文档库 最新最全的文档下载
当前位置:文档库 › 木材太阳能干燥技术的研究_韦文榜

木材太阳能干燥技术的研究_韦文榜

木材太阳能干燥技术的研究_韦文榜
木材太阳能干燥技术的研究_韦文榜

收稿日期:2012-09-11

作者简介:韦文榜(1980-),男,广西柳州市人,博士研究生。责任作者:张双保,男,博士,教授,博士生导师。

木材太阳能干燥技术的研究

韦文榜1,2,刘翔1,李丽娜2,张双保1

(1.北京林业大学材料科学与技术学院,北京.100083;2.广西生态职业技术学院,柳州.545004)摘要:简述了太阳能用于木材干燥行业的优缺点,介绍了太阳能-热泵联合干燥的组成和基本工作原理,

新型热能回收技术振荡流热管在木材干燥上的应用,指出了太阳能在木材干燥应用上的发展前景。关键词:太阳能;热泵;振荡流热管

中图分类号:S781.71 TK515 文献标识码:A 文章编号:1001-036X(2013)01-0048-03

The research of wood solar drying technology

WEI Wen-bang 1,2, LIU Xiang 1, LIU Li-na 2, ZHANG Shuang-bao 1

( 1.College of Materials Science and Technology, Beijing Forestry University, Beijing 100083;

2.Guangxi ECO-engineering V ocational And Technical College, 545004)

Abstract: This paper briefly presented the advantage and disadvantage of solar energy applied in wood drying area,introduced the component and the basic work principle of the combination system of solar and heat pump and the application of the oscillating- fl ow heat pipe in wood drying. Furthermore,development prospect of solar energy used in wood drying was also pointed out in this paper.

Key words: solar energy ;heat-pump ;oscillating-fl ow heat pipe

1 前言

木材干燥是家具及其它木制品生产过程中的重要环节,同时又是木材加工企业能耗最大的工序,约占全部加工过程总能耗的70%左右[1]。怎样节约资源,开发新能源,降低木材干燥的能耗,已成为近年来各国学者研究的热点问题之一。

太阳能是清洁、廉价的可再生能源,取之不尽用之不竭。每年到达地球表面的太阳能辐射能约为目前全世界所消耗的各种能量的1万倍。我国有较丰富的太阳能资源,约有2/3的国土年辐射时间超过2200h,年辐射总量超过5000MJ/m 2。充分利用这部分资源有利于我国木材干燥行业的可持续性发展。

目前,我国已经开发出太阳能干燥室用于木材的加工,用太阳能干燥的木材质量要好于大气干燥的木材。

但太阳能干燥木材也存在几个问题亟需我们去解决:(1)太阳能功率密度低、不稳定、不连续,干燥周期长;(2)低成本的有效贮能问题尚未解决,需要辅助能源,使初步投资较高。目前太阳能干燥的辅助能源多数为燃烧木废料或煤所产生的烟气或锅炉供应的蒸汽、热水,其优点是简单、方便,缺点是有CO 2、SO 2和烟尘的污染。

2 太阳能在木材干燥上的应用

2.1 太阳能-热泵联合干燥

太阳能干燥室一般分为温室型、半温室型和整体式的干燥室。但单独使用太阳能作为热源具有间歇性不足,供热温度低等缺点。于是近年来出现了太阳能-炉气,太阳能-蒸汽,太阳能-热泵等各种联合干燥。以燃烧木废料或煤所产生的烟气或锅炉供应蒸汽、热水,其优点是简单、方便,缺点是有CO 2、SO 2和烟尘的污染。热泵干燥也是一种无污染的节能干燥技术,将太阳能干燥与热泵干燥有机地结合,可取二者之长,避二者之短,提高干燥效益。

图1为北京林业大学设计的太阳能与热泵除湿机联合干燥系统的工作原理[2]。该联合干燥系统由太阳能供热系统、

热泵除湿干燥机及木材干燥室这3部分组成。

1,2,3 太阳能集热器 4 太阳能风机 5 风阀 6 除湿蒸发器

7 膨胀阀 8 冷凝器 9 热泵蒸发器 10 单向阀 11 压缩机

12 湿空气 13 干热风 14 干燥室

图1 太阳能与热泵除湿机联合干燥工作原理

这种太阳能-热泵干燥机与普通热泵工作原理相同,具有蒸发器、压缩机、冷凝器与膨胀阀4个部件。其中蒸发器分为7-除湿蒸发器和9-热泵蒸发器,热泵蒸发器的制冷工质吸收来自太阳能吸收的热量以及大气中的热量,经过压缩机的绝热压缩传到冷凝器中,高压下冷凝器液化空气放出潜热,将热量传到干燥室;另一方面,除湿蒸发器冷凝来自干燥室的废气,将气体中的大部分水蒸气排除,然后经过压缩机、冷凝器,最后进入干燥室。

太阳能热泵干燥吸收了两者的优点,弥补了两者的不足,既可以联合使用也可以单独使用,在天气晴朗气温高的时候,可以单独开启太阳能供热系统,在阴雨天气或者夜间,可以开启热泵干燥系统,达到供热和除湿的双重目的。当使用联合干燥系统时,由于太阳能提供的热量是经过热泵蒸发器以后才进入干燥室,这样供热的温度就明显高于大气的温度,提高了传热效率。虽然太阳能-热泵联合干燥系统的能耗大于太阳能单独供热,但小于单独用热泵供热,联合干燥的时间则明显小于单独采用太阳能干燥。太阳能比联合干燥节能3.8%,而联合干燥比热泵干燥节能11.8%,比蒸汽干燥节能71.2%。此外,联合干燥比太阳能干燥时间缩短了

14.9%。所以,从能耗和干燥时间及生产效率综合来看,联合干燥是一种值得推荐的干燥方法[3]。2.2 太阳能干燥木材的热能回收问题

除了供热温度低,不稳定之外,太阳能干燥还容易受到气候的影响,这就要求太阳能在干燥木材时应该有效地储能,以便在夜间或者阴雨天时,太阳能干燥系统仍然可以达到干燥温度的要求。

从20世纪70年代开始,澳大利亚的Close [4-5]等人就开展了固体吸附的太阳能热利用研究,此后有关太阳能储热的研究不断深入发展。Kay -gusuz [6]以硬脂酸作为相变材料进行了研究,Sa -ri [7]以共晶混合物为相变材料进行研究,Neeper [8]模拟研究了以脂肪酸和石蜡为相变材料、石膏板为墙板的热特性,认为该相变墙板可以充分利用太阳能供暖。

太阳能储热技术主要分2种:显热储热和相变储热。相变储热是利用物质两相变化时所放出的潜热来获取热量,相变储热材料与显热储热材料相比具有明显的优点,其储热容量大,储热密度高,单位质量、单位体积的储热量要远远超过显热储热材料。

石蜡是有机相变材料,具有固体成型性好,价格便宜,不易发生相分离及过冷现象,腐蚀性较小,性能稳定等优点。由于石蜡是一种相变潜热很大的相变材料,具有非常好的储热性能,故非常适合做太阳能储热材料。

当太阳能干燥系统储热不足时,往往需要辅助热源来保证整个干燥系统的正常运行,如果用电加热的话,在电价较高的地区,就会出现节能不节成本的现象。近年来出现一种利用自激振荡流热管回收干燥余热的装置,其基本原理也是利用了相变潜热的原理。如图2所示,加热气体进入蒸发段,使蒸发段和冷凝段形成压力

图2

振荡流热管原理图

回路型蒸发段绝热段

冷凝段非回路型

差,由于汽-液柱塞交错分布,因而在管内产生强烈的往复振荡运动(若在某些直管段上加装部分单向阀,亦可形成单向振荡运动)。其振荡频率远远高于传统热管内的汽-液循环频率[9]。

