插头位置如有偏差,开关推入后

高压开关柜检修及试验项目

高压开关柜检修及试验项目 一,组成 高压开关柜由:柜体、母线、分支母线、小母线、套管、端子板、综保仪表、静触头、真空断路器、电流互感器、接地刀、过电压保护器、传感器、带电显示器组成。 二、检修项目 1真空断路器 1)测量绝缘电阻 用2500V摇表分别测量A--B、C及地 B--A、C及地 C--A、B及地1分钟时绝缘电阻值并记录。 2)交流耐压试验 手动合上断路器,将交流耐压设备与A相相连,B、C相短封并接地,缓慢升压至试验值,同时注意观察现象,持续1分钟。无击穿闪络现象为耐压合格。B、C相试验与A相相同。分开断路器,将断路器上口A、B、C短接并与交流耐压设备相连,下口A、B、C短接并接地,缓慢升压至试验值,同时注意观察现象,持续1分钟。无击穿闪络现象为断口合格。 3)测量每相导电部分的回路电阻 手动合上断路器,用双臂电桥或回路电阻测试仪分别测量A、B、C三相导电部分的回路电阻三次取平均值并记录。 4)测量主触头分合闸时间、同期性、合闸时触头弹跳时间 在额定电压下用毫秒计分别测量断路器分合闸时间。 5)操纵机构试验(手、自动分别分合断路器三次,观察是否动作可靠,指示正确。) 2综合保护器 1)传动试验 在综合保护器上分合断路器,观察是否动作可靠,指示正确。 2测量及保护试验 根据电流互感器变比,在一次侧分段加入标准电流值,然后分段返回观察综保测量显示是否准确并记录及计算误差。 分别设定保护定值及时间,合上断路器,分相加入整定电流值,观察断路器是否可靠动作,并用毫秒计分别测量断路器分闸时间。 3电流互感器电压互感器、变压器 1)绝缘电阻 用2500V摇表测量变压器一次侧绝缘电阻,将二次侧短接并接地,记录R60/R15值。

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析 王印培陈进 (华东理工大学化机所上海200237) 摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。 主题词:碱脆;不锈钢;失效分析 1 概述 某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。 图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75% 液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。 2 化学成分分析与铁素体含量测定 对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。 采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。 3 蒸汽过热器管内壁渗透液检验 为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。 4 力学性能测试 力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。 4.1 拉伸性能 按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

运行中的隔离开关触头发热原因分析与异常处理

摘要:根据变电站设备运行实际,探讨了隔离开关常见故障。研究了隔离开关触头过热事故的原因及应采取的措施。为变电站实施反事故技术措施提供了依据。 关键词:隔离开关;电弧侵蚀;收缩电阻;过热事故 隔离开关在高压电气设备序列中属通断类设备。由于其工作频繁,使用范围广泛,过热故障时有发生。我们有必要对隔离开关的过热故障进行分析研究,使其安全、可靠的发挥应有的作用。 1隔离开关过热故障的分析 由于隔离开关各结构部件基本外露,所以它的故障大体上属于外部故障。隔离开关一部分过热故障集中在导电罩、主触头和刀口压指等处,一部分过热故障集中在隔离开关接线端,线夹与导线的连接处。 隔离开关过热故障的原因主要有以下几种: ①隔离开关接线端与导体触头长期裸露于大气中运行,极易受到水蒸气、腐蚀性尘埃和化学活性气体的侵蚀,在连接件接触面上形成氧化膜,使导电体表面电阻增加,造成接触不良而发热。 ②导线在风力舞动下或因负荷变化,引起连接件因周期性热胀冷缩,造成连接螺丝松动减小了连接件有效接触面积,增大接触处的收缩电阻。受风力影响的故障,一般是发热触头处在隔离开关的出线侧,引线过长(3m以上)处于悬垂状态。大风时严重摇摆,滚动触头受力后,使各滚动触指接触压力失衡,造成接触电阻增大发热。还有GW10-220W 隔离开关因管母摆动,使刀闸夹件松弛,造成动静触头处弧光放电。 ③安装检修不符合工艺要求,使倒闸操作中隔离开关触头合不到

