文档库 最新最全的文档下载
当前位置:文档库 › 泵

泵
泵

Energy and Buildings 117(2016)63–70

Contents lists available at ScienceDirect

Energy and

Buildings

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e n b u i l

d

Development of a virtual pump water ?ow meter with a ?ow rate function of motor power and pump head

Gang Wang a ,?,Koosha Kiamehr b ,Li Song c

a

University of Miami,1251Memorial Drive,Rm.319,Coral Gables,FL 33146-0630,USA b

University of Miami,1251Memorial Drive,Rm.312,Coral Gables,FL 33146-0630,USA c

University of Oklahoma,865Asp Avenue,FH212,Norman,OK 73019-0601,USA

a r t i c l e

i n f o

Article history:

Received 7October 2015

Received in revised form 29January 2016Accepted 1February 2016

Available online 4February 2016

Keywords:

Virtual sensing Water ?ow rate

Chilled water system Pump Motor Ef?ciency

a b s t r a c t

Water ?ow rates are key operating variables in chilled and hot water systems.The water ?ow rate through a pump can be virtually measured using available motor power and pump head with projected motor and pump ef?ciencies.In general,motor ef?ciency is implicitly determined by motor power while pump ef?-ciency is given as a function of water ?ow rate.As a result,the water ?ow rate has to be calculated through a numerical method,which is dif?cult to apply in building automation systems (BAS).The objective of this paper is to develop a virtual pump water ?ow meter,which can be implemented in BAS with an explicit expression of motor power and pump head.First,motor ef?ciency is regressed as a function of motor power by consolidating multiple dependent factors,then pump ef?ciency function is reconstructed with pump shaft power and head,and ?nally experiments are conducted to develop and validate a virtual pump water ?ow meter on a chilled water pump.The experimental results show that the virtual ?ow measurements agree well with the ?ow measurement by a physical meter.The measurement standard deviation is 0.5L/s for a pump with the design ?ow rate of 37.9L/s.

?2016Elsevier B.V.All rights reserved.

1.Introduction

Air?ow and water ?ow rate are key operating variables for opti-mal operation,fault detection and diagnosis (FDD),and energy metering in heating,ventilating and air-conditioning (HVAC)sys-tems.Gao et al.[1]pointed out that energy ef?cient pump control strategies should maintain the water ?ow rate in the secondary loop equal to or lower than the water ?ow rate in the primary loop in decoupled chilled water systems.Zhao et al.[2]and Zhao [3]developed several effective FDD methods for chillers,which heav-ily depend on the water ?ow rates of evaporators and condensers.Celenza et al.[4]demonstrated that water ?ow measurement con-tributes the uncertainty of direct heat meters three times more than water temperature measurement.

Conventionally air?ow and water ?ow rates are often measured by differential pressure meters,such as Pitot tubes,Ori?ce plates or Venturi meters,which normally require long,straight pipes or duct unobstructed by valves,dampers,bends and ?ttings for accurate measurements [5].Wang [6]gave an example that the total straight pipe length should be at least 3.89m (13.8ft)without any parts for

?Corresponding author.Tel.:+13052845555;fax:+13052843492.E-mail address:g.wang2@https://www.wendangku.net/doc/121210079.html, (G.Wang).

a DN250(NPS10)pipe.Unfortunately,these conditions are dif?cult to satisfy in actual systems and the accuracy of the physical ?ow meter is in jeopardy.

On the other hand,a component of HVAC systems may have a physical correlation of air or water ?ow rate with other measur-able variables.For example,the pressure drop of a cooling coil is correlated to the water ?ow rate and the pressure drop of a control valve is correlated to the water ?ow rate as well as the valve posi-tion.Therefore,the ?ow rate can be virtually obtained by measuring other available variables.Zhao et al.[3]developed a virtual water ?ow meter to determine the water ?ow rate in chillers using avail-able chiller onboard measurements.Wang [6]developed a method to determine the water ?ow rate through chillers by combining pipe resistance coef?cients and online pressure difference.Song et al.[7]developed a virtual water ?ow meter to determine the water ?ow rate through the cooling coil of AHUs based on pressure difference as well as control valve positions.

Moreover,motor-driven fans and pumps are essential compo-nents installed in HVAC systems and share same governing laws.Since the fans and pumps have dynamic loads,variable-frequency drives (VFDs)are widely applied on the motors of fans and motors.The VFDs adjust the output frequency to proportionally reduce motor speed and consequently reduce motor mechanical load to pumps or fans.Meanwhile the VFDs also adjust the output voltage

https://www.wendangku.net/doc/121210079.html,/10.1016/j.enbuild.2016.02.0030378-7788/?2016Elsevier B.V.All rights reserved.

64G.Wang et al./Energy and Buildings117(2016)63–70

Nomenclature

f VFD frequency(Hz)

H pump head(Pa or Psi)

Q pump water?ow rate(L/s or GPM)

s motor slip

V VFD voltage(V)

W motor motor power(kW)

W shaft pump shaft power(kW)

W water mechanical work received by water(kW)

ámotor motor ef?ciency

ápump pump ef?ciency

ωpump speed

Subscripts:

imp implicit

to reduce motor electrical input power.The air or water?ow rate through a fan or pump has a correlation with fan or pump head, shaft power,and speed.Therefore,a virtual?ow meter can be developed on fans and pumps to determine the fan or pump?ow rate by available fan or pump head,shaft power,and speed[8]. In general,the fan or pump head can be accurately measured by a differential pressure transducer,the fan or pump shaft power is easily obtained from the connected VFD,and the motor speed can be obtained from the VFD frequency command in BAS.

Liu[9]proposed the?rst fan air?ow meter that determines fan air?ow rate using measured fan head and speed associated with an in-situ fan head curve in2003.Then a power-based fan air?ow meter using measured fan power and speed was developed to elim-inate the errors caused by the?at section of head curves in2005 since the power curve is steep in the?ow range where the head curve is?at in general[8].Liu[10]demonstrated applications of both virtual fan and pump?ow meters based on either head or shaft power in2006.Besides the?at head and shaft power curves within a certain?ow range,actual fan or pump speeds have to be applied to create actual correlations between head or shaft power and?ow rate under actual speeds from the in-situ curve for both head-based and power-based virtual?ow meters.Therefore,the fan or pump speed is a dominant variable that affects the accu-racy of head-based and power-based virtual?ow meters among all input variables.Unfortunately,the VFD frequency command does not always represent the motor speed,which is proportional to the fan or pump speed,especially in the low speed range.

To avoid using inaccurate motor speeds,power-head-based fan and pump?ow meters were developed.The power-head-based ?ow meters determines fan or pump?ow rate based on measured fan/pump head and motor power as well as projected motor ef?-ciency and fan/pump ef?ciency without using the motor speed. Motor ef?ciency is applied to calculate fan/pump shaft power from available motor power,which is read from the connected VFD. Meanwhile,fan/pump ef?ciency correlates fan/pump?ow rate to calculated shaft power and measured head,which is measured by a differential pressure transducer.Therefore,accurate motor and fan/pump ef?ciency calculation is essential to develop power-head-based virtual?ow meters.

The latest power-head-based fan?ow meter was developed by Wang et al.[8].Andiroglu et al.[11]applied the same principle to develop and validate a virtual pump?ow meter in2013.Typically, the fan/pump ef?ciency curve normally is given as a function of ?ow rate under a design speed by manufacturers as same as the fan/pump head and shaft power curves.According to af?nity laws, each point on the given ef?ciency curve under a design speed rep-resents a series of equivalent points under different speeds,which have same ef?ciency as well as an identical ratio of fan/pump head to?ow rate squared.Since the inaccurate fan/pump speed has to be avoided,the fan/pump ef?ciency was constructed as a func-tion of the ratio of fan/pump head to?ow rate squared through a calibration process in the latest power-head-based?ow meters [8,11].

Even though it is very common to assume constant motor ef?-ciency for motor energy calculation[12],accurate motor ef?ciency calculation is needed in virtual?ow meter development for a better accuracy.The MotorMaster+motor system management software developed by the U.S.Department of Energy’s(DOE)Industrial Technologies Program provides motor ef?ciency at different loads at the rated frequency for nearly30,000industrial electric motors [13].In fact,not only motor power but also VFD frequency affects motor ef?ciency[14–16].Motor ef?ciency at variable frequencies can be accurately estimated using the motor equivalent circuit theory recommended by Institute of Electrical and Electronics Engi-neers(IEEE)[17].The latest power-head-based?ow meters applied this method to calculate motor ef?ciency[8,11].

The water?ow determined by the developed virtual water?ow meter agrees well with the ultrasonic water?ow meter measure-ment indicated by the coef?cient of determination or R-squared of0.97and the standard deviation of0.5L/s(7GPM)for instant measurement[11].However,two iterations in virtual?ow calcu-lation are barriers to implement the developed virtual?ow meters in building automation systems(BAS).First,VFD voltage,frequency and motor slip are independent input variables to calculate motor power and ef?ciency using the motor equivalent circuit method [17–19],therefore,motor ef?ciency has to be implicitly determined by motor power,VFD frequency and voltage by a numerical method. Second,since fan and pump ef?ciencies were calibrated as a func-tion of the ratio of fan or pump head to?ow rate squared,the unknown?ow rate presents on both the side of the basic?ow cor-relation equation.As a result,the?ow rate has to be calculated from available pump/fan shaft power and head through another numerical process.Two numerical processes to calculate the motor ef?ciency and?ow rate make it impossible to achieve the virtual ?ow rate calculation in BAS for current HVAC applications,which has less mathematic calculation capacity.

