文档库 最新最全的文档下载
当前位置:文档库 › 缺失数据下AR(p)模型的估计方法

缺失数据下AR(p)模型的估计方法

缺失数据下AR(p)模型的估计方法
缺失数据下AR(p)模型的估计方法

数据中异常值的处理方法_总

数据中异常值的检测与处理方法 一、数据中的异常值 各种类型的异常值: 数据输入错误:数据收集,记录或输入过程中出现的人为错误可能导致数据异常。例如:一个客户的年收入是$ 100,000。数据输入运算符偶然会在图中增加一个零。现在收入是100万美元,是现在的10倍。显然,与其他人口相比,这将是异常值。 测量误差:这是最常见的异常值来源。这是在使用的测量仪器出现故障时引起的。例如:有10台称重机。其中9个是正确的,1个是错误的。 有问题的机器上的人测量的重量将比组中其他人的更高/更低。在错误的机器上测量的重量可能导致异常值。 实验错误:异常值的另一个原因是实验错误。举例来说:在七名跑步者的100米短跑中,一名跑步者错过了专注于“出发”的信号,导致他迟到。 因此,这导致跑步者的跑步时间比其他跑步者多。他的总运行时间可能是一个离群值。 故意的异常值:这在涉及敏感数据的自我报告的度量中通常被发现。例如:青少年通常会假报他们消耗的酒精量。只有一小部分会报告实际价值。 这里的实际值可能看起来像异常值,因为其余的青少年正在假报消费量。 数据处理错误:当我们进行数据挖掘时,我们从多个来源提取数据。某些操作或提取错误可能会导致数据集中的异常值。 抽样错误:例如,我们必须测量运动员的身高。错误地,我们在样本中包括一些篮球运动员。这个包含可能会导致数据集中的异常值。 自然异常值:当异常值不是人为的(由于错误),这是一个自然的异常值。例如:保险公司的前50名理财顾问的表现远远高于其他人。令人惊讶的是,这不是由于任何错误。因此,进行任何数据挖掘时,我们会分别处理这个细分的数据。

在以上的异常值类型中,对于房地产数据,可能出现的异常值类型主 要有:(1)数据输入错误,例如房产经纪人在发布房源信息时由于输入错误,而导致房价、面积等相关信息的异常;在数据的提取过程中也可能会出现异常值,比如在提取出售二手房单价时,遇到“1室7800元/m 2”,提取其中的数字结果为“17800”,这样就造成了该条案例的单价远远异常于同一小区的其他房源价格,如果没有去掉这个异常值,将会导致整个小区的房屋单价均值偏高,与实际不符。(2)故意的异常值,可能会存在一些人,为了吸引别人来电询问房源,故意把价格压低,比如房屋单价为1元等等;(3)自然异常值。房价中也会有一些实际就是比普通住宅价格高很多的真实价格,这个就需要根据实际请况进行判断,或在有需求时单独分析。 二、数据中异常值的检测 各种类型的异常值检测: 1、四分位数展布法 方法[1]:大于下四分位数加倍四分位距或小于上四分位数减倍。 把数据按照从小到大排序,其中25%为下四分位用FL 表示,75%处为上四分位用FU 表示。 计算展布为:L U F F F d -=,展布(间距)为上四分位数减去下四分位数。 最小估计值(下截断点):F L d F 5.1- 最大估计值(上截断点):F U d F 5.1+ 数据集中任意数用X 表示,F U F L d F X d F 5.15.1+<<-, 上面的参数不是绝对的,而是根据经验,但是效果很好。计算的是中度异常,参数等于3时,计算的是极度异常。我们把异常值定义为小于下截断点,或者大于上截断点的数据称为异常值。