位,或过止点。 ④设计结构不合理。 2 隔离开关触头在运行中的过热机理分析 触头是隔离开关中的一个元件,其性能好坏对高压电器整体性能起着关键作用。 隔离开关触头过热的主要因素: ①机械磨损。触头在不断的闭合过程中,承受着机械闭合力的冲击,从而造成触头的变形、龟裂与剥落,统称为机械磨损。 ②接触电阻。接触电阻产生的原因有两个:一是表面膜影响,二是收缩电阻。当动静触头相互接触时,仅有少数突出点真正接触,结果使电流收缩至有限的几个载流点,这种现象叫收缩电阻。我公司一台JYN2-10-31D型手车开关隔离插头主回路动、静隔离触头烧损就是收缩电阻造成的。现场巡视设备中也发现该JYN2-10-31D型手车开关隔离插头放电现象与理论分析相吻合。我们在变电站巡视设备,亲眼目睹了一次事故过热过程:1)隔离插头触头间出现兰色、红色的放电火花及“呲呲”的放电声。2)电弧侵蚀的过程中声响变大,动静触头烧熔后,烧坏有机质绝缘护罩产生弧光飘移,发展为相间短路烧坏开关。这样在现场发现事故前兆的几率一般是很低的,因此对其进行分析就显得更加重要。 ③电弧侵蚀。隔离开关开闭过程中电弧作用,能使触头表面的金属熔融,蒸气飞溅而散失,这种现象称为电弧侵蚀。它决定触头的使用寿命。

高压电气预防性试验方案样本

10KV配电室高压试验方案 工程概况: 二、设备概况: 项目包括宇龙酷派10KV配电室的高压开关柜、变压器、高压电缆电缆和配变装置 总容量为3900KVA: 施工部署 初步根据设备各部位的情况及甲方的要求, 在甲方安排的停电时间内, 确定施工员为10人, 其中项目施工现场总负责1人, 技术监督总监1人, 施工安全负责人1人, 施工人员分1个班组, 施工班组长1人, 施工试验调试班组8人; 在实施过程中可根据实际情况适当调整, 以满足安全及生产需要。

组织管理措施 1、依据的文件及标准 本方案按照中华人民共和国电力行业标准的规定执行 《电业安全作业规和》 《电力设备预防性试验标准》GB50150- 《中国南方电网有限责任公司企业标准》Q/CSG114002- 2、协调配合 试验调试工作的特殊性决定, 试验工作必须在设备停电状态下进行, 为缩短停电时间和避免试验人员误入带电设备间隔事故的发生, 因此需要甲、已双方单位密切协调配合、统一步调。 试验工作前的准备工作: 甲方单位应向乙方单位提供完整的设备及线路图纸资料( 包括各设备的合格证和技术参数表格等) , 以便乙方制定完善的工作方案。乙方向甲方提供的试验方案内容应包括: 具体的施工内容和范围、工作人员数量、停电时间以及需要停电的带电设备。甲方接到乙方施工方案后及时安排设备停电检修事宜。具体停电时间和范围经甲方有关部门确定后, 及时与乙方连络并通知乙方到场开展工作时间。 试验工作现场施工: 出于对设备的熟知程度和安全的角度, 所有现场的停送电倒闸操作均由甲方单位运行人员执行。乙方应在正式接到甲方现场协调员的设备已停电的通知后, 方可安排试验班组人员进入现场验电、放电、挂设警示标志、围栏等安全防护措施。为了安全管理工作, 试验工作开始时除甲方协调员及监督人在试验现场协调工作以外, 应避免其它闲杂人员在现场走动。试验工作中实验人员认真做好现场记录, 实验完毕乙方应检查清理试验现场, 确保无遗漏无错误方可撤离现场

高低压开关柜型式、试验执行标准

高低压开关柜型式试验 一、低压交流配电柜 1、GGD型交流低压配电柜 GGD型交流低压配电柜适用于变电站、发电厂、厂矿企业等电力用户的交流50Hz,额定工作电压380V,额定工作电流1000-3150A的配电系统,作为动力、照明及发配电设备的电能转换、分配与控制之用。产品具有分断能力高,动热稳定性好,电气方案灵活、组合方便,系列性,实用性强、结构新颖,防护等级高等特点。缺点:回路少,单元之间不能任意组合且占地面积大,不能与计算机联。目前作为普通工厂用低压成套开关设备中低档主流柜型。 执行IEC60439-1《低压成套开关设备和控制设备》、GB7251.1-1997《低压成套开关设备和控制设备》、GB/T14048.1-93 《低压开关设备和控制设备总则》等标准。 产品型号及含义 2、GCK低压抽出式开关柜(GCK柜和GCS、MNS柜抽屉推进机构不同) GCK低压抽出式开关柜(以下简称开关柜)由动力配电中心(PC) 柜