The objective of this paper is to develop and validate a virtual head-power-based pump?ow meter,which is easily implemented in BAS,by constructing an explicit water?ow expression of avail-able motor power and pump head to eliminate these two barriers.In the paper,?rst the motor ef?ciency is regressed as an explicit func-tion of motor power by consolidating dependent factors,including motor power,VFD frequency and voltage;then the pump ef?ciency is regressed as a function of pump shaft power and head without water?ow rate;and?nally experiments are conducted to develop, calibrate and validate a virtual pump water?ow meter on a chilled water pump based on motor power and pump head along with regressed motor and pump ef?ciency functions.

2.Theory for virtual pump?ow meters

VFDs are widely installed on the motor of pumps in HVAC sys-tems to reduce pump shaft power by reducing VFD frequency and reducing motor power by reducing VFD voltage at partial?ow rates. Fig.1shows the con?guration of a VFD–motor–pump system.The VFD receives the power at the rated frequency and voltage,and transforms it into the power at variable frequencies and voltages. The motor receives the power with variable frequencies and volt-ages from the VFD and drives the pump at variable speeds with reduced pump shaft power and motor power.The pump creates water pressure increase or pump head and generates water?ow driven by the shaft power from the motor.

G.Wang et al./Energy and Buildings117(2016)63–70

65

Fig.1.A VFD–motor–pump system with available measurements.

As discussed previously,the pump head(H)can be easily and accurately measured by a differential pressure transducer(DP). Meanwhile,the motor power(W motor)can be easily obtained from the VFD control panel.Besides the motor input power,the VFD con-trol panel also provides VFD frequency(f)and voltage(V).In other words,the VFD provides all necessary inputs for motor ef?ciency calculation.A portable ultrasonic water?ow meter is also installed in the system in order to calibrate the virtual?ow meter.

In order to develop a virtual pump water?ow meter,the the-oretical correlation of the water?ow rate through a pump with the available pump head and motor power will be explored.In this section,?rst,the basic correlations as well as associated motor and pump ef?ciency functions in the latest power-head-based pump ?ow meter development[11]are reviewed,then two barriers for implementation in BAS are identi?ed,and?nally the solutions are proposed to eliminate these barriers.

2.1.Basic correlation of pump water?ow and head,and motor power in the latest virtual meter

The mechanical work(W water)imparted into water,which is the product of pump head(H)and water?ow rate(Q),is determined by pump shaft power(W shaft)along with the pump ef?ciency(ápump). W water=H·Q=W shaft·ápump(1) Then the pump shaft power is determined by motor power (W motor)along with the motor ef?ciency(ámotor).

W shaft=W motor·ámotor(2) Therefore,the pump water?ow rate(Q)can be obtained from the available pump head(H)and motor power(W motor)with iden-ti?ed pump ef?ciency(ápump)and motor ef?ciency(ámotor).

Q=W motor·ámotor·ápump

H(3)

Eq.(3)provides a basic correlation for power-head-based virtual pump water?ow meters.Since the pump head and motor power is measurable,the application of the correlation relies on the pump and motor ef?ciency functions.

Motor ef?ciency is determined using the motor equivalent cir-cuit method.A three-phase induction motor is characterized by an equivalent circuit with six circuit parameters,including sta-tor winding resistance(R1),rotor winding resistance(R2),

stator

Fig.2.Motor equivalent circuit with six parameters.

leakage reactance(X1),rotor leakage reactance(X2),magnetizing reactance(X m),and core loss resistance(R c),as shown in Fig.2[17].

In the circuit,the reactance is proportional to the VFD fre-quency while the load resistance,R2(1?s)/s,is derived from the rotor resistance(R2)using the motor slip(s),the ratio of the dif-ference between the synchronous speed and actual speed to the synchronous speed.The input current(I1),the load current(I2),the load voltage(V2),and the air gap voltage(V m)can be calculated based on the VFD voltage(V)and frequency(f)and the motor slip (s)using the electrical circuit theory.

Besides that load resistance corresponds to the shaft power to the pump(W shaft),the losses of stator and rotor winding resistances (R1and R2)correspond to the copper losses and the loss of core loss resistance(R c)corresponds to the core or iron loss.The motor input power(W motor)is balanced with the shaft power(W shaft)as well as the core loss on R c,the rotor loss on R2,and the stator loss on R1.

Therefore,the induction motor performance,such as motor power(W motor),pump shaft power(W shaft)and motor ef?ciency (ámotor),is determined by VFD voltage(V),frequency(f)and motor slip(s)[18,19].

W motor=W motor(V,f,s)(4)ámotor=

W shaf t(V,f,s)

motor(V,f,s)

=ámotor(V,f,s)(5)

The motor slip(s)has to be solved based on Eq.(4)from available VFD voltage(V),frequency(f)and motor power(W motor),using a numerical method.Then,the motor ef?ciency is determined based on Eq.(5)from available VFD voltage(V),frequency(f)and previ-ously solved motor slip(s).Therefore,the motor ef?ciency(ámotor) can be expressed as an implicit function of VFD voltage(V),fre-quency(f)and motor power(W motor).

ámotor=ámotor,imp(V,f,W motor)(6) The af?nity laws are applied to determine the pump ef?ciency independent with the motor speed.Each point on a pump ef?-ciency curve under a design speed represents a series of equivalent points under different speeds,which have same ef?ciency and can be determined by a unique ratio of pump head to?ow rate squared. Therefore,the speed independent pump ef?ciency curve is cali-brated as a function of the ratio of pump head to?ow rate squared.ápump=

QH

W shaft

=

QH

W motorámotor

=ápump

H

Q2

(7)

Substituting the implicit motor ef?ciency function,de?ned by Eq.(6),and the pump ef?ciency function,de?ned by Eq.(7),into the basic correlation,de?ned by Eq.(3),the virtual?ow(Q)is an implicit function with respect of pump head(H)and motor power (W motor)with another implicit function of the motor ef?ciency with respect of VFD voltage(V),frequency(f)and motor power(W motor).

Q=

W motor·ámotor,imp(V,f,W motor)·ápump

H

Q2

H(8)

66G.Wang et al./Energy and Buildings117(2016)63–70 2.2.The barriers for implementation in BAS

In the latest power-head-based?ow meter development[11]as

shown in Eq.(8),the motor slip needs to be determined from avail-

able VFD voltage,frequency and motor power through a numerical

method based on the explicit function of the motor power with

respect of the VFD voltage,frequency and motor slip,de?ned by

Eq.(6).

Moreover,the pump ef?ciency is structured as a function with

respect of the ratio of pump head and?ow rate squared,which

results in unknown?ow rate presenting in both the side of the basic

correlation,de?ned by Eq.(8).Another numerical method has to

be applied to determine the?ow rate based on the available motor

power and pump head besides a numerical method to determine

the motor ef?ciency.

As a result,two numerical processes to determine motor

ef?ciency and?ow rate make it impossible to implement the devel-

oped virtual meter in the BAS.

2.3.Solution to eliminate numerical processes

The VFD usually has different settings for the V/f ratio,the ratio

of VFD output voltage to VFD output frequency,even though a sim-

ple linear setting is to maintain a constant V/f ratio,which is always

equal to the ratio of the rated voltage to the rated frequency.With

any given V/f ratio setting,the VFD voltage is dependent on the

VFD frequency.Moreover,with pump speed control in a chilled

water system,the VFD frequency,which is proportional to the

motor speed,is modulated to maintain a differential pressure in

the chilled water system at its setpoint.As a result,the VFD fre-

quency is correlated to the mechanical work(W water)imparted

into water and consequently to the motor power(W motor).There-

fore,the VFD frequency and voltage are dependent with the motor

power.By consolidating these three dependent input variables,the

motor ef?ciency is regressed as a function of the motor power only.

ámotor=ámotor(V(W motor),f(W motor),W motor)=ámotor(W motor)

(9)

As a result,the motor ef?ciency is easily regressed as an explicit

function with respect of the motor power for a given motor under

a given V/f ratio setting and a given pump speed control sequence.

On the other hand,the af?nity laws state that the pump?ow rate

is proportional to the pump speed(?),the pump head is propor-

tional to the square of the pump speed and the power shaft power

is proportional to the cube of the pump speed among all equivalent

operating points.

Q ω=

Q1

ω1

=

Q2

ω2(10a)

H ω2=

H1

ω2

1

=

H2

ω2

2

(10b)

W shaft ω3=

W shaft,1

ω3

1

=

W shaft,2

ω3

2

(10c)

According to Eqs.(10a)–(10c),all equivalent points have iden-tical pump ef?ciency.