根据此部件制造的干燥气体回收装置虽然节能率只有除湿干燥的50%,但是其成本只有热泵除湿干燥机的1/2,而且几乎不需要运行维护,是这个装置的主要优点。

3 结论

1)太阳能是一种成本低、来源广、无污染的绿色能源,将太阳能用于我国的木材干燥行业,有利于我国经济和环境上的可持续发展。

2)单独利用太阳能干燥木材易受天气等因素的影响,应把太阳能干燥室建于太阳能丰富以及电价较低的地区,必要时可添加辅助热源。

3)用太阳能-热泵联合干燥木材,吸收了太阳能供热和热泵除湿的双重优点,既可以节约能耗,又可以缩短干燥周期,符合现代木材干燥企业的长远发展,应该予以大力推广。

4)太阳能储热问题一直是干燥领域中的研究热点。振荡流热管回收热能是节约能源的一项新技术,把其利用于生产中可以产生良好的经济效益和生态效益。政府应该加大在能源开发、节约、利用方面的力度,使我国的干燥行业取得进一步的发展。

[参考文献]

[1]张璧光,赵忠信,高建民.木材干燥的节能研究[J].南京林业大学学报,1997,21(增刊):189-193.

[2]张璧光,高建民,伊松林.我国木材干燥节能减排技术研究现状[J].华北电力大学学报,2009,36(3):38-42.

[3]许彩霞,张璧光,伊松林.太阳能与热泵联合干燥木材特性的实验研究[J].干燥技术与设备,2008,6(4):184-189.

[4]C L O S E D J,P R Y O R T L.T h e b e h a v i o u r o f a d s o r b e n t e n e r g y s t o r a g e b e d s [J ].S o l a r Energy,1976,18:287-292.

[5]CLOSE D J. Prediction of the behavior of packed adsorbent beds[A].Proceeding of National Chemical E n g i n e e r i n g C o n f e r e n c e[C].Q u e e n s L a n d:S u r f e r s Paradise,1974,150-155.

[6]Sari A, Kaygusuz K. Thermal Energy Storage System U -sing Stearic acid as a Phase Change Materia[J].Solar Energy,2001,71(6):365-376.

[7]Sari A.Thermal Characteristics of a eutectic mixture of myristic ad Palmitic acids as Phase Change material for heating applications[J].Applied Thermal Engineering,2003, 23(8):1005-1017.

[8] N eeper D A.Thermal dynamics of wallboard with latent heat storage[J].Solar Energy,2000,68(5):393.

[9]商福民,冼海珍,刘登瀛.振荡流热管自激强化传热的可行性分析[J].热能动力工程,2006,21(2):161-164.

沸剥离试验外,其他试验的优化结果均为B1A1,即对BFRP进行KH550处理、对木材和BFRP进行HMR处理。由剪切试验的方差分析可知,湿态剪切试验结果中HMR处理较显著。综合剪切试验与剥离试验结果的极差分析与方差分析,优化实验方案为B1A1。

3 结论

1) 对BFRP进行KH550处理并同时进行HMR处理可有效提高剪切强度及木破率,并有效降低剥离率。

2) HMR处理的影响程度高于KH550处理,且HMR对胶层的湿态剪切强度具有显著性。

4 建议

本试验利用KH550、HMR两种试剂对BFRP 、木材表面进行处理,效果比较明显。在下一步的试验中考虑利用其他类的化学试剂对胶合面进行处理,另外对于BFRP

纤维增强树脂表面的处理方式及机理应深入进行研究。

[参考文献]

[1] 彭立民,王金林.集成材胶合工艺的研究[J].木材工业,2004, 18(3):29-31.

[2]李龙,申世杰,刘亚兰,张鹏翼.集成材/FRP复合材料胶合性能研究进展[J].林业机械与木工设备,2010,38(7):7-9.

[3]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理,2010(1):1-8.

[4]李允峰.玄武岩纤维增强结构用集成材的研究-单组份聚氨酯胶合工艺技术的研究[D].北京:北京林业大学,2009.

[5]翟志文.落叶松集成材/BFRP胶合工艺研究[D].北京:北京林业大学,2010.

[6]李龙.玄武岩纤维/竹材/木材复合材料胶合工艺技术研究[D].北京:北京林业大学,2011.

[7]张鹏翼.玄武岩纤维增强结构用集成材的力学性能研究[D].北京:北京林业大学,2012.

[8] 中华人民共和国国家标准GB/T26899-2011《结构用集成材》[S].[9] 中华人民共和国国家标准GB50005-2003《木结构设计规范》[S].

(上接第30页)

木材干燥的工艺过程(优.选)

木材干燥的工艺过程 完整的木材干燥分为:升温、预热、干燥、中间处理、终了处理和冷却等阶段。 升温阶段:是指木材在预热前将温度缓慢地提高到某一温度值。一方面使木材的芯层和表层的温度趋于一致,另一方面是对壳体进行预先烘热,以提高干燥窑的温度。升温速度不宜太快,升温速度根据木材的种类、厚度、含水率而定。 预热阶段:目的是将木材在某一特定的温、湿度环境下使木材沿厚度方向的温度梯度(温度差)和木材含水率梯度(含水率差)趋于零。为木材进入水分蒸发(干燥)阶段创造条件。预热阶段的温湿度环境应使木材在此阶段基本上不蒸发水份。还充许木材的表层一定程度的吸湿。 干燥阶段:分为前期干燥阶段和后期干燥阶段。亦称匀速干燥和减速干燥阶段。当木材水份处于纤维饱和点以上时,当介质的温度、湿度和风速一定的条件下,木材中的自由水将沿着大毛细管系统向木材的表面移动,并从木材的表面蒸发。此时水份的蒸发基本是匀速进行的,为匀速干燥阶段。当自由水蒸发完毕,吸着水开始移动并蒸发随着吸着水的不断减少。水份蒸发所需吸收的能量越来越多。含水率的下降速度随之减慢,故木材在纤维饱和点以下时为减速干燥阶段。 中间处理:当木材干燥到含水率降到纤维饱和点附近时或由于木材表面水份蒸发强度过大时会使木材产生一定的干燥应力。此时应当进行适当的中间处理。中间处理阶段暂时停止木材水分蒸发。对木材进行喷蒸处理,以减少木材厚度方向的含水率梯度。进而减少木材的干燥应力。从而提高干燥质量。中间处理的强度由厚度和当时产生应力的大小而定。 终了处理:当木材干燥到最终含水率要求时,为了进一步减小木材沿厚度方向的含水率梯度,使木材在干燥过程中产生的应力得到消除和减小。必须进行一次终了处理。终了处理的湿度环境(平衡含水率)与终含水率相对应的平衡含水率相一致。 冷却阶段:与升温阶段相类似。当木材达到最终含水率要求并经适当的终了处理后,为避免温度的急降而产生残余应力。木材出窑前必须经过一个适当速度的降温过程。