和电动机控制中心(MCC)两部分组成。该装置适用于交流50(60)HZ、额定工作电压小于等于660V、额定电流4000A及以下的控配电系统,作为动力配电、电动机控制及照明等配电设备。具有分断能力高、动热稳定性好、结构先进合理、电气方案灵活、系列性、通用性强、各种方案单元任意组合、一台柜体,容纳的回路数较多、节省占地面积、防护等级高、安全可靠、维修方便等优点。缺点:水平母线设在柜顶垂直母线没有阻燃型塑料功能板,不能与计算机联络。 执行IEC60439-1《低压成套开关设备和控制设备》、GB7251.1 -1997《低压成套开关设备和控制设备》、GB/T14048.1-93 《低压开关设备和控制设备总则》等标准。 产品型号及含义 GCK G是封闭式开关柜 C是抽出式 K是控制中心 3、GCS型低压抽出式开关柜(GCS柜只能做单面操作柜,柜深800mm) GCS型低压抽出式开关柜使用于三相交流频率为50Hz,额定工作电压为400V(690V),额定电流为4000A及以下的发、供电系统中的作为动力、配电和电动机集中控制、电容补偿之用。广泛应用于发电厂、石油、化工、冶金、纺织、高层建筑等场所,也可用在大型发电

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

高压电气预防性试验解决方案.doc

10KV配电室高压试验方案 工程概况: 二、设备概况: 项目包括宇龙酷派10KV配电室的高压开关柜、变压器、高压电缆电缆和配变装置总 容量为3900KVA: 施工部署 初步根据设备各部位的情况及甲方的要求,在甲方安排的停电时间内,确定施工员为10人,其中项目施工现场总负责1人,技术监督总监1人,施工安全负责人1人,施工人员分1个班组,施工班组长1人,施工试验调试班组8人;在实施过程中可根据实际情况适当调整,以满足安全及生产需要。

组织管理措施 1、依据的文件及标准 本方案按照中华人民共和国电力行业标准的规定执行 《电业安全作业规和》2005版 《电力设备预防性试验标准》GB50150-2006 《中国南方电网有限责任公司企业标准》Q/CSG114002-2011 2、协调配合 试验调试工作的特殊性决定,试验工作必须在设备停电状态下进行,为缩短停电时间和避免试验人员误入带电设备间隔事故的发生,因此需要甲、已双方单位密切协调配合、统一步调。 试验工作前的准备工作: 甲方单位应向乙方单位提供完整的设备及线路图纸资料(包括各设备的合格证和技术参数表格等),以便乙方制定完善的工作方案。乙方向甲方提供的试验方案内容应包括:具体的施工内容和范围、工作人员数量、停电时间以及需要停电的带电设备。甲方接到乙方施工方案后及时安排设备停电检修事宜。具体停电时间和范围经甲方有关部门确定后,及时与乙方连络并通知乙方到场开展工作时间。 试验工作现场施工: 出于对设备的熟知程度和安全的角度,所有现场的停送电倒闸操作均由甲方单位运行人员执行。乙方应在正式接到甲方现场协调员的设备已停电的通知后,方可安排试验班组人员进入现场验电、放电、挂设警示标志、围栏等安全防护措施。为了安全管理工作,试验工作开始时除甲方协调员及监督人在试验现场协调工作以外,应避免其他闲杂人员在现场走动。试验工作中实验人员认真做好现场记录,实验完毕乙方应检查清理试验现场,确保无遗漏无错误方可撤离现场并通知甲方人员恢复供电。 乙方在试验工作完毕后,根据现场试验记录进行实验报告的编制,试验报告完成经乙方审核部门审核盖章后尽快送达甲方有关单位。

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(新编版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