ápump=

QH

W shaft

=

Q1H1

W shaft,1

=

Q2H2

W shaft,2(11)

Besides identical ef?ciency,all equivalent points have other unique identical ratios without the pump speed,such as

H Q2=

H1

Q2

1

=

H2

Q2

2

(12a)

Fig.3.Calibration and development of a virtual pump?ow meter.

W2

H3

=

W2

1

H3

1

=

W2

2

H3

2

(12b)

Therefore,a series of equivalent point can be de?ned by any two

operating variables among the pump?ow rate,head,shaft power

and speed,de?ned by Eqs.(10a)–(10c),(12a)and(12b).Besides

the ratio of pump head to water?ow squared(H/Q2)de?ned by

Eq.(12a),a series of equivalent points can be determined uniquely

by the ratio of pump shaft power squared to pump head cubed

(W shaft2/H3),de?ned by Eq.(12b).

Consequently,since the pump shaft power and head are always

available,the pump ef?ciency can be regressed a function of the

ratio of pump shaft power to pump head to the power of3/2or the

square root of the ratio in Eq.(12b)rather than the ratio of pump

head to water?ow squared to avoid the unknown water?ow rate

in the pump ef?ciency calculation in Eq.(7).

ápump=

QH

W shaft

=ápump

W shaft

H3/2

(13)

With newly developed pump and motor ef?ciency functions,

de?ned by Eqs.(9)and(13),the pump water?ow rate(Q)is cor-

related explicitly with the motor power(W motor)and pump head

(H).

Q=

W motor·ámotor(W motor)·ápump

(W motor·ámotor(W motor))/H3/2

H

(14)

In order to apply the explicit?ow correlation,Eq.(14),in BAS,the

motor ef?ciency and pump ef?ciencies have to be calibrated.Fig.3

summarizes the calibration process marked by long dash arrows

for motor ef?ciency and by short dash arrows for pump ef?ciency

and the meter development process marked with solid arrows for

a proposed virtual pump water?ow meter.

3.Experiments

Experiments were conducted on a VFD–motor–pump system in

a building chilled water distribution system of the main library at

a college campus in South Florida[11].The initial purpose of the

experiments was to develop and validate a virtual pump?ow meter

using the principle proposed by Wang et al.[8].Even though the

results show that the virtually calculated water?ow agrees well

with the ultrasonic water?ow meter measurement with the R-

squared of0.97for instant measurement,two numerical processes

were applied in the?ow calculation.In this section,the?ow rate is

G.Wang et al./Energy and Buildings117(2016)63–7067

recalculated using the method proposed in the paper without any numerical processed after the calibration.

The studied chilled water booster loop is a0.2m(or8in.)diam-eter main pipe fed by two pumps with alternating duty cycles and the VFD modulates the pump speed to maintain a building chilled water loop differential pressure setpoint.During the experiments, the system was set to operate continuously using one pump only without duty cycling.

Real-time monitoring and data acquisition were established at the experiment site as shown in Fig.1.A four-channel data logger was used to record the motor power and VFD voltage from two VFD analog output channels and the VFD frequency from one VFD ana-log input channel.A differential pressure transducer was installed between the pump discharge and suction for pump head measure-ments.A conventional externally installed ultrasonic water?ow meter was mounted on the chilled water pipe for the pump ef?-ciency calibrations and virtual?ow measurement validation.

Experiments were conducted from April24th to May17th2013 with a sample interval of1min.The data collected from April24th to May2nd were used to calibrate the motor and pump ef?ciencies to develop a virtual pump water?ow meter,while the data from May3rd to May17th were used to validate the developed virtual pump water?ow meter.

3.1.Motor ef?ciency calibration

A15kW(or20HP)460V three-phase induction motor with the rated frequency of60Hz and the rated voltage of460V provides the shaft power to the pump.The circuit parameters are estimated based on the motor performance data provided by the motor man-ufacturer using the same method applied by Andiroglu et al.[11] and listed in Table1.

With these six estimated circuit parameters,the motor ef?-ciency(ámotor)is simulated using VFD voltage(V),frequency(f)and motor power(W motor)using the motor equivalent circuit method. Fig.4shows the motor ef?ciency–power curves under six differ-ent motor frequencies with the constant V/f ratio.It is obvious that the motor ef?ciency is impacted by both the motor power and VFD frequency.

As discussed previously,the motor voltage and VFD frequency may be dependent with the motor power based on the V/f ratio setting in the VFD and the pump speed control sequence in BAS. Therefore,the dependency of the VFD voltage and frequency with the motor power need to be evaluated.The ratio of the VFD voltage and frequency in the VFD remained the initial linear setting and the system was operated under routine control sequences during the experiments.Fig.5shows the correlation between the motor voltage and power while Fig.6shows the correlation between the relative VFD frequency and motor power.The R-squared is 0.995between the regressed and actual motor voltage and is0.995 between the regressed and actual VFD frequency.Therefore,the VFD frequency and voltage are approximately dependent with the motor power,and the motor power is treated as an independent variable to determine the motor ef?ciency.

Then the motor ef?ciency is calculated based on the actual VFD frequency,voltage and motor power using the equivalent circuit Table1

Calculated equivalent circuit parameters.

Parameter(ohm)Value

Stator winding resistance0.276

Stator leakage reactance 1.56

Magnetizing reactance21.9

Core loss resistance721

Rotor winding resistance0.207

Rotor leakage reactance

1.05Fig.4.Motor ef?ciency under different motor power and VFD

frequency.

Fig.5.Correlation between motor voltage and

power.

Fig.6.Correlation between VFD frequency and motor power.

68

G.Wang et al./Energy and Buildings 117(2016)

63–70

Fig.7.Motor ef?ciency versus motor input power.

method with Eq.(9).Fig.7shows the motor ef?ciency versus motor power correlation as well as the motor ef?ciency under different VFD frequency with a constant V /f ratio.It is obvious that the actual motor ef?ciency is actually the high ef?ciency bound for all VFD frequencies under the given motor power.

Fig.7reveals that the motor ef?ciency slightly varies from 0.93to 0.88when the motor power varies from 12.5kW to 1kW but sig-ni?cantly drops from 0.88to 0.70when the motor power decreases from 1kW to 0.3kW.The correlation between motor ef?ciency and power de?ned by Eq.(9)is regressed as polynomials in two different motor power ranges.

ámotor =

0.0000730W 3motor ?0.00213W 2motor +0.0212W motor +0.859

if W motor ≥1kW

?0.4496W 2motor +0.8446W +0.4783

if W motor <1kW

(15)

3.2.Pump ef?ciency calibration

The design water ?ow rate is 37.9L/s (or 600GPM),the design

pump head is 239kPa (or 80ft of water)and the design pump shaft power is 12.1kW (or 16.2hp)at the full speed.

Eq.(13)is applied to calibrate the correlation between the pump ef?ciency and the ratio of pump shaft power to pump head to the power of 3/2based on the measured pump head and water ?ow rate,and motor power and ef?ciency.Fig.8shows the pump ef?-ciency versus the ratio of the pump shaft power to the pump head to the power of 3/2.

The pump ef?ciency curve in Fig.8is regressed with a third order polynomial of the ratio of the pump shaft power to the pump head to the power of 3/2.

ápump =0.0073

W

shaft H 3/2

3?0.0975

W

shaft H 3/2

2

+0.368

W

shaft H 3/2

+0.221

(16)

3.3.Validation

With calibrated motor ef?ciency,de?ned by Eq.(15)and cal-ibrated pump ef?ciency,de?ned by Eq.(16),the water ?ow rate through the pump is calculated from the available pump head and motor power using Eq.(14).Since Eq.(14)is an explicit water ?ow rate expression of the pump head and motor power,the developed virtual pump ?ow meter can easily implemented in

BAS.

Fig.8.Pump ef?ciency curves.

The data during the two-week validation period included 19,500samples with a 1-min sample interval.Fig.9shows the motor power obtained from the VFD control panel,the motor ef?ciency calcu-lated based on the motor power using Eq.(15)and the pump shaft power calculated based on the measured motor power and calcu-lated motor ef?ciency using Eq.(2)over a 6-h period.

Fig.10shows the pump head measured by the pressure differ-ential transducer,and pump ef?ciency calculated from the ratio of the calculated pump shaft power to the measured pump head to the power of 3/2using Eq.(16).

Finally the pump ?ow rate can be calculated based on the mea-sured pump head and calculated pump shaft power,shown in Fig.9,and calculated pump ef?ciency,shown in Fig.10using Eq.(14).Fig.11compares the water ?ow rate measured by the ultrasonic water ?ow meter and the water ?ow rate calculated using Eq.(14)over a same time period.

Fig.12compares measured and calculated water ?ow and demonstrates the ?ow error over the entire validation period

from

Fig.9.Motor power,motor ef?ciency and pump shaft power over a 6-h period.

G.Wang et al./Energy and Buildings 117(2016)63–70

69

Fig.10.Pump head and pump ef?ciency over a 6-h

period.

https://www.wendangku.net/doc/121210079.html,parison of measured and calculated water ?ow rates over a 6-h

period.

Fig.12.Measurement errors over the entire validation period.

May 3rd to May 17th,2013.The standard deviation for the entire validation period is 0.5L/s (7GPM)for the developed virtual pump ?ow meter.