剖析大数据分析方法论的几种理论模型

剖析大数据分析方法论的几种理论模型 做大数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。 作者:佚名来源:博易股份|2016-12-01 19:10 收藏 分享 做大数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。 利用大数据分析的应用案例更加细化的说明做大数据分析方法中经常用到的几种理论模型。 以营销、管理等理论为指导,结合实际业务情况,搭建分析框架,这是进行大数据分析的首要因素。大数据分析方法论中经常用到的理论模型分为营销方面的理论模型和管理方面的理论模型。 管理方面的理论模型: ?PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则等?PEST:主要用于行业分析 ?PEST:政治(Political)、经济(Economic)、社会(Social)和技术(Technological) ?P:构成政治环境的关键指标有,政治体制、经济体制、财政政策、税收政策、产业政策、投资政策、国防开支水平政府补贴水平、民众对政治的参与度等。?E:构成经济环境的关键指标有,GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。?S:构成社会文化环境的关键指标有:人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。

?T:构成技术环境的关键指标有:新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况等因素。 大数据分析的应用案例:吉利收购沃尔沃 大数据分析应用案例 5W2H分析法 何因(Why)、何事(What)、何人(Who)、何时(When)、何地(Where)、如何做(How)、何价(How much) 网游用户的购买行为: 逻辑树:可用于业务问题专题分析

科研常用的实验数据分析与处理方法

科研常用的实验数据分析与处理方法 对于每个科研工作者而言,对实验数据进行处理是在开始论文写作之前十分常见的工作之一。但是,常见的数据分析方法有哪些呢?常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。 1、聚类分析(Cluster Analysis) 聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 2、因子分析(Factor Analysis) 因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。

3、相关分析(Correlation Analysis) 相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y 分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。 4、对应分析(Correspondence Analysis) 对应分析(Correspondence analysis)也称关联分析、R-Q 型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。 5、回归分析 研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一

数据库异常处理答案

. 一、 一、实验/实习过程 实验题1在程序中产生一个ArithmeticException类型被0除的异常,并用catch 语句捕获这个异常。最后通过ArithmeticException类的对象e 的方法getMessage给出异常的具体类型并显示出来。 package Package1; public class除数0 { public static void main(String args[]){ try{ int a=10; int b=0; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } } 实验题2在一个类的静态方法methodOne()方法内使用throw 产生

ArithmeticException异常,使用throws子句抛出methodOne()的异常,在main方法中捕获处理ArithmeticException异常。 package Package1; public class抛出异常 { static void methodOne() throws ArithmeticException{ System.out.println("在methodOne中"); throw new ArithmeticException("除数为0"); } public static void main(String args[]){ try{ int a=10; int b=0; int c=1; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } }

实验数据处理的基本方法

实验数据处理的基本方法 数据处理是物理实验报告的重要组成部分,其包含的容十分丰富,例如数据的记录、函数图线的描绘,从实验数据中提取测量结果的不确定度信息,验证和寻找物理规律等。本节介绍物理实验中一些常用的数据处理方法。 1列表法 将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。 本课程中的许多实验已列出数据表格可供参考,有一些实验的数据表格需要自己设计,表1.7—1是一个数据表格的实例,供参考。 表1.7—1数据表格实例 氏模量实验增减砝码时,相应的镜尺读数

2作图法 作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(插法),或在一定条件下从图线的延伸部分读到测量围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到 ,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。 要特别注意的是,实验作图不是示意图,而是用图来表达实验中得到的物理量间的关系,同 时还要反映出测量的准确程度,所以必须满足一定的作图要求。 1)作图要求 (1)作图必须用坐标纸。按需要可以选用毫米方格纸、半对数坐标纸、对数坐标纸或极坐标纸等。

回归中缺失值处理方法

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考: 新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种: ①Series mean:表示用整个序列的均值作为替代值。 ②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k个数的平均数。也可以选择All,作用同Series mean选项。 “附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。

若选择“全部”,即将所有的观察值作为临近点。 ③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。 ④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。 线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。 ⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。 缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。 *注意:如果序列的第一个和最后一个数据为缺失值,只能利用序列均值和线性趋势值法处理,其他方法不适用。