运行中的隔离开关触头发热原因分析与异常处理

摘要:根据变电站设备运行实际,探讨了隔离开关常见故障。研究了 隔离开关触头过热事故的原因及应采取的措施。为变电站实施反事故技术措施提供了依据。 关键词:隔离开关;电弧侵蚀;收缩电阻;过热事故 隔离开关在高压电气设备序列中属通断类设备。由于其工作频繁使用范围广泛,过热故障时有发生。我们有必要对隔离开关的过热故障进行分析研究,使其安全、可靠的发挥应有的作用。 1隔离开关过热故障的分析 由于隔离开关各结构部件基本外露,所以它的故障大体上属于外部故障。隔离开关一部分过热故障集中在导电罩、主触头和刀口压指等处,一部分过热故障集中在隔离开关接线端,线夹与导线的连接处。 隔离开关过热故障的原因主要有以下几种: ①隔离开关接线端与导体触头长期裸露于大气中运行,极易受到水蒸气、腐蚀性尘埃和化学活性气体的侵蚀,在连接件接触面上形成氧化膜,使导电体表面电阻增加,造成接触不良而发热。 ②导线在风力舞动下或因负荷变化,引起连接件因周期性热胀冷缩,造成连接螺丝松动减小了连接件有效接触面积,增大接触处的收缩电阻。受风力影响的故障,一般是发热触头处在隔离开关的出线侧,引线过长(3m以上)处于悬垂状态。大风时严重摇摆,滚动触头受力后,使各滚动触指接触压力失衡,造成接触电阻增大发热。还有GW10-220W 隔离开关因管母摆动,使刀闸夹件松弛,造成动静触头处弧光放电。

③安装检修不符合工艺要求,使倒闸操作中隔离开关触头合不到位,或过止点。 ④设计结构不合理。 2隔离开关触头在运行中的过热机理分析 触头是隔离开关中的一个元件,其性能好坏对高压电器整体性能起着关键作用。 隔离开关触头过热的主要因素: ①机械磨损。触头在不断的闭合过程中,承受着机械闭合力的冲击,从而造成触头的变形、龟裂与剥落,统称为机械磨损。 ②接触电阻。接触电阻产生的原因有两个:一是表面膜影响,二是收缩电阻。当动静触头相互接触时,仅有少数突出点真正接触,结果使电流收缩至有限的几个载流点,这种现象叫收缩电阻。我公司一台JYN2-10-31D型手车开关隔离插头主回路动、静隔离触头烧损就是收缩电阻造成的。现场巡视设备中也发现该JYN2-10-31D型手车开关隔离插头放电现象与理论分析相吻合。我们在变电站巡视设备,亲眼 目睹了一次事故过热过程:1)隔离插头触头间出现兰色、红色的放电火花及“呲呲”的放电声。2)电弧侵蚀的过程中声响变大,动静触头烧熔后,烧坏有机质绝缘护罩产生弧光飘移,发展为相间短路烧坏开关。这样在现场发现事故前兆的几率一般是很低的,因此对其进行分析就显得更加重要。 ③电弧侵蚀。隔离开关开闭过程中电弧作用,能使触头表面的金

高压设备触头接头和线夹的过热原因分析及处理措施

高压设备触头接头和线夹的过热原因分析及处理措施 变电站中的各类高压电器的接头、线夹和软硬母线的连接、并接部位以及隔离开关的动、静触头等,由于制造质量、安装工艺、调试手段等诸多因素的影响,有时会出现不正常的过热现象,如果不及时正确地进行处理,会使故障蔓延扩大。有的会引起燃弧、放电,直至烧断引线或发生相间短路;有的会使热量传导至设备内部,直接造成设备损坏。如严重过热部位发生在主接线,会直接危及电力系统的安全稳定运行,后果不堪设想。 对于过热部位的检修处理,如果方法不正确、不彻底,会使过热部位恶性循环,造成电力设备重复停电,少送负荷,直接影响社会效益、经济效益。 1 软母线(并勾线夹)串接、搭接、并接的过热处理 对于这类过热,通常的处理方法有两种,一是开夹检查处理,就是将过热的线夹打开检查,如发现过热点,进行处理;二是不开夹检查处理,就是将过热的线夹固定螺丝紧固一遍。以上这两种方法都存有一定弊病。如果草率的把线夹打开,而过热点又不在内部,这就造成不必要的工作,同时由于导线与线夹经过导电运行,密度及吻合程度已趋合理,如果复装时不仔细,线夹机械压紧强度不均匀,结果适得其反;如果贪图省事,把应打开检查的线夹不开夹,而过热点确在内部,只是简单的紧固线夹螺丝,这样的紧固如果用力过度,有时会造成线夹机械变形或者过死点,使接触部位出现缝隙,反而造成接触更不紧