Fig.13presents the level of agreement between the water ?ow rates measured by the installed ultrasonic ?ow meter and

the

Fig.13.Virtual water ?ow rate versus measured water ?ow rate.

water ?ow rates calculated by the developed virtual water ?ow meter.The experimental results show that the water ?ow mea-surements by the developed virtual ?ow meter agrees well with the physical water ?ow meter with the coef?cient of determina-tion or R -squared of 0.97,which is the same as the value obtained by Andiroglu et al.[11]using two numerical processes.

4.Discussion

Even though the results of the validation conducted right after the calibration show that the developed virtual ?ow meter agrees well with the physical water ?ow meter,the ef?ciencies of motors and pumps actually deteriorate over their lifetime.

Excessive impeller clearances or worn or misadjusted parts can cause internal leaks,which reduce the ef?ciency of pumps.The United Nations Industrial Development Organization (UNIDO)[20]stated that the ef?ciency degradation for an unmaintained pump could be around 5%in the ?rst 5years and around 10–15%over its 20years serving time.The regular maintenance can restore the pump ef?ciency almost back to the original ef?ciency.In sum-mary,the maximum pump ef?ciency degradation can be 1%per year.

On the other hand,power supply anomalies,corrosion,friction,and contamination can cause motors to perform below satisfaction or eventually fail.However,no detailed data of the motor ef?ciency degradation are available.According to UNIDO [20],larger motors are usually repaired one,two or even three times during their up to several-decade lifetime and the average motor comes out of a rewinding with a 1%to 3%lower ef?ciency.

The ef?ciency degradation of motors and pumps will results in measurement errors.Therefore,regular recalibrations are needed in order to maintain the accuracy of virtual pump ?ow meters according to maintenance conditions and required accuracy.The ef?ciency degradation of motors can be lumped into the pump ef?ciency.As results,the motor ef?ciency model,de?ned by Eqs.(4)–(6),remains unchanged with operating time while the pump ef?ciency need be calibrated regularly using the proposed proce-dure.

5.Conclusions

The explicit water ?ow correlation with the pump head and motor power was developed in association with pump and motor ef?ciencies.The motor ef?ciency is regressed as a function of motor

70G.Wang et al./Energy and Buildings117(2016)63–70

power by consolidating multiple dependent factors and the pump ef?ciency is regressed as a function of the ratio of pump shaft power to pump head to the power of3/2by using the af?nity laws.

Experiments were conducted to develop,calibrate and validate a virtual pump water?ow meter on a VFD–motor–pump system, which virtually determines the pump water?ow rate based on the pump head measured by a water differential pressure transducer and the motor power obtained from the VFD control panel.The water?ow rates determined by the developed virtual water?ow meters agreed well with the physical water?ow meter measure-ment.The standard deviation is0.5L/s(7GPM)for a pump with the design water?ow rate of37.9L/s(or600GPM)for the entire three-week validation period.

References

[1]D.Gao,S.Wang,Y.Sun,A fault-tolerant and energy ef?cient control strategy

for primary–secondary chilled water systems in buildings,Energy Build.43

(12)(2011)3646–3656.

[2]X.Zhao,M.Yang,H.Li,Field implementation and evaluation of a

decoupling-based fault detection and diagnostic method for chillers,Energy Build.72(2014)419–430.

[3]X.Zhao,Lab test of three fault detection and diagnostic methods’capability of

diagnosing multiple simultaneous faults in chillers,Energy Build.94(2015) 43–51.

[4]L.Celenza,M.Dell’Isola,G.Ficco,B.Palella,G.Riccio,Heat accounting in

historical buildings,Energy Build.95(2015)47–56.

[5]American Society of Heating,Refrigerating and Air Conditioning Engineers,

ASHRAE Handbook,Fundamentals:Measurement and Instruments,vol.111, American Society of Heating,Refrigerating and Air Conditioning Engineers, Atlanta,GA,2001.

[6]H.Wang,Water?ow rate models based on the pipe resistance and pressure

difference in multiple parallel chiller systems,Energy Build.75(2014)

181–188.

[7]L.Song,G.Wang,M.R.Brambley,Uncertainty analysis for a virtual?ow meter

using an air-handling unit chilled water valve,HVAC&R Res.19(3)(2013)

335–345.

[8]G.Wang,L.Song,E.Andiroglu,G.Shim,Investigations on a virtual air?ow

meter using projected motor and fan ef?ciencies,HVAC&R Res.20(2)(2014) 178–187.

[9]M.Liu,Variable speed drive volumetric tracking for air?ow control in variable

air volume systems,J.Sol.Energy Eng.125(3)(2003)318–323.

[10]G.Liu,Development and Applications of Fan Air?ow Station and Pump Water

Flow Station in Heating,Ventilating and Air-Conditioning(HVAC)Systems, PhD dissertation of University of Nebraska-Lincoln,2006.

[11]E.Andiroglu,G.Wang,L.Song,Development of a virtual water?ow meter

using pump head and motor power,in:Proceedings of Zero Energy Mass

Customization Housing(ZEMCH2013)International Conference,Miami,2013.

[12]C.Montagud,J.M.Corberán,á.Montero,In situ optimization methodology for

the water circulation pumps frequency of ground source heat pump systems, Energy Build.68(2014)42–53.

[13]DOE,A Sourcebook for Industry:Improving Motor and Drive System

Performance,The U.S.Department of Energy(DOE)Of?ce of Energy Ef?ciency and Renewable Energy,Washington,DC,2008.

[14]C.M.Burt,X.Piao,F.Gaudi,B.Busch,N.Tau?k,Electric motor ef?ciency under

variable frequencies and loads,J.Irrig.Drain.Eng.134(2)(2008)129–136. [15]A.Domijan Jr.,A.Abu-aisheh,D.Czarkowski,Ef?ciency and separation of

losses of an induction motor and its adjustable-speed drive at different

loading/speed combinations,in:American Society of Heating,Refrigerating and Air-Conditioning Engineers,Inc,Atlanta,GA(United States),1997.

[16]X.Gao,S.A.McInerny,S.P.Kavanaugh,Ef?ciencies of an11.2kW variable

speed motor and drive,ASHRAE Trans.107(2001)259.

[17]IEEE,IEEE Standard112-2004Test Procedure for Polyphase Induction Motors

and Generators,Institute of Electrical and Electronics Engineers(IEEE)Power Engineering Society,New York,NY,2004.

[18]H.Austin,Electric Motors and Drives:Fundamentals,Types and Application,

third ed.,Publisher Elsevier,India,2009,ISBN8131206688,pp.305–323. [19]T.Wildi,Electrical Machines,Drives and Power Systems,?fth ed.,Pearson

Education,Inc.,Upper Saddle River,New Jersey,2002.

[20]UNIDO,Working Paper,Energy Ef?ciency in Electric Motor Systems:

Technical Potentials and Policy Approaches for Developing Countries,United Nations Industrial Development Organization,Vienna,2011.

水泵的参数及性能

水泵的参数及性能 水泵的主要参数 水泵参数是指泵工作性能的主要技术数据,包括流量、扬程、转速、效率和比转数等。 1、流量(Q) 泵的流量是指单位时间内所排出的液体的数量。通常泵的流量用体积计算,以Q表示,单位为米3/时(m3/h)、米3/秒(m3/s)、升/秒(1/s),也可用重量计,以G表示,单位为吨/时(t/h)、吨/秒(t/s)、千克/秒(kg/s)。 G与Q的关系: G=r×Q r-液体重度(千克/米3) 因水的重量近似1000千克/米3,故 1升/秒=3.6米3/时=3.6吨/时 2、扬程(H) 泵的扬程是指单位重量的液体通过泵所增加的能量。以H表示,实质上就是水泵能够扬水的高度,又叫总扬程或全扬程。单位为米液柱高度,习惯上省去“液柱”,以米(m)表示。 泵的总扬程由吸水扬程与出水扬程两部分组成,因此 总扬程=吸水扬程=出水扬程 但由于水流经过管路时受到各种阻力而减少了泵的吸水扬程和出水扬程,因此 吸水扬程=实际吸水扬程+吸水损失扬程 出水扬程=实际出水扬程+出水损失扬程 损失扬程=吸水损失扬程+出水损失扬程 总扬程=实际扬程+损失扬程 由于水泵铭牌上标明的扬程是上述水泵的总扬程,因此不能误认为铭牌上的扬程是实际扬程数值,水泵的实际扬程都比水泵铭牌上的扬程数值小。因此在确