木材高温高压蒸汽干燥工艺

实木蒸汽干燥工艺 (星湖实业) 一、木材干燥的概念 众所周知木材是由生长的树木锯割而成的。木材在国民经济建设和我们的家庭生活中都有着比较重要的作用。我们每天都要接触木材。木材中含有水分,但水分过多就要向空气中蒸发,会导致木材在一定环境下尺寸的不稳定性,给木材的加工和使用带来严重的影响,其产品质量不能得到保证,所以要使木材为我们所用,必须对它进行干燥。 二、木材干燥的定义及目的 木材干燥通常指在热能作用下以蒸发或沸腾方式排除木材水分的处理过程。 这个定义说明,若要使木材中的水分排除,在它的周围环境中必须要有一个热能存在,而这个热能一般就是产生热的热源。就像我们居住的房屋,要想使之具有合适的温度,必须要有一个热源来保证供热,如火炉、蒸汽、空调器、阳光等。在一定的温度下,木材中的水分就以蒸发的方式或沸腾的方式排到它周围的空气中,木材就得到了干燥。当木材中的水分降到一定程度时,我们就可以使用它来加工和制造我们所需要的产品。 三、为什么选用饱和蒸气加热: 常规室干的方法目前是主要的干燥方法。常规室干是指采用木材干燥室对木材进行干燥。它可以人为地控制干燥条件对木材进行干燥处理,简称室干。目前国内外的木材干燥生产中,常规室干占木材干燥生产的85%~90%。采用的热源是蒸汽加热器,需要配备蒸汽锅炉。常规室干的优点是:蒸气加热成本低,即是软化剂又是加热源。能够保证任意树种和厚度的木材干燥质量,能将木材的水分含量干燥到所需要的任意状态,干燥周期短,设备操作灵活,干燥条件易于掌握,便于实现木材干

燥生产的机械自动化。 四、木材加工干燥的优点 (1)防止木材产生开裂和变形。木材中的水分在向空气中排除时,尤其是当木材的水分含量在木材的纤维饱和点以下时,就会引起木材体积的收缩。如果收缩的不均匀,木材就会出现开裂或变形。若是将木材干燥到与使用环境相适应的程度或使用要求的状态,就能保持木材的体积尺寸的相对稳定,而且是经久耐用。 (2)提高木材的力学强度,改善木材的物理性能和加工工艺条件。当木材的水分含量在纤维饱和点以下时,木材的物理力学强度会随其减低而增高;同时木材也易于锯割和刨削加工,减少了对木工机械的损失。 (3)防止木材发生霉变、腐朽和虫蛀。木材中的水分含量在20%~150%范围时,极易产生霉菌,使木材发生霉变、腐朽和虫蛀。如果将木材的水分含量干燥到20%以下,木材内产生霉菌的条件就被破坏了,增强了木材抗霉变、腐朽和虫蛀的能力,保持了木材的原有特性。 (4)减轻木材重量,提高运输能力。经过干燥后的木材,其重量能减少30%~40%。可以大大提高木材的运输能力;同时也可以防止木材在运输途中产生霉变和腐朽,保证木材的质量。 五、我公司实木静音板加工流程 原材料→锯剖成板规格毛坯→室干→回潮平衡(养生)→平、压刨成四面光坯料→机械加工成型→抛光→紫外光固化→分色检验→包装 1、原材料进厂后制材; 2、进行坯料检验后进入烘房干燥,具体干燥时间按原材料品种而定; 3、进行刨光处理(定宽、定厚); 4、机械加工成型,在此过程中抽检,发现产品不合格要返工、返修,保证合格率达到99%以上;

木材自然干燥时间

◎木材自然干燥时间 煤泥烘干机的亮点解读 煤泥烘干机为煤泥的利用开辟了新的路径,要是按划一发烧量计价煤泥烘干机,市场远景较为辽阔,此煤泥的利用题目非常紧急煤泥烘干机,代替矿区的部分自用煤。煤泥烘干机差别的物料特性决定特定的烘干工艺,可对我国煤炭提供紧急场合场面的缓解有所助益,选择精确的 参数详细说明: 型号:QX-20HM 电源输入:三相380±10% 50HZ; 输出微波功率: 20KW(功率可调) 频率:2450MHz±50MHz 设备(长×宽×高): 10460mm×1165mm×1650mm 微波泄漏:符合国家GB10436—89标准≤5mw/cm2 符合GB5226电气安全标准 适用范围:竹子制品及木材制品的微波干燥,微波杀菌。 以上参数仅供参考,可根据需求定制设备。

◎木衣架微波烘干机 Galileo Galilei 木衣架微波烘干机 产品参数: 1、微波输出功率:20KW(可调) 2、微波频率:2450±50MHz 3、额定输入视在功率:≤30KVA 4、进出料口高度:50mm 5、传输带宽度:650 mm 6、传输速度:0.1~5 m/min 7、外型尺寸(长×宽×高):约12800×1165×1650 mm 8、工作环境:- 5~40℃、相对湿度≤80% 设备可根据用户实际产量来设计制造,欢迎来人来电洽谈!

◎微波木材干燥设备 Galileo Galilei 产品详细参数: 型号:QX-60HM 电源输入:三相380±10% 50HZ; 输出微波功率: 60KW(功率可调) 频率:2450MHz±50MH z 设备(长×宽×高): 12800mm×1650mm×1700mm 微波泄漏:符合国家GB10436—89标准≤5mw/cm2 符合GB5226电气安全标准 我公司是专业生产微波木材干燥设备,该系列设备主要用于实木地板、复合地板、地板基料及家具、沙发板等,厚度在1.5cm~5cm,含水量小于25%干燥到8%左右的多种板材的干燥,能解决常规烘干的开裂、变形、干燥不完全和

木材干燥开裂的原因

表裂:指表面裂纹,表裂是指原木材身或成材表面的裂纹。裂纹通常都限于弦面,并且沿径向发展。浅的表裂可以用刨光的方法除去,但深的表裂不但难看,而且会降低木材的强度,特别是抗剪强度。表裂也影响木材的油漆质量,具有表裂的木材油漆后,可以因气候条件的变化而发生裂纹张开和闭合,引起漆膜破裂。产生表裂的原因是木材内外各层不均匀的干燥,而径向、弦向收缩的差异是一个重要的附加因素。木材干燥时,首先从表面蒸发水分,当表面层含水率降低至纤维饱和点以下时,表层木材开始收缩,但此时邻接的内层木材的含水率尚在纤维饱和点以上,不发生收缩。表层木材的收缩受到内层木材的限制,不能自由收缩,因而在木材中产生内应力:表层木材受拉,内层木材受压。干燥条件越剧烈,内外层木材的含水率差异越大,产生的内应力也越大。如果表层的拉应力超过木材横纹抗拉强度,则木材组织被撕裂,由于沿木射线组织的抗拉强度较邻近的木纤维的强度小,所以裂缝首先沿木射线产生。 内裂:内部裂纹。内裂也常称蜂窝裂。内裂产生于干燥后期,有时产生于干燥材料存放时期。通常不易从木材外部发现,但严重时,可由材面的凹陷来判断。内裂是由于木材内层的拉应力所引起。 木材干燥前期,木料表层在拉应力的作用下,不仅产生伸张的弹性变形,同时还产生伸张的残余变形(塑性变形)。由于这种残余变形使外层木材的尺寸大于自由收缩的尺寸。到干燥后期,内层木材的含水率降至纤维饱和点以下时,内层木材开始收缩,但由于已经伸张了的外层木材的限制不能自由收缩,于是在材料中发生与干燥前期相反的内应力:内层木材受拉,外层木材受压。如果内层的拉应力超过木材横纹抗拉强度,则木材组织被撕裂,木材的内裂因此产生。 端裂:端面裂纹。端裂或仅限于木材的端面,或延伸至端部的一侧或两侧,后者通常称为劈裂。主要原因是由于木材顺纹方向的导水性远远大于横纹方向,当木材干燥时,水分从端面的蒸发要比从侧面蒸发快得多。端部含水率低于中部,端部的收缩受中部木材的限制,因而在端部产生拉(伸张)应力,当拉应力超过木材的横纹抗拉强度时,端面发生开裂。 轮裂:这种裂缝沿生长轮方向发展,常扩展到相邻的几个生长轮。

太阳能热泵干燥技术示范推广

. 2014年度农业新品种新技术 示X推广项目 可行性研究报告 项目名称:太阳能热泵干燥槟榔技术示X推广 项目单位:XX省农业科学院农产品加工设计研究所 通讯地址:XX市兴丹路14号 联系人:窦志浩 主管部门(单位):XX省农业厅 二0一四年九月