密,结果适得其反,给安全运行留有隐患。正确的处理方法,应该按以下步骤进行: (1) 检修前首先查看测温数据的最低和最高温度值,查看运行记录,了解通过此过热点的最低和最高负荷电流,两种数据综合分析比较,做到心中有数; (2) 细心观察过热线夹的外部现象,如颜色、气味、烧痕、内外部接触缝隙、螺丝的紧固强度和均匀程度等; (3) 检查过热部位线夹与导线的金属材料、结构和尺寸,是否铜铝压接,导线的截面积与线夹所选型号是否配套一致,然后确定开夹或不开夹的检修方案; (4) 如果需要进行开夹处理,检查的程序:①打开线夹查找导线与线夹的烧伤部位和面积,判断导线断股以及疲劳程度,烧伤线夹是否变形、机械强度能否保持,能否继续使用;②如果属于轻度烧伤,导线与线夹能够继续使用,应首先清除导线和线夹内部表面的烧伤疤痕,并用0号砂纸磨平,然后用钢丝刷彻底清除导线缝隙间和线夹表面的氧化物、硫化物、污垢(有铝包带的要拆除),再用金属清洁剂或汽油冲洗擦净导线缝隙和线夹上的金属碎屑,最后要按照螺丝紧固工艺,对角均匀拧紧,如果螺栓、螺母滑扣、滑丝或烧伤,应更换;③如果线夹烧伤变形、强度松弛,导线疲劳断股较多,要及时更换导线和线夹。 2 硬母线搭接、连接的过热处理 这种过热现象,经常发生在户外变压器的套管、断路器、隔离开关、

电气设备预防性试验规程596

电力设备预防性试验规程 Preventive test code for electric power equipment DL/T596—1996 中华人民共和国电力行业标准 DL/T 596—1996 电力设备预防性试验规程 Preventive test code for electric power equipment 中华人民共和国电力工业部 1996-09-25批准 1997-01-01实施 前言 预防性试验是电力设备运行和维护工作中的一个重要环节,是保证电力系统安全运行的有效手段之一。预防性试验规程是电力系统绝缘监督工作的主要依据,在我国已有40年的使用经验。1985年由原水利电力部颁发的《电气设备预防性试验规程》,适用于330kV及以下的设备,该规程在生产中发挥了重要作用,并积累了丰富的经验。随着电力生产规模的扩大和技术水平的提高,电力设备品种、参数和技术性能有较大的发展,需要对1985年颁布的规程进行补充和修改。1991年电力工业部组织有关人员在广泛征求意见的基础上,对该规程进行了修订,同时把电压等级扩大到500kV,并更名为《电力设备预防性试验规程》。 本标准从1997年1月1日起实施。 本标准从生效之日起代替1985年原水利电力部颁发的《电气设备预防性试验规程》,凡其它规程、规定涉及电力设备预防性试验的项目、内容、要求等与本规程有抵触的,以本标准为准。 本标准的附录A、附录B是标准的附录。 本标准的附录C、附录D、附录E、附录F、附录G是提示的附录。 本标准由中华人民共和国电力工业部安全监察及生产协调司和国家电力调度通信中心提出。 本标准起草单位:电力工业部电力科学研究院、电力工业部武汉高压研究所、电力工业部西安热工研究院、华北电力科学研究院、西北电力试验研究院、华中电力试验研究所、东北电力科学研究院、华东电力试验研究院等。 本标准主要起草人:王乃庆、王火昆明、冯复生、凌愍、陈英、曹荣江、白健群、樊力、盛国钊、孙桂兰、孟玉婵、周慧娟等。 1 范围 本标准规定了各种电力设备预防性试验的项目、周期和要求,用以判断设备是否符合运行条件,预防设备损坏,保证安全运行。 本标准适用于500kV及以下的交流电力设备。 本标准不适用于高压直流输电设备、矿用及其它特殊条件下使用的电力设备,也不适用于电力系统的继电保护装置、自动装置、测量装置等电气设备和安全用具。 从国外进口的设备应以该设备的产品标准为基础,参照本标准执行。 2 引用标准