定水泵扬程时,这一点要特别注意。否则,如果只按实际扬程来确定水泵的扬程,订购来的水泵扬程就低了,那可能会降低水泵的效率,甚至打不上水来。损失扬程与管路上的水管和附件种类(低阀、闸阀、逆止阀、直管、弯管)、数量、水管内径、管长、水管内壁粗糙程度以及水泵流量等都有密切关系,这一点在管路设计和选配水管和附件时也应注意。 3、允许吸上真空高度(Hs) 允许吸上真空高度是指真空表读数吸水扬程,也就是泵的吸水扬程(简称泵的吸程),包括实际吸水扬程与吸水损失扬程之和。以Hs表示,单位为米(m)。 允许吸上真空高度是安装水泵高度的重要参数,安装水泵时,应使水泵的吸水扬程小于允许吸上真空高度值,否则安装过高,就吸不上水或生产气蚀现象。如生产气蚀,不仅水泵性能变坏,而且也可能使叶轮损坏。 4、转速(n) 转速是指泵叶轮每分钟的转数,以n表示,单位为转/分(r/min)。每台泵都有一定的转速,不能随意提高或降低,这个固定的转素称为额定转速,水泵铭牌上标定的转速即为额定转速。如泵运转超过额定转速,不但会引起动力机超载或转不动,而且泵的零部件也容易损坏;转速降低,泵的效率就会降低,影响水泵的正常工作。 5、比转数(ns) 在前述水泵型号中,有些型号的组成部分有比转数这个参数。比转数与转速是两个概念,水泵的比转数,简称比速,常用符号为ns。水泵的比转数是指一个假想的所谓标准水泵叶轮的转数,这个假想的水泵与真实水泵的叶轮各部分都几何相似,而在消耗功率为0.735千瓦、扬程为1米、流量为0.075立方米/秒时所具有的转数。叶轮形状相同或相似的水泵比转数相同,叶轮形状不相同或不相似的水泵比转数不相同。如轴流泵比转数比混流泵大,混流泵比转数也是反映水泵特性的综合性指标。此外,要注意比转数大的水泵,其转速不一定高;比转数小的,转速不一定低。大流量、低扬程的水泵,比转数大,反之则小。一般比转数较低的离心泵,其流量小、扬程高;而比转数较高的轴流泵,其流量大、扬程低。 6、功率

医用注射泵计量特性研究

医用注射泵计量特性研究 【摘要】注射泵是一种能够准确控制输液滴数或输液流速,保证药物能够速度均匀,药量准确并且安全地进入病人体内发挥作用的一种仪器,实现高精度,平稳无脉动的液体传输。本文阐述了注射泵的厂家设置与注射器品牌不匹配时对输液精度的影响,以及注射器的尺寸不同对输液精度的影响。 【关键词】注射泵;注射器;尺寸;品牌;精度 质量技术监督检验测试中心(简称检测中心)在国民经济的发展中、在保障人民的身体健康和生命财产安全方面,做出了巨大贡献,在产品质量检测,在计量保障方面,有着举足轻重的地位;社会的发展离不开检测中心,人民的生活离不开检测中心,检测中心同人民群众息息相关。医用注射泵如今已广泛应用于各级医疗机构,其主要功能是替代先前的人工推针,与人工推针相比,医用注射泵在推针速率的准确性及稳定性上有着相当明显的优势。静脉输液作为一种常用的临床治疗方法,是临床一项常用给药治疗技术。随着科技水平的不断提高,医用注射泵凭借其能够准确控制输液滴数或流速,保证药物匀速地进入患者体内发挥作用的优势,已经逐步取代传统的重力输液方式。但注射泵作为一种常用的输液设备,一旦出现使用方法错误、护理不当、仪器故障灯问题,均可能引发医疗事故。 一、注射泵的工作原理 注射泵主要以步进电机为动力源,通过减速,驱动高精度、微推进操作系统作直线运动。在工作时,系统发出控制脉冲使步进电机旋转,旋转时带动丝杆使旋转运动转化为直线运动,进而推动注射器的针栓把药液输入人体。可以通过设定螺杆的旋转速度,调节液体的推进速度来调整药物剂量。同时,注射泵还有测速反馈系统由霍尔传感器组件组成,用以保障

0.01ml/h~1200ml/h速率调节范围内的输注精度和可靠性 注射泵是光、机、电一体化产品,主要由控制系统和微量推进系统组成。其工作原理是注射泵的螺母(推头)与注射器的活塞相连,注射器内盛满药物。注射泵工作时控制系统发出控制脉冲信号使步进电机工作,丝杆由步进电机带动旋转,由螺母(推头)将丝杆的旋转运动转变为直线运动,推头推动注射器的活塞进行注射药物。通过设定电机的旋转速度,控制螺杆的旋转速度可以调整其对注射器针栓的推进速度,从而调整所给药物剂量。 注射泵的的控制系统是由输入模块、输出模块组成。输人模块主要有数字设置键、传感系统等组成。传感系统采用高精度微震动传感器。输出模块主要由LRD数码管、LCD液晶块等组成。 微量推进系统主要由步进电机及其驱动器、减速机构、丝杠、齿轮、螺母等组成,该系统控制电路可获得较大的流量调节范围。步进电机驱动丝杠推进系统的设置微量注射泵速计算方法如下。泵速(ml/h)=所需药物剂最(ug·kg·min)×0.06×体重(kg)X注射器毫升数(ml)÷药物剂量(mg)。 医用注射泵是一种定容型的输液泵,它将单位时间内液体量及药物均匀注入静脉内,能严格控制输液速度及保持血压中药物的有效浓度,已成为医院急救、治疗及护理方面的常用设备。而由于微量注射泵本身的原理缺陷和注射器制造工艺、材料、几何尺寸的差异,导致在使用的过程中注射泵和注射器的不同匹配就会出现相异的测量结果。现就不同品牌的注射器对注射泵输液精度的影响及注射器尺寸不同对输液精度的影响分析如下。 二、输液泵与注射器厂家不匹配的影响 实验选用WZ-50C6型号的医用注射泵,其流量设置为50mL/h,注射器型号规格为50mL,医用注射泵的注射器品牌设置分别为灵洋、威高潔瑞、龙德,然后用灵洋的注射器进行实验,注射器品牌与注射泵中注射器厂家设定匹配时,其误差为+0.57%,在注射泵的流量示值允

真空助力器及制动总泵故障判断方法

真空助力器及制动总泵故障判断方法 汽车行驶一定里程后,其制动系统任何部件出现问题都可能造成刹车不良或失效。为便于维修服务,本文就其真空助力器+制动总泵总成,介绍如何判断该部件是否存在故障及处理方法。 真空助力器漏气 1、打开发动机,运行1~2分钟后关闭,然后分三次踩踏板。正常工作的真空助力器踩第一脚时,由于真空助力器存在足够真空,其踏板行程正常;第二脚,由于助力器内已损失一些真空,所以踏板行程会减小很多;待踏第三脚时,真空助力器内真空已很少,所以踏板行程也很少,再踏下去就踏不动了。以上即所谓“一脚比一脚高”。这证明助力器无漏气,工作正常。如果每一脚踏板行程都很小,且行程都不变,即所谓的“脚特别硬”,则说明助力器漏气失效。漏气严重的,可听到漏气声音。对于漏气的助力器需予以更换。 2、关闭发动机,踩踏板数次,将真空助力器内真空“放掉”。然后踩住踏板,打开发动机,此时踏板应随着发动机抽真空而自动下降,待下降到正常位置后,关闭发动机,1分钟内踏板的脚应无反弹感觉。若踩踏板脚逐渐被抬起,说明助力器漏气,应予以更换。 这里需要特别注意的是,对于正常的助力器,如果用正常踏板力踩踏板并使踏板停在某处后继续加大力度踩踏板,踏板还会继续往下沉,这种情况决不是助力器漏气,因为漏气的助力器只能使你踏不下去,即所谓“脚硬”,并且会把你的脚向回推(即向上推)。对于这种所谓“脚低”的助力器有两种可能,一是因助力器仍工作在助力状态,只要你再继续加力,踏板肯定会继续往下沉,这时,刹车己经非常可靠,属正常现象。二是主缸漏油,此时能一脚踩到底,且无刹车。 真空助力器异响 不良的助力器会发生异响,有的是“卡嗒”一声,有的是“朴朴”声,异响一般不影响刹车性能,但属于噪声,明显的异响可更换助力器,但不必更换制动总泵。

离合器总泵及助力缸的结构说明及常

离合器总泵及助力缸的结构说明及常见故障判断离合器总泵及助力缸是一种比较容易出现故障的部件。引起故障的原因有多种,有些是因为产品本身的问题,有些是由于使用维护不当。为降低离合器总泵及助力缸的故障出现频率,提高车辆的运营效率,现将离合器总泵及助力缸的结构、工作原理说明一下,同时对一些常见的故障原因进行讨论分析。 一.产品结构示意图及工作原理 结构示意图见下图1。 a. 活塞杆 b.推杆 c.控制阀杆 d.大回位弹簧 e.小回位弹簧 f.气门 g. 压缩空气通道h. 排气通道j. 制动液通道 A:液压腔B:气压腔 C.液压控制阀 1#:进气口4#:进液口31#:排气口32#:液压排气口(放气螺钉)1#为压缩空气输入口,4#为与离合器总泵连接的进液口,31#为排气口,32#为液压腔放气口。 离合器分离:踩下踏板,总泵制动液从4#口输入A腔,作用在活塞杆a 上,使推杆b产生向左的推力。同时,制动液经j道进入C腔,推动控制阀杆c向左移动,打开气门f,压缩空气经g道流入B腔。在气压力和液压力同时作用下,使推杆b继续向左移动,从而使离合器分离。