回归中缺失值处理方法

回归中缺失值处理方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考: 新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种: ①Series mean:表示用整个序列的均值作为替代值。 ②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k 个数的平均数。也可以选择All,作用同Series mean选项。 “附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。若选择“全部”,即将所有的观察值作为临近点。 ③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。 ④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。 线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。 ⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。 缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。

大量数据处理方法

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash 函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应 该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。 举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。 注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。 扩展: Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter 中的最小值来近似表示元素的出现频率。 问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢? 根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。 2.Hashing

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

数据库异常处理答案

一、实验/实习过程 实验题1在程序中产生一个ArithmeticException类型被0除的异常,并用catch 语句捕获这个异常。最后通过ArithmeticException类的对象e 的方法getMessage给出异常的具体类型并显示出来。 package Package1; public class除数0 { public static void main(String args[]){ try{ int a=10; int b=0; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } } 实验题2在一个类的静态方法methodOne()方法内使用throw 产生ArithmeticException异常,使用throws子句抛出methodOne()的异常,

在main方法中捕获处理ArithmeticException异常。 package Package1; public class抛出异常 { static void methodOne() throws ArithmeticException{ System.out.println("在methodOne中"); throw new ArithmeticException("除数为0"); } public static void main(String args[]){ try{ int a=10; int b=0; int c=1; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } }

数据处理的基本方法

第六节数据处理的基本方法 前面我们已经讨论了测量与误差的基本概念,测量结果的最佳值、误差和不确定度的计算。然而,我们进行实验的最终目的是为了通过数据的获得和处理,从中揭示出有关物理量的关系,或找出事物的内在规律性,或验证某种理论的正确性,或为以后的实验准备依据。因而,需要对所获得的数据进行正确的处理,数据处理贯穿于从获得原始数据到得出结论的整个实验过程。包括数据记录、整理、计算、作图、分析等方面涉及数据运算的处理方法。常用的数据处理方法有:列表法、图示法、图解法、逐差法和最小二乘线性拟合法等,下面分别予以简单讨论。 列表法是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。其优点是,能对大量的杂乱无章的数据进行归纳整理,使之既有条不紊,又简明醒目;既有助于表现物理量之间的关系,又便于及时地检查和发现实验数据是否合理,减少或避免测量错误;同时,也为作图法等处理数据奠定了基础。 用列表的方法记录和处理数据是一种良好的科学工作习惯,要设 计出一个栏目清楚、行列分明的表格,也需要在实验中不断训练,逐步掌握、熟练,并形成习惯。 一般来讲,在用列表法处理数据时,应遵从如下原则:

(1) 栏目条理清楚,简单明了,便于显示有关物理量的关系。 (2) 在栏目中,应给出有关物理量的符号,并标明单位(一般不重复写在每个数据的后面)。 (3) 填入表中的数字应是有效数字。 (4) 必要时需要加以注释说明。 例如,用螺旋测微计测量钢球直径的实验数据列表处理如下。 用螺旋测微计测量钢球直径的数据记录表 从表中,可计算出 D i D = n = 5.9967 ( mm)

MATLAB模型预测控制工具箱函数

M A T L A B模型预测控制 工具箱函数 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

M A T L A B模型预测控制工具箱函数 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

大数据处理流程的主要环节

大数据处理流程的主要环节 大数据处理流程主要包括数据收集、数据预处理、数据存储、数据处理与分析、数据展示/数据可视化、数据应用等环节,其中数据质量贯穿于整个大数据流程,每一个数据处理环节都会对大数据质量产生影响作用。通常,一个好的大数据产品要有大量的数据规模、快速的数据处理、精确的数据分析与预测、优秀的可视化图表以及简练易懂的结果解释,本节将基于以上环节分别分析不同阶段对大数据质量的影响及其关键影响因素。 一、数据收集 在数据收集过程中,数据源会影响大数据质量的真实性、完整性数据收集、一致性、准确性和安全性。对于Web数据,多采用网络爬虫方式进行收集,这需要对爬虫软件进行时间设置以保障收集到的数据时效性质量。比如可以利用八爪鱼爬虫软件的增值API设置,灵活控制采集任务的启动和停止。 二、数据预处理 大数据采集过程中通常有一个或多个数据源,这些数据源包括同构或异构的数据库、文件系统、服务接口等,易受到噪声数据、数据值缺失、数据冲突等影响,因此需首先对收集到的大数据集合进行预处理,以保证大数据分析与预测结果的准确性与价值性。