一、基本情况 1.项目单位基本情况: 单位名称:XX省农业科学院农产品加工设计研究所 地址及邮编:XX市兴丹路14号571100 联系:05 法人代表XX:窦志浩 人员情况:现有研究人员11名,固定研究人员11人。其中研究员2名,聘用副研究员1名,博士1名,中级职称5名,初级职称及其他人员4名,技术人员梯度配备较合理,能够发挥科研人员的积极性。 资产规模:XX省农业科学院农产品加工设计研究所现有试验用地1500m2,依靠项目支持,多途径筹集资金,新增固定资产设备达到500多万元,是国家热带水果加工技术研发分中心的具体承建单位,拥有农产品加工研究室1个,果蔬保鲜研究室1个,太阳能干燥室1个,休闲食品加工中试车间1个,饮料加工中试生产线1条,果蔬保鲜中试分级生产线1条,冷库2间,速冻库1间。配备了太阳能辅助干燥房、均质机、打浆机、封口机、旋转蒸发提取装置多套、天然物质分离层析设备、保鲜库、超净工作台、高压灭菌锅、脱皮及分离机等设备。有质构仪、超低温冰箱、微波真空干燥仪、真空冷冻干燥仪、卤素水分测定仪、层析仪、呼吸测定仪、色差仪等仪器。 ..

财务收支状况:2011年、2012年和2013年三年财务收支状况合理,收入和支出平衡,无负债和资产不良记录。 所隶属的主管部门为XX省农业科学院,是从事农业科研工作的正厅级事业单位。 可行性报告由项目承担单位编制。 2. 项目负责人情况 项目主持人为窦志浩,男,53岁,毕业于华南热带农业大学林业专业,本科学历,学士学位,研究员,所长。主要从事科研工作,理论基础扎实,科研实践经验丰富,主持或参加过国家及部省级项目30余项,获得部省级科技进步奖近20项,获得国家专利2项,在国家级学术刊物上发表论文30多篇,积极组织并参加科研成果推广转化工作,取得了较显著的经济效益和社会效益。 3.项目基本情况: 项目名称:太阳能热泵干燥槟榔技术示X推广 项目类型:发展建设类 项目性质:一次性项目 主要工作内容: (1)建设太阳干燥槟榔技术示X点。购置安装槟榔太阳能热泵干燥设备8台;单台设备干燥能力2000公斤。 (2)槟榔太阳能热泵干燥技术示X,示X干燥槟榔鲜果12万公斤;得到质量合格的槟榔白果产品约3万公斤。 ..

木材干燥规程及质量鉴定标准

木材干燥规程及质量鉴定标准 木材干燥 木材干燥可以被形容为通过烘干过程,使木材改变尺寸的艺术。理想情况是,木材通过干燥,使得含水率变得均衡。因此,更进一步尺寸的变化将被保持到最少。 木材打堆 湿板: 为避免打堆的湿板出现弯曲,并保证在起烘前和烘干时板材每处的空气流通能够平衡,因此:?所有的小搁条必须严格保证有统一的尺寸:20mmx20mm。 ?所有的大垫脚必须严格保证有统一的尺寸:40mmx100mm。 ?把大垫脚放于木垛的下方。在摆放前必须确保地面完全平整。 ?小搁条放置在每层板面上。 ?每条小搁条或大垫脚之间的距离必须是45cm。 ?上下两条小搁条必须在一条直线上。 ?左右两侧最外侧的小搁条与板端的距离应不得多与2cm ?同一堆板内,需保证板的长度相同。如确实无法做到,则需保证较短板在较长板之上。不得反其道而行之。 ?木垛中的缺口必须封闭起来。以此来保证空气流通时,空气经过的是板而不是缺口。

?待打堆完成后,必须用铁带将木垛捆紧。 烘房 装烘房前,必须保证烘房清洁(不得有树皮和尘土),并且所有设备均能正常工作。如果不能正常工作,则首先需要修理。 1. 风机 检查风机是否转动流畅,确保风机能正反两个方向旋转。 2. 电磁阀 必须在装烘房前检查电磁阀。如果不能正常工作,则需立即更换。 3. 测量设备 在装烘房前,保证所有的测量设备必须读数精确。 4. 通风口 通风口必须检测能否达到要求的开或关的位置。 装烘房 所有的木垛需装入烘房,以此来尽可能减少空气在板间流通时的阻力。空气必须在板间流通而不是围绕木垛流通。 在堆放进烘房过程中一定要做含水率测点。 ?测点分布: 在堆放进烘房过程中一定要做含水率测点。测点必须处于板的背面。这样喷水 就无法影响到木材湿度的量取。数量要在4个以上,间距一般为30 到 40mm, 一般情况下,测点深度为板厚的一半,并且垂直木纤维分布(见下图) 。要求做 含水率试点的板材,板面平整、宽度较大、无节子与开裂。测点不能穿过板 材。 烘房内不同位置放置测点: o例如,一个在板垛顶端,一个在中间,另一个则在下层。 o例如,一个放在烘房中间,另外2个放在两侧。(但是,切记测 点不能放在靠近烘房门和风机的板垛的最外层板上。) o把测点放在板的湿度最湿,中等和最干的地方。

木材干燥技术—其他特种干燥方法

第六章其他特种干燥方法 6.1 除湿干燥方法 6.1.1 除湿干燥的基本原理 除湿干燥与传统干燥方法的原理基本相同,所不同的是传统干燥方法是通过换气的方式排除从木材中蒸发了来的水蒸汽;而除湿干燥则是通过专用设备除湿器冷凝的方法,排除从木材中蒸发出来的水蒸汽,即湿空气是在封闭系统内作“冷凝→加热→干燥”往复循环。除湿干燥能够回收水蒸汽的汽化潜热,从理论上没有热量的损失,是一种节能的干燥方法。 除湿干燥系统 左图为单热源除湿干燥机:1.压缩机 2.除湿蒸发器 3.膨胀阀 4.冷凝器 5.湿空气 6.脱湿后的干空气 7.送干燥室的热风 8.电加热器 9.干燥室风机 10.材堆 右图为双热源除湿干燥机:1.压缩机 2.除湿蒸发器 3.膨胀阀 4.冷凝器 5.湿空气 6.脱湿后的干空气 7.送干燥室的热风 8.热泵蒸发器 9.外界环境空气 10.排出的冷空气 11.单向阀 6.1.2 除湿干燥设备组成 整个除湿干燥系统分为木材干燥室和除湿机两大部分,干燥室与普通低温干燥室相似,但有两点不同:①湿热废气不是排入大气,而是引入到除湿机中,经脱湿后,再返回干燥室; ②干燥室内通常不设加热器,而靠除湿机供热(有时设辅助加热器)。