离合器接合:松开踏板,4#口液压降为零。在离合器压盘的作用下,推杆b向右移动,同时控制阀杆c在回位弹簧e和气压的作用下向右移动,关闭气门f,空气经控制阀杆的通道h由31#口排向大气,推杆b回到起始位置。二.安装方法 1.助力器按前盖板上箭头指示方向,向上安装到车上,以利于液压腔内的空气顺利排出。 2.装上推杆,将推杆和分离机构连接。 3.按图示在1#口接上气接头,在4#口接上油管接头。 4.安装并调整限位螺栓长度,保证在分离轴承接触到离合器时,限位螺栓头部有8mm间隙。 三.对总泵、助力器注油、排气方法如下: 参看图2。 A电动(手动)泵B橡胶管C开关D放气螺钉E踏板 F油杯G总泵出油接头H总泵J助力缸K高压管 方法1:踏板E处于自由状态。拧松放气螺钉D,把橡胶管B套在放气螺钉D上,打开开关C,按动电动(手动)泵A,将制动液注入助力器直至主缸H和油杯F充满,系统内不得有空气。然后拧紧放气螺钉D,关上开关C拔去油管B。

化工泵参数及型号定义

化工泵参数及型号定义 上海阳光泵业作为国内一家著名的集研制、开发、生产、销售、服务于一体的大型多元化企业,上海阳光泵业制造有限公司一直坚持“以质量求生存、以品质求发展”的宗旨为广大客户提供优质服务!同时,上海阳光泵业一直专注于自身实力的提升以及对产品质量的严格把关,为此,目前不但拥有国内最高水准的水泵性能测试中心、完善的一体化服务体系、经验丰富的水泵专家,同时经过多年的发展,产品以优越的性能、精良的品质、良好的服务口碑获得各项专业认证证书和客户认可。经过团队的不懈努力,上海阳光泵业在国内水泵行业已经取得了很大成就。这样一家诚信为本、责任重于天的水泵行业佼佼者,对于水泵的维修、保养等各大方面都有自己独特的方法,下面就一起来看看吧! 一、ZX系列卧式自吸化工泵产品概述: ZX系列型泵是卧式自吸离心泵。耐腐蚀化工泵该型式泵与其它型式的自吸离心泵比较,因为泵本身没有逆止阀,结构最为简单;工作最为可靠;无故障工作时间长,维护、使用方便、体积小、重量轻、效率高、在设计上做了特别的考虑与相同口径的泵比较,排量大、性能高。 ZX型自吸泵在工农业生产、抢险救助,如排涝、救火中作为应急泵使用效能更为突出。氟塑料化工泵 ZX型泵广泛适用石油、化工、冶金、机械、化纤、食品、能源、交通等工业部门城市给水、亦可用于农业排灌、喷灌。供输送清水或粘度小于5°E,温度低于80℃物理及化学性质类似清水的其它液体。二、ZX系列卧式自吸化工泵技术参数: 流量:6.3~400m3/h; 扬程:5~132m; 转速:2900、1450r/min; 功率:0.55~110KW; 进口直径:50~200mm; 最高工作压力:1.6Mpa。 三、ZX系列卧式自吸化工泵维护和拆装:

微量泵用量计算法

☆微量泵用量计算法: 微量泵用药剂量(ug/kg·min)=(药物总量mg×1000÷配液总量ml)×每小时入液量ml÷体重kg÷60min 例如:患者体重60kg,硝酸甘油注射液(5mg:1ml)10mg+%氯化钠注射液48ml配成50ml,2ml/h 微量泵泵入,则此时微量泵的用药剂量为(10×1000÷50)×2÷60÷60≈(ug/kg·min) ☆常用药物微量泵用法: 1. 硝酸甘油注射液(5mg:1ml):硝酸甘油注射液50mg+NS(5%GS) 40ml(避光),微量泵泵入,h(10ug/min)可用到200ug/min;或硝酸甘油注射液10mg+NS48ml,微量泵泵入,3ml/h(10ug/min)。推荐剂量范围10~200ug/min,剂量个体化。用来控制高血压或手术中保持低血压状态,推荐初始剂量为25ug/min,可每隔3~5min增加25ug/min;不 稳定心绞痛,推荐初始剂量为10ug/min;隐匿性充血性心力衰竭,推荐初始剂量为20~25ug/min。 2. 注射用硝普钠(50mg/支):注射用硝普钠50mg+5%GS 50ml(避光),微量泵泵入,h(10ug/min),可用到200-300ug/min。初始剂量kg·min(h)。 3. 盐酸多巴胺注射液(20mg:2ml):盐酸多巴胺注射液(体重×3)mg+NS(或5%GS、10%GS)至50ml, 微量泵泵入,1ml/h相当于1ug/kg·min。如:患者体重60kg,则盐酸多巴胺注射液180(60×3)mg+NS 32ml,微量泵泵入,5ml/h,用量为5 ug/kg·min。 4. 盐酸多巴酚丁胺注射液(20mg:2ml):+盐酸多巴酚丁胺注射液(体重×3)mg+NS(或5%GS、10%GS)至50ml,微量泵泵入,1ml/h相当于1ug/kg·min。初始剂量~10ug/ kg·min(~10ml/h)。需注意剂量>15ug/kg·min时有可能加速心率并产生心律失常。 5. 甲磺酸酚妥拉明注射液(10mg:1ml):甲磺酸酚妥拉明注射液50mg+NS 45ml,微量泵泵入,1ml/h(1mg/h)。用于心力衰竭时减轻心脏负荷、嗜鉻细胞瘤术中控制血压。 6. 重酒石酸去甲肾上腺素注射液(2mg:1ml):重酒石酸去甲肾上腺素注射液30mg+5%GS(GNS)35ml(避光),微量泵泵入,1ml/h(10ug/h),开始以每分钟8-12μg速度泵入,并调整泵速以使血压升至理想水平;维持量为每分钟2-4μg;在必要时可增加剂量,但每分钟不得超过25μg;有效剂量为4~10ug/h。静脉滴注的部位最好在前臂静脉或股静脉,并按需调整。现多主张本药与α-肾上腺素受体阻断药(如酚妥拉明)合用,以拮抗收缩血管作用,保留本药激动β受体产

(完整版)汽车制动相关基础知识

电涡流缓速器 首先需要明确的一个概念是涡流,也就是涡电流,是指电磁感应下,在导体内部形成的电流。涡流制动通常与传统制动搭配使用,在大多数商用车(大中型客车和卡车)上担任控制车速的作用,所以通常也称为电涡流缓速器。 『常见电涡流缓速器实物』 『常见电涡流缓速器结构示意图』 从上面的示意图可以看到,电涡流缓速器安装在汽车驱动桥与变速箱之间,靠电涡流的作用力来减速。当缓速器的定子线圈通入直流电的时候,在定子线圈会产生磁场,该磁场在相邻铁心、磁极板、气隙、转子之间形成一个回路,此时如果转子和定子之间有相对运动,这种运动就相当于导体在切割磁力线,由电磁感应原理可知,这时候在导体内部会产生感生电流,同时感生电流会产生另外一个感生磁场,该磁场和已经存在的磁场之间会有作用力,而作用力的方向永远是阻碍导体运动的方向。这就是缓速器制动力矩的来源。ECU通过采集车速、挡位和驾驶员的控制信息(驾驶位通常有对缓速器的控制装置),改变涡流强度,实现制动力矩的变化。

『位于中控台上的缓速器开关(红圈内)』 同时,由于转子这个导体很大,在转子上产生的感生电流是以涡电流的形式存在的,从能量守衡的角度上来说,当缓速器起制动作用的时候,是把汽车运动的动能转化为涡电流的电能进而以热量的形式被消耗掉。因此,电涡流缓速器在工作时会产生巨大的热量,进而,转子的散热能力和控制转子热变形的方向成为转子结构设计的关键,也是电涡流缓速器的核心技术之一,而保持转子风叶等散热表面的清洁也成为缓速器保养的重要项目。另外,缓速器的转子总成与定子总成之间有很小的间隙(通常为1-1.6mm),保证了缓速器在汽车运行的情况下,可以进行无摩擦自由转动和制动。 缓速器在车辆上的实际安装位置(箭头所指处),可以看出这个位置比较利于散热,但是也需要日常的清洁保养,以确保风叶表面的清洁和散热效果 相比传统制动装置,电涡流缓速器有着不少独到的的优越性: 1、能够承担汽车运行中绝大部分制动时的负荷,使车轮上传统制动器的温度大大降低,确保车轮制动器处于良好的技术状态,以使在紧急情况和长下坡等恶劣工况面前应对自如;