大数据的预处理环节主要包括数据清理、数据集成、数据归约与数据转换等内容,可以大大提高大数据的总体质量,是大数据过程质量的体现。数据清理技术包括对数据的不一致检测、噪声数据的识别、数据过滤与修正等方面,有利于提高大数据的一致性、准确性、真实性和可用性等方面的质量; 数据集成则是将多个数据源的数据进行集成,从而形成集中、统一的数据库、数据立方体等,这一过程有利于提高大数据的完整性、一致性、安全性和可用性等方面质量; 数据归约是在不损害分析结果准确性的前提下降低数据集规模,使之简化,包括维归约、数据归约、数据抽样等技术,这一过程有利于提高大数据的价值密度,即提高大数据存储的价值性。 数据转换处理包括基于规则或元数据的转换、基于模型与学习的转换等技术,可通过转换实现数据统一,这一过程有利于提高大数据的一致性和可用性。 总之,数据预处理环节有利于提高大数据的一致性、准确性、真实性、可用性、完整性、安全性和价值性等方面质量,而大数据预处理中的相关技术是影响大数据过程质量的关键因素 三、数据处理与分析 1、数据处理 大数据的分布式处理技术与存储形式、业务数据类型等相关,针对大数据处理的主要计算模型有MapReduce分布式计算框架、分布式内存计算系统、分布式流计算系统等。

spss缺失值处理

spss数据录入时缺失值怎么处理 录入的时候可以直接省略不录入 分析的时候也一般剔除这样的样本。但也有替换的方法,一般有: 均值替换法(mean imputation),即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。 个别替换法(single imputation)通常也被叫做回归替换法(regression imputation),在该个案的其他变量值都是通过回归估计得到的情况下,这种 方法用缺失数据的条件期望值对它进行替换。这虽然是一个无偏估计,但是却倾向于低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。 多重替代法(multiple imputation)(Rubin, 1977) 。 ?它从相似情况中或根据后来在可观测的数据上得到的缺省数据的分布情况给每个缺省数据赋予一个模拟值。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断(Little and Rubin,1987; ubin,1987, 1996)。 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。 (二)均值替换法(Mean Imputation) 在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。 (三)热卡填充法(Hotdecking)

几种常见的缺失数据插补方法

几种常见的缺失数据插补方法 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。 (二)均值替换法(Mean Imputation) 在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。 (三)热卡填充法(Hotdecking)

大学物理实验数据处理基本方法

实验数据处理基本方法 实验必须采集大量数据,数据处理是指从获得数据开始到得出最后结 论的整个加工过程,它包括数据记录、整理、计算与分析等,从而寻找出 测量对象的内在规律,正确地给出实验结果。因此,数据处理是实验工作 不可缺少的一部分。数据处理涉及的内容很多,这里只介绍常用的四种方 法。 1列表法 对一个物理量进行多次测量,或者测量几个量之间的函数关系,往往 借助于列表法把实验数据列成表格。其优点是,使大量数据表达清晰醒目, 条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量 之间的对应关系。所以,设计一个简明醒目、合理美观的数据表格,是每 一个同学都要掌握的基本技能。 列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点:1.各栏目均应注明所记录的物理量的名称(符号 )和单位; 2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理; 3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时, 应将原来数据画条杠以备随时查验; 4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判 断和处理。 2图解法 图线能够明显地表示出实验数据间的关系,并且通过它可以找出两个 量之间的数学关系,因此图解法是实验数据处理的重要方法之一。图解法 处理数据,首先要画出合乎规范的图线,其要点如下: 1.选择图纸作图纸有直角坐标纸 ( 即毫米方格纸 ) 、对数坐标纸和 极坐标纸等,根据 作图需要选择。在物理实验中比较常用的是毫米方格纸,其规格多为17 25 cm 。 2.曲线改直由于直线最易描绘 , 且直线方程的两个参数 ( 斜率和截距 ) 也较易算得。所以对于两个变量之间的函数关系是非线性的情形,在用图解法时 应尽可能通过变量代换 将非线性的函数曲线转变为线性函数的直线。下面为几种常用的变换方法。 ( 1) xy c ( c 为常数 ) 。 令 z 1,则 y cz,即 y 与 z 为线性关系。 x ( 2) x c y ( c 为常x2,y 1 z ,即 y 与为线性关系。