除湿机由外壳、制冷压缩机、蒸发器(冷源)、冷凝器(热源)、热膨胀阀、辅助加热器、风机、连接管道及一定量的制冷剂组成。 6.1.3 除湿干燥工艺 除湿干燥通常是低温干燥。干燥开始时,辅助加热器把干燥室内空气温度预热到有效工作温度。然后,辅助加热器自动切断电源。靠除湿机中的压缩机不断提供能量。在干燥过程中,干燥室内温度逐渐升高到除湿机的最高工作温度。 干燥过程中,除了控制空气温度之外,还要控制空气的相对湿度。干燥针叶材时,相对湿度控制在63%至27%;干燥阔叶材时,相对湿度控制在90%至35%。 6.1.4 除湿干燥的应用 除湿干燥在我国适用于下述情况:水电资源丰富,电费便宜的地区;没有锅炉的中、小型企业;对环境污染要求高的地区;小批量干燥硬阔叶树材或用于硬阔叶树材的预干。 6.2 高频干燥和微波干燥 6.2.1 高频与微波干燥的基本原理和特点 高频电磁波一般指波长1000m~7.5m、频率0.3MHz~40MHz的电磁波; 微波是指波长1m~lmm、频率 300MHz~300GH Z的电磁波。 高频干燥和微波干燥都是把湿木材作为电介质,置于高频或微波电磁场中,在电磁场的作用下,引起木材中水分子的极化,由于电磁场的频繁交变,使被极化了水分子高速频繁地转动,水分子之间发生摩擦而产生热量,从而加热和干燥木材。 由于微波的频率远高于高频电磁波的频率,故对木材加热和干燥的速度也快得多。因此,木材的高频干燥已逐渐被微波干燥所代替。但电磁波对物料的穿透深度与频率成反比,频率越高,穿透深度越浅。所以高频电磁波对木材的穿透深度比微波大,适宜于干燥大断面的方材。 6.2.2 木材的高频干燥 为了大幅度地节省电能,生产上采用高频干燥和对流干燥相结合的联合干燥法。联合干燥时,全部保留原有的对流加热室的热力和通风设备。

太阳能烘干技术

浅谈太阳能烘干技术 太阳能一般是指太阳光的辐射能量。它最大的优点是清洁、无污染和可再生,到达地球表面的太阳辐射总功率巨大并取之不尽、用之不竭,是一种“送货上门”的能源。另一方面太阳能又有着它分散、间歇和不稳定的缺点。 太阳能烘干是利用太阳能干燥器对物料进行干燥,主要是应用于工农业生产方面。干燥过程是利用热能使固体物料中的水分汽化并扩散到空气中去的过程。物料表面获得热量后,将热量传入物料内部,使物料中所含的水分从物料内部以液态或气态方式进行扩散,逐渐到达物料表面,然后通过物料表面的气膜而扩散到空气中去,使物料中所含的水分逐步减少,最终成为干燥状态。因此,干燥过程实际上是一个传热、传质的过程。 1、物料的干燥特性 图1-1 物料干燥特性曲线 Ⅰ-预热干燥阶段;Ⅱ-恒速干燥阶段;Ⅲ-减速干燥阶段 (Ⅰ)预热干燥阶段(A-B) 干燥过程从A点开始,热风将热量转移给物料表面,使表面温度上升,物料水分蒸发,蒸发速度随表面温度升高而增加。在热量转移与水分蒸发达到平衡时,物料表面温度保持一定值。 (Ⅱ)恒速干燥阶段(B-C) 干燥过程到达B点后,水分由物料内部向表面扩散的速度与表面蒸发的速度基本相同,移入物料的热量完全消耗在水分的蒸发,即达到新的平衡。在这一阶段中,物料表面温度保持不变,含水率随干燥时间成直线下降,干燥速度保持一定值,即保持恒速干燥。 (Ⅲ)减速干燥阶段(C-D-E) 干燥过程过C点以后,水分的内部扩散速度低于表面蒸发速度,使物料表面的含水率比内部低。随着干燥时间增加,物料温度就增高,蒸发不仅在表面进行,而且还在内部进行,移入物料的热量同时消耗在水分蒸发及物料温度增高上。这一阶段称为减速干燥的第一阶段。 干燥过程继续进行,表面蒸发即告结束,物料内部水分以蒸汽的形式扩散到表面上来。这时干燥速度最低,在达到与干燥条件平衡的含水率时,干燥过程即告结束。这一阶段称为减速干燥的第二阶段。

红木家具生产中的木材干燥

红木家具生产中的木材干燥 小编:张新空发布时间2014-02-11 来源:林业英才网 【关键词】红木家具木材干燥 红木家具是一种纯实木家具,它的各个零件几乎都由实木制成。因此,木材干燥就成为它的首要问题。如干燥不当,在继后的零部件加工、装配、油漆上都会出现种种问题,从而影响成品的质量。甚至在销售和使用中,由于干缩湿胀,也会产生各种张缝或变形而引起各种投诉。在红木家具生产中,要解决的木材干燥问题包括:红木原木的贮存、板材的预干、板材的干燥工艺、干燥质量和成本、生产过程中的含水率控制等。 1 红木原木的贮存 由于我国现用的红木大都从东南亚国家如缅甸、柬埔寨等国进口,有相当部份是以原木的方式进料,可采用浸没在贮木池中的方法来进行存贮。由于红木内有较多的内含物,这种存贮方式可以浸提出这些内含物,打通木材内部水分的通道,有利于日后的干燥。此外,还可避免原木受菌类的腐害和原木的干裂。 如无条件建立贮木池,也可采用周期性连续喷水的方法,将贮木场加以适当规划,输水管埋于地下并接长距离洒水器,利用加压泵适时喷水,可使原木得到很好的保护。这种方法较之贮木池法,投资及管理的费用较低,同时对地点的选择及贮存量富有较大的弹性。 2 板材的预干 红木属于难干阔叶材,因此其干燥宜分两阶段进行,即先进行预干,干燥至含水率20—30%,再进行窑干。 红木板材先经过各种方式的预干,再进行窑干,就有可能降低能量消耗,并可减少降等,保持木材本色。用气干作为预干措施可以提高干燥窑生产率约40%,减少废品60%。 预干在国外已较为普遍,但在国内红木家具厂还未引起足够的重视。对我国红木家具厂来说,比较可行的预干方法有两种: 2.1 气干 以大气干燥作为预干。将锯下的板材堆放在板院内进行气干,使含水率达到20%—30%,然后窑干。采用气干与窑干相结合的干燥方式是比较经济的,但须占有较大面积的场地,并须严格管理。 红木家具厂的气干一般以自然气干为宜。 2.2 低温预干 把板材置放于预干窑内进行干燥,窑内配有风机及通风道,气流通过材堆的风速在1.0—1.5米/分,温度为20—40℃。 低温预干窑可采用木质构件建造,内部通风装置与加热装置的容量较小,低温预干周期比气干短,降等损失小。 另外,需要指出的是为了促进红木的干燥,采用预刨光的方法也是十分有用

太阳能与热泵节能干燥技术

GM产业与布场 一.太阳能千燥 太阳能是清洁、廉价的可再生能源,取之不尽用之不竭。每年到达地球表面的太阳能辐射能约为目前全世界所消耗的各种能量的1万倍。我国有较丰富的太阳能资源,约有2/3的国土年辐射时间超过2200h,年辐射总量超过5000MJ/m2。 1.太阳能干燥室的类型 太阳能干燥室一般可分为温室型和集热器型两大类,实际应用中还有两者结合的半温室型或整体式太阳能干燥室。 (1)温室型太阳能干燥室温室型太阳能干燥室如图1所示。这是一种具有排湿口的温室。这种干燥室的东、西、南墙及倾斜屋顶均采用玻璃或塑料薄膜等透光材料,太阳能透过玻璃进入干燥室后,辐射能转换为热能,其转换效率取决于木材表面及墙体材料的吸收特性。一般将墙体(或吸热板)表面涂上黑色涂料以提高对太阳能的吸收率。温室型干燥室一般为自然通风,如有条件也可以装风机实行强制通风,以加快木材的干燥速度。图1所示为自然通风,但在干燥室顶部加了一段烟囱,以增强通风能力,且烟囱越高,通风能力越强。 温室型干燥室的优点是:造价低;建造容易;操作简单;干燥成本低。它的缺点是:保温性能不好,昼夜温差大;干燥室容量少。 舒番专豸c 阳能与热泵节能燥技术 玻璃 北京林业大学张璧光 图l温室型太阳能干燥室外观 材堆 (2)集热器型太阳能干燥室这类干燥室是利用太阳能空气集热器把空气加热到预定温度后,通入干燥室进行干燥作业的。从操作系统来看,此类型太阳能干燥室可以比较好地与常规能源干燥装置相结合,用太阳能全部或部分地代替常规能源。且集热器布置灵活,干燥室容量较大。但集热器型比温室型投资大,干燥成本高一些。图2、3分别为集热器型干燥室原理图和实物照片。集热器型干燥室都采取了强制通风,除集热器系统有风机外,干燥室内设有循环风机。 集热器放置的倾角(包括温室型南面的倾角)与所处的纬度有关,冬季最大日射量收集角之倾角为纬度加10。,夏季减10。。如北京地区为北纬40。,可取集热器安装角为45。,以适当照顾冬季太阳能的收集。一般情况下集热器倾 角可取当地的纬度。根据干燥室湿度的大小和干燥工艺的要