离合器总泵和助力缸调试与故障维修

离合器总泵和助力缸调试与故障维修 一、调试 1、总泵推杆与活塞的自由间隙保持在1mm左右,并锁定紧固螺母。 2、助力缸根据不同的技术要求,自由间隙保持在3-6mm左右,锁定限位螺钉。(自动补偿间隙的不需要) 3、加注制动液:必须符合DOT3或HZY3标准的汽车合成制动液。 注意: 机械油对离合器总泵、助力缸的橡胶密封圈有极大的伤害,可导致离合器总泵助力缸发卡、回位慢、涨死或破裂、漏液等故障现象,严重时3至5天即可导致离合器总泵、助力缸功能完全失效。 加注制动液时,应使用洁净、专用的加注容器。 误加污染制动液,应立即用酒精清洗离合管路,更换符合要求的专用制动液。 4、放气螺钉拧紧力矩:8-10N.m 二、常见离合故障与排除 离合常见故障如下: 1、没有压力,管路有空气,分离不清。 2、总泵自由间隙太大,工作行程不够,挂档困难。 3、总泵顶死不回位,离合打滑,挂挡不走车。 4、离合沉重。 5、总泵卡死、漏油。 6、助力缸发卡、漏气、漏油。 三、故障原因和排除方法 第 1项故障是由于管路内有空气或制动液脏引起,需要排除管路空气或更换制动液; 第2-3项安装调试不到位引起,调整自由间隙就能排除故障. 第4项是空气压力低或分离摇臂位置不对以及机构变形引起,需检查相关原因。 第5-6项故障中管路内混入机械油会造成密封圈膨胀,产品发卡漏油;外力碰撞损坏造成漏气漏油;密封件磨损造成漏气漏油。 可根据不同的故障现象,采取相应的解决方法进行排除。

(一)、没有压力,管路有空气,分离不清等故障的排除方法: 方法一(自然状态下): 拧松助力缸上的放气螺钉,在螺钉口上接一根透明管,让制动液流至一个容器中,直至流出的制动液中不带气泡再拧紧(注意油杯中的制动液不能低于标准线)。方法二: 不断踩动踏板数次后,将踏板踩到底,拧松助力缸放气螺钉,排气后立即拧紧,再次踩动踏板。反复数次。直至踏板力感觉沉重有力为止。 注意:用此方法排气时,油杯中的制动液不能低于标准线。 (二)、总泵、助力缸自由间隙太大,工作行程不够,挂档困难。 (三)、总泵、助力缸没有自由间隙,离合顶死不回位,离合打滑挂档不走车。 此两项故障的排除方法如下: 调整总泵自由间隙,松开推杆锁止螺母,调整好自由间隙,再锁定螺母。(四)离合沉重(检查是否漏气、漏油) 1、气压过低,检查气阀和气管。 2、分离摇臂角度偏大,检修摇臂。 3、推杆安装角度偏大,调整安装支架。 4、检查离合器(分离轴承、压盘等)。 (五)总泵发卡、漏油 1、总泵发卡、漏油,是由于管路内混入了机械油导致密封圈发涨。此类故障需更换总泵。 2、总泵外部漏油:从泵体或推杆端冒油,是由于密封圈磨损而漏油,需更换总泵。 3、总泵内泄:总泵密封圈磨损或液体脏稠导致阀门关不住,造成没有压力,清洗总泵更换制动液,密封圈损坏的需更换总泵。 注意:没有压力并非一定是总泵有问题,有可能是管路有空气造成,也有可能是制动液脏稠引起阀门关不住造成。 判别总泵是否内泄的方法:拆下总泵出油管,用手或橡胶塞堵住出油口,待总泵内制动液充满后,轻轻踩下离合踏板,如果有压力并能持久,则总泵没有质量问题,不必更换。如果没有压力或有压力但压力迅速消失,则总泵内泄,更换总泵。 发现制动液脏稠时,先进行清洗。 有条件的单位可以用修理包进行修理。

600s47中开泵

600s47中开泵 2日正式开通。这一公益性平台不仅给企业、科研工作者提供了一个科研工作的检索工具,而且也是推动国家专利战略的一项实实在在的工作。 “我们是全国首家免费的能检索国内外最新专利数据的信息平台,这为我国众多企业实行专利战略,进行专利研发,对推动我国专利战略宏伟目标的实现,无疑有着直接的推动作用。”上海汉光知识产数据科技执行董事、上海光华专利事务所合伙人王志达律师接受记者采访时表示,《26年度国家知识产局专利战略推进工程》中明确指出,“专利战略推进工程项目的研究与实施积极响应国家总体发展战略部署,同时作为国家知识产战略的重要有机组成部分,也充分体现国家知识产战略的指导精神,以推动专利工作与各有关部门和行业、企业的科研、生产、经营有机结合,进一步发挥专利制度在促进科技创新与经济发展中的积极作用”,“专利战略研究课题……通过对专利信息的具体研究分析为技术和产业发展提出建议,为相关领域专利政策的制定提供咨询意见”。由此可见,专利信息的利用不仅是企业竞争中应当关注的工作内容,也已经上升为国家知识产局重点关注的事务,乃至于是国家知识产战略的重要手段之一。 记者 【S、SH型中开式单级双吸离心泵】产品: 【S、SH型中开式单级双吸离心泵】产品简介: S、SH型中开式单级双吸离心泵,(简称:S、SH型中开泵),系属新型单级双吸卧式中开离心泵类产品。该泵具有高效节能、应用范围广、轴向力平衡、寿命长、中开式结构、维修方便、快捷。S、SH型中开式单级双吸离心泵适合输送各种清洁或带有微量颗粒的中性或弱腐蚀性液体。中开泵适用于自来水厂、灌溉、排水泵站、电站、工业供水系统、空调系统、消防系统、船舶工业、亦适合炼油工业中作一般性用途。 【S、SH型中开式单级双吸离心泵】型号意义:

微量泵的计算方法

头孢类:1g/支 1、用0、9%NS5ml稀释,则1ml含200mg。 2、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含20mg。 3、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含2mg。 4、取上液0、25ml,用0、9%NS稀释至1ml,则1ml含500ug。 5、取0、1ml(含50ug)进行皮试。 6、2g/支的头孢类药用0、9%NS10ml稀释,依此类推。 胸腺肽:100mg/支 1、用0、9%NS4ml稀释,则1ml含25mg。 2、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含2、5mg。 3、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含250ug。 4、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含25ug。 5、取0、1ml(含2、5ug)进行皮试。 PG:80万u/支 1、用0、9%NS2ml稀释,则1ml含40万u/支。 2、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含4万u。 3、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含4000u。 4、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含400u。 5、取0、1ml(含40u)进行皮试。 链霉素:100万u/支 1、用0、9%NS3、5ml稀释,溶液体积为4ml,则1ml含25万u。 2、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含2、5万u。 3、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含2500u。 4、取0、1ml(含250u)进行皮试。 TAT:1500u/支 1、用0、9%NS 2、5ml加到原液里至1ml。 2、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含150u。 3、取0、1ml(含15u)进行皮试。 普鲁卡因:2ml/40mg/支 1、取原液0、1ml,用0、9%NS稀释至0、8ml,则1ml含2500ug。 2、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含250ug。 3、取0、1ml(含25ug)进行皮试。 清开灵:100mg/支 1、用0、9%NS4ml稀释,则1ml含25mg。 2、取上液0、1ml,用0、9%NS稀释至1ml,则1ml含2/5mg。 3、取0、1ml(含0、25mg)进行皮试。 微量泵常用药物的配制

制动总泵的拆装

制动总泵的拆装 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

实训20制动总泵的拆装 一、实训目的 掌握双腔制动总泵的拆装方法。 二、制动总泵的构造及作用 制动总泵由制动液储液罐、制动总泵泵体及内部活塞、皮碗、弹簧、油封等构成(需要分解图) 制动总泵的作用:将制动踏板机械能转换成液压能。 三、故障案例 一客户反映,在行驶过程中进行制动时,有时制动效果差,同时感觉踏板发软,停车检查,制动液液位正常,管路无泄露现象,判断可能是制动总泵出现了故障,需对其进行拆装检修。 四、以桑塔纳轿车制动总泵为例进行拆装 工、量具的准备 桑塔纳2000轿车、废油回收机、制动液、七件套、抹布、工具车、零件车、尖咀钳、起子、开口扳手、卡簧钳、台虎钳 拆装前准备:安装汽车七件套。 拆装步骤 (1)从车上拆下制动总泵 1)拆下制动液油位传感器插头,取下制动液储液罐罐盖 2)使用废油回收机回收储液罐制动液。注意:(制动液不得洒落在汽车油漆和零部件表面上) 3)拆下离合器总泵链接油管,并进行防尘包扎 4)拆卸制动总泵到ABS泵的2根液压油管,并将油管进行防尘保护。 注意:(拆卸前需将抹布放在油管下方,吸收管内溢出的制动液。) 5)拆卸制动总泵与真空助力器的连接螺母,取下制动总泵。 (2)分解制动总泵(需要分解图)

1)拆下制动液储液罐 2)控尽泵体剩余制动液,用抹布抹干泵体 3)用台虎钳将泵体夹紧,用起子顶住密封挡圈,用卡簧钳取出弹簧锁圈,导向套、油封、和第一活塞组件。注意(夹紧泵体需用软木快垫住,防止夹伤泵体)4)卸下储油罐橡胶密封座,取下锁销档片,用起子用力顶住第二液压活塞组件,取出组件限位锁销,然后取出第二活塞组件。 5)对第一第二活塞组件进行分解并清洁干净,整齐摆放。 6)对拆下的所有零部件进行检查,重点检查皮碗是否老化,是否磨损过甚,各弹簧弹力是否正常,泵腔工作面及活塞工作面是否光滑、拉伤必要时进行更换。 (3)制动总泵的装合 1)将修复后的制动总泵按拆卸相反的顺序进行装配,装配完成经检验合格后进行装车。注意:(制动总泵与助力器锁紧螺母拧紧力矩为) (4)安装完毕后,按规定添加制动液并对制动系统进行排空气作业 (5)实训完毕后,进行5S管理,将使用过的工具、设备清洁干净并归位。