过热器高温腐蚀机理分析-赵梦瑾

过热器高温腐蚀机理分析 赵梦瑾 摘要:介绍了锅炉过热器高温硫腐蚀和水蒸汽氧化腐蚀的过程机理,分析导致腐蚀不断进行的主要因素,并提出防治措施,促进锅炉安全经济运行。 1 前言 过热器用于回收烟气中的热量,提高锅炉效率。炉膛出口烟气温度比较高,为1000~1100℃,经过过热器后温度降至700~800℃。过热器在锅炉受压部件中承受的温度最高。高温硫腐蚀和水蒸汽氧化腐蚀是过热器管两种主要腐蚀形式,其中外壁高温硫腐蚀已受到较多关注。近年来由水蒸气氧化腐蚀而引发爆管以及剥落下来的坚硬氧化皮微粒造成的汽轮机固体颗粒侵蚀的事故日益突出,水蒸汽氧化腐蚀问题也越来越引起重视。 2 高温硫腐蚀 2.1 机理 高温积灰所生成的内灰层含有较多的碱金属,这些碱金属与飞灰中的铁铝等成分以及烟气中通过松散外灰层扩散进来的氧化硫进行较长时间的化学作用便生成碱金属的硫酸盐等复合物,复合硫酸盐附着在管壁上,对管子金属进行氧化腐蚀。在腐蚀发生过程中,从机理上讲主要会有如下几种反应发生[1]: (1)在燃烧过程中,FeS2及有机硫化物与氧发生反应; 4FeS2 +11O2→2Fe2O3+8SO2 RS(有机硫化物)+ O2→SO2 2SO2+ O2→2SO3 (2)在高温条件下,煤中钠和钾被氧化成Na2O和K2O; (3)Na2O和K2O与烟气中或沉积在管壁上的SO3发生反应生成碱性硫酸盐; Na2O+ SO3→Na2SO4 K2O+ SO3→K2SO4 (4)碱性硫酸盐、氧化铁与SO3反应形成复合硫酸盐; 3Na2SO4+Fe2O3+ 3SO3→2Na3Fe(SO4)3 3K2SO4+Fe2O3+ 3SO3→2K3Fe(SO4)3 (5)在高温条件下,处于熔融状态的复合硫酸盐与管子金属发生下列反应。 4Na3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6Na2SO4+ 3SO2 4K3Fe(SO4)3 +12Fe→3FeS+ 3Fe3O4 +2Fe2O3 +6K2SO4+ 3SO2 这些复合硫酸盐在550~750℃范围内以熔化状态贴附在管壁上,并随着烟气的流动而被带走,造成管壁表面粗糙,而后面新生成的硫酸盐就越易在这些粗糙表面优先附着,又会重复上述的腐蚀反应。这是一个恶性循环过程,周而复始,随着腐蚀的进行,管壁就会被逐渐蚕食。当被侵蚀的金

35kV隔离开关触头发热故障案例分析

35kV隔离开关触头发热故障案例分析 何梅,陈海波 国网张家界供电公司,湖南张家界427200 The Case Analysis for 35kV Isolating Switch Contactor Heat Failure HE Mei, CHEN Hai-bo State Grid Zhangjiajie Power Supply Company, Zhangjiajie, Hunan 427200 ABSTRACT:Starting from the running maintenance experience, the common heat failures of isolating switch contactor are analyzed and handled, focusing on the heat failure case analysis of isolating switch contactor bad contact. In this paper, we provide some targeted preventive measures and technical reference for substation equipment safe and stable long-term operation. KEY WORD:isolating switch;contactor heat;case analysis 摘要:从运行检修经验出发,分析及处理隔离开关触头发热常见故障,着重对隔离开关触头与触指接触不良引起隔离开关触头发热的案例进行分析,并提出针对性的防范措施,为变电设备安全平稳长期运行提供了技术支撑和一定的参考。 关键词:隔离开关;触头发热;案例分析 1 引言 隔离开关是电力系统中常见的、重要的电力设备,是打开具有明显开断点的“连心桥”,能有效地隔离故障,缩小停电范围,便于故障的快速查找和处理,提高供电可靠性,保证电网的安全稳定有效地运行[1]。受负荷电流、环境温度、触头接触电阻等因素影响,隔离开关触头易发热,是隔离开关常见的故障,制约了线路的供电能力。因此笔者从运行检修经验出发,定性分析与定量分析相结合,根据迎峰渡夏期间电网设备的运行要求,开展隔离开关触头发热的故障分析与探讨。 2 隔离开关触头发热常见故障及处理 根据变电检修中常遇到的隔离开关触头发热案例,将隔离开关触头发热故障分为三大类,具体如下。 (1)隔离开关触头与触指接触电阻过大引起隔离开关触头发热。 首先检查隔离开关触头发热程度,有无过热、变红,有无放电火花或放电声。若为一般缺陷可结合停电机会处理,对双母接线还可进行倒闸处理;若为严重及以上缺陷应及早安排停电处理。处理时主要对触头、触指进行良好打磨,然后检查并调节隔离开关行程,使接触面紧密,涂抹导电膏。 (2)隔离开关触头与触指接触不良引起隔离开关触头发热。 检查隔离开关三相触头是否平直合到位,检查传动支座内的伞齿轮是否存在错齿现象。处理时对触头与触指进行清洁、打磨,涂抹导电膏,然后调整触头进入触指的深度,保持三相一致,调试传动连杆并检查。 运维人员在倒闸操作过程中发现隔离开关三相不同期,出现单相或三相触头与触指接触不良现象,应对隔离开关进行外观、传动机构等检查无异后,可用绝缘杆进行调整,亦可拉开隔离开关重新合闸,不可强力拉合。并及时反映异常现象,结合隔离开关大小修、事故抢修进行处理。 (3)隔离开关动静触头电弧烧伤。 检查隔离开关动静触头电弧烧伤程度,触头表面金属熔融程度[2]。若达到危急缺陷标准,应立即进行事故抢修,及时更换三相动静触头,对触头、触指进行更换,调整隔离开关三相同期,调节隔离开关行程,涂抹导电膏。 3 一起35kV隔离开关触头与触指接触不