大数据缺失值处理

这些缺失值不仅意味着信息空白,更重要的是它会影响后续数据挖掘和统计 分析等工作的进行。一般对缺失值处理的方法包括删除不完整记录、当作特殊值处理或者插补空值。显然,插补的方法不管从量上还是质上,对数据的处理结果都要好于前两种。目前国内外已提出了很多有关缺失值填充的方法。尽管这些方法在各自的应用环境下都得到了很好的效果,但仍然存在一些不足。比如,一些模型像决策树需要指定类属性与条件属性,这样的模型每处理一个属性就要训练一次模型,效率很低。其次,很多算法对高维数据的处理能力有限,引入无用的变量不仅影响执行效率,而且会干扰最终填充效果。第三、在没有真值作为对比的情况下,无法评价不同属性的填充效果。最后,很多算法只适用于小数据集,远远无法满足目前对大量数据的处理要求。为解决上述问题,本文给出了一个基于贝叶斯网和概率推理的填充方法。与常用的贝叶斯网构建算法不同,本文针对缺失值填充这一特定的应用前提,从挖掘属性相关性入手构建网络。建立贝叶斯网时不设定任何目标属性,由影响最大的属性作为根。这一过程不需要用户对数据有太多了解,完全由算法自动完成。根据贝叶斯网自身的条件独立性假设可以分解对多维联合概率的求解,降低在处理高维数据时的复杂度。填充值根据概率推理结果得到。推理产生的概率信息能够反映填充值的不确定程度,即概率越小,准确率越低,反之,准确率越高。这就为评价填充质量提供了一个参考。为使算法适用于混合属性集,本文在贝叶斯网中加入了对连续属性的处理,所有属性的填充均在一个模型下完成。针对大数据集,应用并行技术来解决效率问题。本文给出了算法在Map-Reduce 中的实现。实验部分分别验证了贝叶斯网构建算法和概率推理算法的有效性并对比分析了整个填充算法的准确率;并行处理部分给出了并行效率并分析了影响并行性能的因素。

模型预测控制快速求解算法

模型预测控制快速求解算法 模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。当被控对象结构和环境相对复杂时,模型预测控制需选择较大的预测时域和控制时域,因此大大增加了在线求解的计算时间,同时降低了控制效果。从现有的算法来看,模型预测控制通常只适用于采样时间较大、动态过程变化较慢的系统中。因此,研究快速模型预测控制算法具有一定的理论意义和应用价值。 虽然MPC方法为适应当今复杂的工业环境已经发展出各种智能预测控制方法,在工业领域中也得到了一定应用,但是算法的理论分析和实际应用之间仍然存在着一定差距,尤其在多输入多输出系统、非线性特性及参数时变的系统和结果不确定的系统中。预测控制方法发展至今,仍然存在一些问题,具体如下: ①模型难以建立。模型是预测控制方法的基础,因此建立的模型越精确,预测控制效果越好。尽管模型辨识技术已经在预测控制方法的建模过程中得以应用,但是仍无法建立非常精确的系统模型。 ②在线计算过程不够优化。预测控制方法的一大特征是在线优化,即根据系统当前状态、性能指标和约束条件进行在线计算得到当前状态的控制律。在在线优化过程中,当前的优化算法主要有线性规划、二次规划和非线性规划等。在线性系统中,预测控制的在线计算过程大多数采用二次规划方法进行求解,但若被控对象的输入输出个数较多或预测时域较大时,该优化方法的在线计算效率也会无法满足系统快速性需求。而在非线性系统中,在线优化过程通常采用序列二次优化算法,但该方法的在线计算成本相对较高且不能完全保证系统稳定,因此也需要不断改进。 ③误差问题。由于系统建模往往不够精确,且被控系统中往往存在各种干扰,预测控制方法的预测值和实际值之间一定会产生误差。虽然建模误差可以通过补偿进行校正,干扰误差可以通过反馈进行校正,但是当系统更复杂时,上述两种校正结合起来也无法将误差控制在一定范围内。 模型预测控制区别于其它算法的最大特征是处理多变量多约束线性系统的能力,但随着被控对象的输入输出个数的增多,预测控制方法为保证控制输出的精确性,往往会选取较大的预测步长和控制步长,但这样会大大增加在线优化过程的计算量,从而需要更多的计算时间。因此,预测控制方法只能适用于采样周