木材干燥工艺规程

木材干燥工艺规程 (一)、木材堆码要求 隔条放置正确,材堆大小适宜,窑内堆放均匀,气流状况良好 1、同一个干燥窑内的木材材质与含水率状况相同或相近; 2、一个窑的锯材厚度偏差不应过大;当厚度偏差明显时,应使用同一层木板厚 度一致,以保证每一块板都能被隔条压住; 3、木材两端应涂蜡,以防木材开裂; 4、隔条放置正确: (1)隔条间距应适当,以减少板材变形并保证气流通畅; (2)隔条应与材堆长度方向相垂直,各层隔条在高度方向上保持在一条垂直线上,并落在材堆或托盘的支撑横梁上,要保证材堆内的正常通风与气 流通道畅通; (3)隔条侧面离材堆端部的距离应在一个隔条宽度内(30mm内),隔条长度和材堆的宽度一致,隔条的宽度要求均匀; 5、窑内堆放时: 材堆之间前后间距保持在10cm左右,以保证即使板材之间未对齐,也不会形成阻塞,影响气流循环; 在材堆深度方向,材堆侧面与后墙,材堆与大门间要留有足够空间(气道); 在高度方向上,材堆顶部或所压重物距顶棚距离控制在10—20cm左右; 6、材堆长度方向与气流方向垂直,不允许将才堆长度方向顺着气流方向堆放; 7、材堆形状为正六面体,材堆两侧应整齐垂直,当锯材长度不同时,长的最好 堆在材堆的下部和两侧,短材应堆在材堆的中间和上部,以保证材堆的稳定性; 8、迎风面必须装满材堆,不能出现空档;若材堆尺寸不能与窑体匹配或干燥木 材偏少时,可以交叉堆放材堆(合理搭配),以防止气流短路,影响干燥质量。 9、材堆堆放或叠放要整齐、稳定,防止干燥过程中材堆倒塌造成事故; 10、在材堆上面的隔条的位置上放置重物(水泥块)压住,为防止材堆上部几层

木材发生翘曲。 11、开关窑门,要注意安全,缓慢移动,规范开关窑门。 (二)、含水率检验板的制作(含水率测点选择) 一般来说,木材含水率是指木材的绝对含水率。木材含水率的测量是由位于窑内不同的位置的几组探针来完成。探针位置应选择无明显可见缺陷,较湿的有代表性的板材上,木材含水率是由插入的板材的控针测出。同时选择一些非在线移动检测板,把样板放在窑内适当位置以便测试及观察干燥情况。 另外,木材含水率还可以用称重法测量,其先制作含水率检验板,含水率检验板应选择材质好、纹理直、无节疤、无裂纹及明显可见的缺陷,较湿的有代表性的板材。 (三)基准选择 木材进行干燥时,主要根据树种、厚度、含水率和径级等确定适宜的干燥基准;同时根据实践结果进行修正。 (四)、木材干燥过程的实施 1、预热处理 目的:提高木材温度,整体热透,温度均匀,促使木材内部水份重新分布,提高木材可塑性,防止木材开裂、变形,同时脱脂杀菌,提高尺寸稳定 性。 预热时,窑内温度一般比基准同期规定的值略高或相对湿度根据木材的初含水率和应力状态而定,预热时间可根据树种、木材厚度和最初温度确定,一般从干燥窑内温度、湿度达到规定值算起,预热时间大约是:夏季为1— 1.5h/cm(厚度),冬季1.5—2h/cm(厚度)。由预热处理转到干燥基准相当含 水率阶段,时间不得少于2h。 (1)、若初含水率>纤维饱和点,木材不存在应力,选定相对湿度为100%饱和空气,以促使木材迅速热透。 (2)、若初含水率与纤维饱和点一样时,选定相对湿度可大于96%,允许木材表面少量吸湿以降低木材表面的含水率梯度,恢复粗性变形能力,改

木材干燥操作规程

木材干燥操作规程 (试行) 1.适用范围: 本标准适用于针叶锯材以空气为干燥介质的干燥。 2.窑干准备 2.1 装窑 轨车装堆(改造)容量:52m3,窑长13米,宽6米。进窑板材1600mm×6000mm×45mm×4堆,高度离隔层底梁200mm。 2.1.1 材堆装堆要求 ○1同一窑被干材应树种相同,厚度相同,初含水率基本一致,不允许混装。 ○2材堆两端头的隔条应夹住板端,避免或减轻端裂,隔条间距是板材的18~20倍,隔条上、下必须成一条竖直线,不能错开,并确保每一块锯材都被隔条压紧。 ○3材堆必须装成一正六面体,不能倾斜。若锯材的长度不一致或比材堆短,相邻的两块锯材应分别向两端靠齐,把空缺留在堆内,保持端头齐平。 ○4最顶端每条隔条上压10公斤以上的重物,以防止或减轻木材变形。最底层隔条必须压在轨车横梁上。 ○5应确保材堆沿窑的长度方向和高度方向装满,不留空挡,以避免气流短路,若备干木料不够装满一窑,可减少材堆的宽度,而不能减少材堆的长度和高度。 ○6装窑时,材堆不可占用两侧气道,也不可在气道上随意堆放零星木料,

以免影响气流循环效果而引起干燥不均匀和延长干燥时间。 2.1.2 在装堆过程中,须先把6个含水率测试针在材堆的不同位置按均匀分布订上,两针间距2.5cm,订在板材横纹上,深度为板材的1/3~1/2为宜,距离板材端头50cm以上。材堆进窑后按顺序位置连接好含水率测试线。 2.2 检查湿球纱布,确认纱布干净、包扎牢固,吸水良好,湿球水杯装满干净的水,及时更换纱布与水杯中的水。 2.3确认装堆无误后,详细检查设备处于正常待用状态后,即可关闭窑门准备干燥。 2.4拆卸和安装地轨、开启和关闭窑大门必须严格按照《YSZJ—50木材蒸汽干燥窑干燥工安全操作规程》操作。 3.窑干过程控制 根据初始含水率不同,确定窑干工艺阶段。初始含水率<50%时,窑干工艺一般为预热处理阶段——干燥阶段——终了处理阶段——干燥阶段——出窑前降温。 3.1 干燥窑供热控制系统开启(开启顺序见附件1) 3.2 预热处理 预热处理的目的是在未干燥之前先使木材充分热透,并清除可能已经存在的(在气干过程中产生)干燥应力。 3.2.1 按干燥基准设定干球温度、湿球温度(干燥基准见附件二)。 因蒸汽加热温度波动大,设定干球与湿球温度时,需设定上下限温度值:T干=t±1℃。T湿=t±0.5℃。 式中:T为仪表设定值的干/湿球温度;