高压电气设备的预防性试验介绍

高压电气设备的预防性试验介绍 高压电气设备主要包括高压熔断器、高压隔离开关、高压负荷开关、高压断路器、高压开关柜和电力变压器等。多年来,国内外先进的设备管理经验告诉我们:通过高压电气设备的预防性实验,及时维修并更换已损坏的零件,可以提高设备运行的可靠性,保证设备的完好状态,减小企业设备故障率,可为企业创造有利的供电条件。 1. 高压电气设备预防性试验的必要性 高压电气设备在运行过程中,由于受到机械磨损、负荷冲击、电磁振动、有害气体腐蚀、电弧的烧蚀等因素的影响,使得一些零件产生磨损、紧固件松动、绝缘介质老化等变化。这些变化如果不及时通过试验、检修及时发现并解决,就会引起高压电气设备的技术性能下降,甚至会引起事故,停止供电,使生产无法进行。 2. 预防性试验的测试周期和分类 定期的预防性试验,是为了及时发现设备潜在的缺陷或隐患。运行中变配电所高压电气设备一般每隔l~3年进行一次测试,以便掌握高压电气设备的绝缘情况,保证系统安全经济运行。 按试验范围分类为:定期试验、大修试验、查明故障试验、预知性试验。按试验性质分类为非破坏性试验或称绝缘特性试验、破坏性试验或称绝缘耐压试验。 3. 高压电气设备预防性试验的方法

(1)测绝缘电阻和吸收比:被测设备加一定时间的电压后所测得的绝缘电阻值(规定取60s时的值)。吸收比是对被测设备加不同时间电压所得绝缘电阻的比值,规定取60s和15s绝缘电阻的比值。此项试验属于非破坏性试验,所加电压接近设备的工作电压,常用来检查被测设备有无受潮及局部缺陷。 (2)直流耐压试验和泄漏电流试验:是被测物在高于几倍的工作电压下,历经一定时间的抗电强度试验;泄漏电流试验是测量被测物在不同直流电压下的直流泄漏电流值。它们的原理与绝缘电阻试验的原理基本相同。试验中所用的直流电源由高压整流设备供给,用微安表指示泄漏电流值。 (3)交流耐压试验:对被测设备施加1分钟的高于运行中可能通到的工频交流电压,用以检查设备的绝缘水平。虽然直流的耐压试验的试验电压也较高,但对保证设备安全运行还是不够的。交流耐压试验对被测设备来说是属于破坏性试验。进行此项试验前,应先进行绝缘电阻及吸收比测量、直流耐压试验,初步检查绝缘情况。若发现绝缘有缺陷,再进行此项试验。 (4)测量介质损失角:测试高压电气设备的介质损失角能检查出绝缘材料内部的缺陷和受潮情况及绝缘老化等问题。主要使用的工具是交流电桥,常用的交流电桥有QSl型和QS3型高压电桥。 这些项目要根据被测高压电器设备的工作电压、容量、绝缘性质、新旧程度、工作条件而定,并应根据国家制定的有关标准、用多种不

相关文档
相关文档 最新文档