试验数据异常值的检验及剔除方法

目录 摘要......................................................................... I 关键词...................................................................... I 1引言 (1) 2异常值的判别方法 (1) 检验(3S)准则 (1) 狄克松(Dixon)准则 (2) 格拉布斯(Grubbs)准则 (2) 指数分布时异常值检验 (3) 莱茵达准则(PanTa) (3) 肖维勒准则(Chauvenet) (4) 3 实验异常数据的处理 (4) 4 结束语 (5) 参考文献 (6)

试验数据异常值的检验及剔除方法 摘要:在实验中不可避免会存在一些异常数据,而异常数据的存在会掩盖研究对象的变化规律和对分析结果产生重要的影响,异常值的检验与正确处理是保证原始数据可靠性、平均值与标准差计算准确性的前提.本文简述判别测量值异常的几种统计学方法,并利用DPS软件检验及剔除实验数据中异常值,此方法简单、直观、快捷,适合实验者用于实验的数据处理和分析. 关键词:异常值检验;异常值剔除;DPS;测量数据

1 引言 在实验中,由于测量产生误差,从而导致个别数据出现异常,往往导致结果产生较大的误差,即出现数据的异常.而异常数据的出现会掩盖实验数据的变化规律,以致使研究对象变化规律异常,得出错误结论.因此,正确分析并剔除异常值有助于提高实验精度. 判别实验数据中异常值的步骤是先要检验和分析原始数据的记录、操作方法、实验条件等过程,找出异常值出现的原因并予以剔除. 利用计算机剔除异常值的方法许多专家做了详细的文献[1] 报告.如王鑫,吴先球,用Origin 剔除线形拟合中实验数据的异常值;严昌顺.用计算机快速剔除含粗大误差的“环值”;运用了统计学中各种判别异常值的准则,各种准则的优劣程度将体现在下文. 2 异常值的判别方法 判别异常值的准则很多,常用的有t 检验(3S )准则、狄克松(Dixon )准则、格拉布斯(Grubbs )准则等准则.下面将一一简要介绍. 2.1 检验(3S )准则 t 检验准则又称罗曼诺夫斯基准则,它是按t 分布的实际误差分布范围来判别异常值,对重复测量次数较少的情况比较合理. 基本思想:首先剔除一个可疑值,然后安t 分布来检验被剔除的值是否为异常值. 设样本数据为123,,n x x x x ,若认j x 为可疑值.计算余下1n -个数据平均值 1n x -及标准差1n s - ,即2 111,1,1n n i n i i j x x s n --=≠=-∑. 然后,按t 分布来判别被剔除的值j x 是否为异常值. 若1(,)n j x x kn a -->,则j x 为异常值,应予剔除,否则为正常值,应予以保留.其中:a 为显著水平;n 数据个数;(,)k n a 为检验系数,可通过查表得到.

相关文档
相关文档 最新文档