红木家具木材干燥工艺

红木家具木材干燥工艺 红木家具的原料较为昂贵,专家指出,在红木干燥中,干燥质量和减少降等损失应是首要考虑的。要做到这两点,科学地掌握干燥工艺是最重要的前提。 新鲜红木木材含有大量的水分,在特定环境下水分会不断蒸发。水分的自然蒸发会导致木材出现干缩、开裂、弯曲变形、霉变等缺陷,严重影响木材制品的品质,因此木材在制成红木家具之前必须进行干燥处理。如干燥不当,在继后的零部件加工、装配、油漆上都会出现种种问题,从而影响成品的质量。正确的干燥处理可以克服上述木材缺陷,提高木材的力学强度,改善木材的加工性能,延长使用年限。它是合理利用和节约木材的重要技术措施,是木材加工生产中不可缺少的一道重要工序。 红木家具 专用顶级红木黑酸枝,越南黄花梨和小叶紫檀为木料,都是难干的阔叶材,红木中的水分移动非常缓慢,木材中的水分通道不畅,因此表层与稍下部的内层的含水率相差很大,在木材干燥过程中,为了提高木材的干燥速度、消除干燥过程中的应力,缓解含水率梯度,平衡材堆各块板的最终含水率,需要分别进行预热、中间、平衡和终了处理等多次处理。 红木沙发 影响木材干燥的外部因子有干燥介质的温度、湿度,通过木材表面的气流循环速度和介质的压力;内部因子主要是树种、被干木材的厚度和初始含水率等。在干燥室各部分干燥设备能够保证正常工作状态的情况下,木材干燥工艺条件是保证木材干燥周期和木材干燥质量的关键。 红木茶棋椅 木材干燥基准是指导木材干燥生产的重要依据之一。红木用材树种相对单一,在了解和掌握了被干木材所要求的干燥质量和最终含水率后,就可以选择制订相应的干燥工艺条件。其核心内容就是根据被干木材的树种、厚度选择干燥基准和确定热湿处理条件。在保证木材干燥质量前提下提高干燥速度,节约能源消耗,降低干燥费用,产生最大的经济效益。 木材干燥工艺条件的核心内容是木材干燥基准,干燥基准的软硬度基本决定了木材干燥周期和木材干燥质量,所以木材在干燥过程中出现的开裂、变形和最终含水率不均匀等现象都属于木材在干燥过程中产生的木材干燥缺陷。其中开裂也叫干裂,它包括端裂、表裂和内裂;变形包括顺弯、横弯、翘弯和扭曲。 应用现代干燥技术,研究和提高红木家具用材的干燥质量,对红木家具产品质量的提高,对于稳定和扩大我国红木家具在国际、国内市场的占有率至关重要。对弘扬红木文化促进中国传统家具的发展意义重大。研究和提高红木家具用材的

木材中的水分与木材干燥

当木材中含有的水分过多时,会影响其产品的质量,所以要对木材进行干燥处理。本章主要从木材中的水分及其与木材干燥的关系方面作一简单的介绍。 第一节木材中的水分和木材含水率 木材中所含水分数量的多少用“木材含水率”表示。它是木材中水分的重量与木材重量的百分比(%)。 含水率可以用绝干木材的重量作为计算基础,得到的数值叫做绝对含水率,并简称为含水率,木材干燥生产中一般采用绝对含水率(即含水率)来计算和反映木材的实际含水率状态,而相对含水率只用于木材作为燃料时的含水率计算。 木材按干湿程度可分5级: 湿材:长期放在水内,含水率大于生材的木材。 生材:和新采伐的木材含水率基本一致的木材。 半干材:含水率小于生材的木材。 气干材:长期在大气中干燥,基本上停止蒸发水分的木材。这种木材的含水率因各地的干湿情况而有所不同,变化范围一般在8%—20%之间。 室(窑)干材:经过(窑)干处理,含水率为7%—15%的木材。 第二节木材中水分的组成和对木材干燥的影响 木材是由细胞组成的,每个细胞又是由细胞腔和细胞壁组成的。细胞壁上所具有的纹孔,使每个细胞的细胞腔相互连接,构成了大毛细管系统;而细胞壁主要是由微纤维组成,微纤维又由微胶粒构成,微纤维之间及微胶粒之间具有的空隙构成了微毛细管系统,木材中的水分就存在于这两个毛细管系统之中。因水分存在的系统不同而分为三种:1、自由水(毛细管水),存在于细胞腔中;2、吸着水(吸附水、结合水、

细胞壁水),存在于细胞壁中;3、化合水:与细胞壁组成物质呈化学结合状态。它们均沿着系统的通路向纵横方向扩散。 细胞腔中的自由水被蒸发后,细胞便不能从空气中再吸收水分,因而影响木材的重量、燃烧力、干燥性、液体渗透性和耐久性。而细胞内的微毛细管则具有从空气中释放水分的能力,它直接影响木材的强度和胀缩(体积或尺寸的变化),即木材的稳定性。化合水在木材中极少,因而对木材的性质无影响,所以木材处于干燥状态时,自由水的蒸发只是减轻了木材的重量。而吸着水的蒸发则使木材产生了干缩,如果木材干缩不均匀,就会导致木材产生开裂和变形,影响了木材在后续加工中的正常使用和木制品的产品质量。 第三节木材的纤维饱和点和木材平衡含水率当细胞腔内的自由水已蒸发干净而细胞壁中的吸着水处于饱和状态时,木材含水率的状态点叫做纤维饱和点。纤维饱和点的含水率随树种和温度的不同而存在着差异。但大多数木材,当空气的温度在常温(20℃)、相对湿度在100%时,其变化范围为23%—33%,平均值约为30%,所以人们习惯性认为木材在纤维饱和点时的含水率为30%。但纤维饱和点是随着温度的升高而变小的。常温状态下为30%;60—70℃时降低到26%;100℃时降到22%;120℃时降到18%。 木材平衡含水率是指细碎木材的干燥状态达到与周围介质(如空气)的温、湿度相平衡的含水率。木材平衡含水率随空气的温、湿度变化而变化。当空气的温、湿度一定时,木材平衡含水率也一定。木材的实际含水率在纤维饱和点以下时,如果把木材放在这个环境中,木材的实际含水率将朝着与该环境下的木材平衡含水率数值相近的方向变化。因木材实际含水率不同,这个过程产生的现象是不一样的。因组成木材的细胞中细胞壁具有从空气中吸收和释放水分的能力,当木材的实际含水率高于该环境下的木材平衡含水率的数值时,木材就向空气中释放水分,这种现象叫做解吸。当木材的实际含水率低于该环境下的木材平衡

我国太阳能干燥的研究与应用

特别推荐:《2010中国新能源与可再生能源年鉴》编印通知 引言 人类利用太阳能历史最悠久、应用最广泛的应属太阳能干燥。自从人类学会狩猎、耕种、 养殖以来,就学会了利用太阳能把食品、农副产品干燥加工,保存起来。这种直接的摊晒、晾晒的干燥方法一直延续了几千。 直到现在,可算是被动式的太阳能干燥应用。这种传统的方法干燥效率低、周期长、占 地面积大,易受风沙、天气的影响,也容易受灰尘、苍蝇、虫蚁的污染,影响食品和农产品的质量,造成损失。 七十年代以来,世界各国开始重视能源问题,开展了太阳能热利用研究,其中也开始了 太阳能干燥的研究。这种以科学原理为基础,主动地利用太阳能对产品进行干燥的工艺和技术,是本文所讨论的太阳能干燥的范围。 在我国,太阳能干燥首先是在一些生产单位搞起来的,如山西省稷山县姚村的红枣干燥、 北京市大兴县青云店的小麦干燥、海南岛岭脚热作场的橡胶干燥等等。从1976—1986年10 年问,据不完全统计,分别由几十个单位建成了近 60座试验性的和生产性的太阳能干燥装置,总采光面积达5000多m2,太阳能干燥应用呈现出十分兴旺的发展趋势。但由于一开始对太阳能干燥的规律和机理缺乏系统的基础性研究,这期间建造的太阳能干燥装置有一定的盲卧 注,系统设计不够合理,干燥器结构不尽完善,使用寿命短,太阳能干燥试验装置存在低水 平重复现象。 太阳能干燥直接为工农业生产服务的应用前景,以及在发展过程中存在的问题,引起了 国家有关部门和科研单位的重视。中国太阳能学会热利用专业委员会组织专家对我国太阳能 干燥的现状和发展进行了调研和论证,为我国太阳能干燥的研究目标和发展方向,以及制定七五”科技攻关计划提供了科学的依据。为了提高太阳能干燥的研究和应用水平,太阳能 干燥”被列为国家七五”重点科技攻关项目三级课题,对太阳能干燥领域进行系统的、全面的探索和研究,内容包括应用基础性研究和示范性工程。七五”计划结束时,太阳能干燥 项目圆满完成,取得了一批重大科研成果,其中包括,物料干燥特性试验研究,太阳能空气集热研究,太阳能空气集热器热性能试验方法,太阳能干燥器评价方法的研究,以及建成了 多座大中型太阳能干燥示范装置。可以说,太阳能干燥的研究和应用在七五”期间达到了它 的鼎盛时期,无论是理论研究,还是应用技术都具有较高的水平,在国际上也有一定的地位。 进入九十年代,太阳能干燥主要朝技术开发和实际应用方向发展,据不完全统计,到目 前为止,全国太阳能干燥装置总采光面积约为15000m2,成绩是巨大的。但与近千万平方米 保有量的太阳能热水器相比,太阳能干燥的发展就显得落后了。这其中有各种各样的原因:首先,太阳能干燥没有很好地实现产品化、商品化,没有形成规模化产业,当然,这也与太

木材干燥工艺

影响木材干燥速度之因子分析 前言 木材干燥时,其中所含水分(自由水,约束水,水蒸气)是利用不同的机构(me-chanism),经由不同的流通管道,自中心移至表面而蒸发。在移动过程中,水分可能随木材中的实际状况自某一形式转换为另一形式(图2.8.)。一般生材在常温下其约束水约占其全干重的30%,余者除极微量的水蒸气外,均为自由水。以大叶桃花心木(Swietenia macrophylla)为例,其原始含水率约60%左右:故可粗估一半为约束水,一半为自由水。若为台湾杉(Talwanla cryptomerioides),因其原始含水率高达150%以上,故其自由水亦增为约束水的4倍以上。约束水的含量永远是一常数(30%左右)。水分移动的速率完全受制于下列因素。 物理因素 温度、相对湿度、和空气循环等物理因素对木材水分移动的影响乃一深奥而复杂的学科,本文仅简要叙述其基本原理。 (1)温度 热(heat)是木材水分蒸发时必须获得运动能量(kinetic energy)的根源,同时水分蒸发的快慢全赖单位时间内热能的供应情形以及加热媒体(空气)吸收水分的能力而定。干燥是由木材表面逐渐向内层进行,假如温度一定,则蒸发率会随木材水分的减少以及空气中蒸气压力的增加而逐渐降低。所以,欲保持稳定的蒸发率,必须能使木材水分获得附加热能(additional energy),或者降低干燥窑内的蒸气压力。此可藉提高温度(更多的热能)或降低相对湿度(较低的蒸气压力)以达成。故欲使温度在50℃(122下)时之蒸发率等于70℃(158oF)之蒸发率,则必须尽量降低相对湿度;藉增加干燥空气的水分亲和力(moisture affinity)来补偿热能的减少。但如此处理可能会形成剧烈的水分梯度,使木材发生干裂而招致“贬质”(degrade)。另一方面,提高温度可加速水分的移动,虽需维持较高的湿度以防干裂,但不致过份影响干燥速率。 谈到温度,有一事应牢记于心,即在干燥过程中窑内之干球温度必高于木材温度。当木材含有自由水时,其温度约等于湿球温度,而且只要有充足的水分移至木材表面,必会一直保持此一温度。一俟自由水的供应量减低,而木材之含水率接近纤维饱和点时,木材温度会开始上升向干球温度靠近。倘若木材之含水率达于零点(0%),其温度也可能达到干球温度。含有大量自由水之生材,每蒸发一克(gram)水需要580卡(calorie)的热量。含水率低于30%时,则需要较多的热量(详如图3.1.)。 (2)相对湿度与平衡含水率 所谓相对湿度(RH),是指在某一特定温度与压力下,单位体积空气中所含水蒸气的总量与在同一条件(温度、压力、体积不变)下空气呈饱和状态时所含水蒸气总量之比率而言。例如:在常压与60℃时每立方公尺(m)空气所含饱和水蒸气之总重量应为131克,而今仅含有72克,则其RH为72/131:或55%。提高空气温度即可提高其含蓄(保持)水分的能力:是故温度提高后必须在单位体积内增加水分,方能使其饱和或维持原有湿度,否则相对湿度必会降低。例如:将600C相对湿度100%之温度升高为70℃,由于空气含蓄水分之能力(moistureholding capacity)增加,其相对湿度则降为64%。 木材干燥时,是以干湿球湿度计(dryand wet-bulb psychrometer)来测定相对湿度。干湿球温度读数的差异谓之“湿球差”,与大气的相对湿度直接有关。湿布袋蒸发愈怏,湿球之温度愈低,湿球差亦愈大,相对湿度也就愈低。(详请参阅2.7)。 窑内之相对湿度并不能直接显示其干燥能力(aryins capacity),所以干燥基准表(drying schedule)均以干球温度和湿球温度(或平衡含水率)二者,或干球温度、湿球温度、以及平衡含水率(EMC)三者来表示(组合)之。例如,干燥某种木材,开始时,所用之干球温度为60℃(140下)湿球差度为50C(90F),则其平衡含水率为13%。温度愈高,平衡含水率愈低则干燥愈快。根据此一观念,即可巧妙操纵窑内条件,以控制干燥速度。在干燥过程中

木材常规干燥节能浅谈

木材常规干燥节能浅谈 摘要:木材与我们的生产和生活息息相关,在日常所使用的木材中,由于受到技术条件的要求,需要对所用的木材进行干燥后才能使用。木材干燥是木制品加工过程中耗能最大的工序,其能耗约占木制品生产总能耗的40%~70%。木材资源的浪费,大多数是由于湿材未经干燥处理或处理不当,致使木材降等甚至失去了使用价值。木材干燥的主要目的是改善木材的使用性能并提高它的利用率。本文从木材能源消耗的现状,节能技术和设备的完善这几个方面论证了木材干燥节能的可行性.然后对常规干燥方式,特种干燥方式和联合干燥方式分别进行了探讨,提出了节能的可行性意见最后对木材干燥节能研究前景进行了预测。 关键词:木材干燥节能阶段 Views on energy saving in wood drying Wood is closely related to our production and life. Restrained by technical conditions, wood we used in our daily life must be dried before putting into use. Wood drying is the most energy-consuming working procedure in woodworking, with 40 to 70 percent energy consumption of the total. Unseasoned wood and improper handling, accounting mostly for the waste of timber resource, cause the downgrading of wood even the lost of use value.The main purposes of wood drying are to improve performance and utilization ratio of wood. This paper argues the feasibility of energy saving from such aspects as the existing situation of wood energy consumption, energy-saving technologies, and perfection of apparatus. Then the paper develops discussions on conventional drying,special drying and combination drying and suggestions on the feasibility of energy saving. Finally some predictions about the prospects of energy saving in wood drying are made. Key words:wood drying energy saving phase 1 木材干燥节能势在必行 木材干燥是木制品生产过程中能耗最大的工序,也是木材加工的关键技术。在我国,木

相关文档