中开泵型号说明及结构

中开泵型号说明及结构 上海阳光泵业作为国内一家著名的集研制、开发、生产、销售、服务于一体的大型多元化企业,上海阳光泵业制造有限公司一直坚持“以质量求生存、以品质求发展”的宗旨为广大客户提供优质服务!同时,上海阳光泵业一直专注于自身实力的提升以及对产品质量的严格把关,为此,目前不但拥有国内最高水准的水泵性能测试中心、完善的一体化服务体系、经验丰富的水泵专家,同时经过多年的发展,产品以优越的性能、精良的品质、良好的服务口碑获得各项专业认证证书和客户认可。经过团队的不懈努力,上海阳光泵业在国内水泵行业已经取得了很大成就。这样一家诚信为本、责任重于天的水泵行业佼佼者,对于水泵的维修、保养等各大方面都有自己独特的方法,下面就一起来看看吧! 一、SH型单级双吸中开泵概述: SH型系单级双吸水平中开式离心泵,适应于工厂、城市、矿山、电站、农田、水利工程等领域。用于输送不含固体颗粒的清水或物理、化学性质类似于水的其它液体,被输送的介质温度为0℃~80℃,允许最大进口压力0.6MPa。 二、SH型单级双吸中开泵参数范围: 流量Q 72~10800m3/h 扬程H 11~140m 三、SH型单级双吸中开泵型号说明: 10SA-6JA 10-吸入口径被25除(即进口直径为250mm) S-单级双吸水平中开式离心泵 6-比转数被10除化整的约数

J-表示额定转速变化 A-表示叶轮外径第一次变化,A、B、C……依次类推 300S-19A 300-吸入口径300mm S-单级双吸水平中开式离心泵 19-设计点扬程 A-表示叶轮外径第一次变化,A、B、C……依次类推 四、SH型单级双吸中开泵结构型式: 中开式离心泵为卧式安装,泵壳于轴心线水平分开,上部为泵盖,下部为中开式离心泵体,吸入口和吐出口均在泵轴线下方的泵体上,中开泵中心线与轴线垂直,检修时不需拆卸进水和出水管路,即可揭开泵盖,取出转子部件。轴封为用软填料密封或机械密封。 五、SH型单级双吸中开泵旋转方向: 从电机端向泵看,SA型泵为逆时针方向旋转,即吸入口在左,吐出口在右。xxxS-xx型泵为顺时针方向旋转,即吸入口在右,吐出口在左。也可根据用户要求将驱动端移到泵的另一端,此时,转向和吸入、吐出口方向均与上述相反。

水泵参数

水泵的分类 水泵的分类: 首先大类是按工作原理分: 1、叶片式泵叶片式泵可分为:离心泵、混流泵、轴流泵、旋涡泵。 离心泵又可分单级泵、多级泵。 单级泵可分为:单吸泵、双吸泵、自吸泵、非自吸泵等。 多级泵可分为:节段式、涡壳式。混流泵可分涡壳式和导叶式。轴流泵可分为固定叶片和可调叶片。旋涡泵也可分为单吸泵、双吸泵、自吸泵、非自吸泵等。 具体如下:化工泵、离心泵、排污泵、多级泵、消防泵 2、容积式泵 容积泵可分为往复泵、转子泵、隔膜泵、螺杆泵、计量泵、真空泵 水泵参数 引水、自吸、吸程、扬程、最大扬程、最大输出压力 【引水】在水泵行业,“引水”特指“引导用的水”。因为有些泵在工作前,必须通过人工加水,来让泵内部形成密闭环境,泵内部件再运动造成局部真空,才能让外部的水在内外压差下被大气压压入泵的入口,完成吸水动作。 【自吸】即在泵工作前,即使进水管里全部是空气的情况下,不用预先加“引水”,水泵就能自动将低于泵抽水端的水抽上来再排出去的。水泵的抽水管内是空气的情况下,利用泵工作时形成的负压(真空),在大气压的作用下将低于抽水口的水压上来,再从水泵的排水端排出。 【吸程】自吸的高度就叫“吸程”。单位一般是“米”;也叫“最大自吸高度”。 【吸程】自吸的高度就叫“吸程”。单位一般是“米” 【扬程】我们水泵的扬程是指水泵能够扬水的高度,单位是米。即水被吸入泵腔后,通过电机获得动能,能被压到距离泵排水口垂直方向的高度。(不含吸入扬程) 【最大扬程】也叫“最大排水高度”。指在泵出水口接有足够长度水管的情况下,将水管垂直举起,泵能利用输出压力将水打到距离排水口的最大垂直高度(不包括吸程)。 【最大输出压力】也叫“最大关断压力”。泵运行过程中,排水端受到阻力或接了大负载,就会表现出输出压力,来克服这种阻力,当这个压力到了一定程度,为避免压力过大造成泵内部元件损坏,随机的压力保 护开关就会启动,让泵停机。 如微型水泵HSP11050,它的最大输出压力、最大关断压力为1.1MPA(11公斤),即最大扬程为110米。 性能如下:2900转/分1450转/分 最大流量:240立方米/分400立方米/分 最高总扬程:125米55米 最高转速:3500转/分(用于60调波电源时,叶轮直径所有减少) 最高工作温度80慑氏度120慑氏度 允许吸入管路压力0.3MPa.泵的最高使用压力1.6MPa

水泵效率是衡量水泵工作效能高低的一项技术经济指标

水泵效率是衡量水泵工作效能高低的一项技术经济指标。它是指水泵的有效功率(即水泵输出功率)和水泵轴功率(即水泵输入功率)之比。水泵效率一般在65%~90%,大型泵可达90%以上。水泵效率的高低,在很大程度上取决于水泵的使用情况,如果维修和使用不当,即使制造出高效率的水泵,也达不到高效低耗经济运行的目的。因此.在水泵实际运行中应尽力提高水泵效率.尽量减低在水泵把能量传给水的过程中,存在着的各项能量损失。减低容积损失。容积损失是指水在流经水系后所漏损的流量,包括从口环间隙,水泵填料密封和叶轮平衡孔等处所流失的水量. 1、为什么双座阀小开度工作时容易振荡? 对单芯而言,当介质是流开型时,阀稳定性好;当介质是流闭型时,阀的稳定性差。双座阀有两个阀芯,下阀芯处于流闭,上阀芯处于流开,这样,在小开度工作时,流闭型的阀芯就容易引起阀的振动,这就是双座阀不能用于小开度工作的原因所在。 2、为什么双密封阀不能当作切断阀使用? 双座阀阀芯的优点是力平衡结构,允许压差大,而它突出的缺点是两个密封面不能同时良好接触,造成泄漏大。如果把它人为地、强制性地用于切断场合,显然效果不好,即便为它作了许多改进(如双密封套筒阀),也是不可取的。 3、什么直行程调节阀防堵性能差,角行程阀防堵性能好? 直行程阀阀芯是垂直节流,而介质是水平流进流出,阀腔内流道必然转弯倒拐,使阀的流路变得相当复杂(形状如倒“S”型)。这样,存在许多死区,为介质的沉淀提供了空间,长此以往,造成堵塞。角行程阀节流的方向就是水平方向,介质水平流进,水平流出,容易把不干净介质带走,同时流路简单,介质沉淀的空间也很少,所以角行程阀防堵性能好。 4、为什么直行程调节阀阀杆较细? 它涉及一个简单的机械原理:滑动摩擦大、滚动摩擦小。直行程阀的阀杆上下运动,填料稍压紧一点,它就会把阀杆包得很紧,产生较大的回差。为此,阀杆设计得非常细小,填料又常用摩擦系数小的四氟填料,

总泵缸体

说明书目录 一、零件的分析 二、工艺规程的设计 (一)确定毛坯的制造形式 (二)基准的选择 (三)制定工艺路线 (四)机械加工余量、工序尺寸及毛坯尺寸的确定 (五)确定各工序的切削用量及基本用时 三、夹具设计分析

四、主要参考文献 一、零件的分析 (一) 零件的作用 总泵缸体是套类零件,起到装拆方便,保护轴类零件的作用 (二) 零件的工艺分析 该零件是套类零件,形状复杂,尺寸精度、形位精度要求均较高,零件的主要技术要求如下: (1)肩胛面对内孔中心线垂直度摆差不大于0.1。 (2)铸件要求不能有疏松、缩孔、砂眼及夹杂物等缺陷,并经时效处理。 (3)零件经磁力探伤检验要求不能有裂纹等,以保证零件的强度、硬度及刚度,在外力作用下,不发生意外事故。 二、工艺规程设计 (一) 确定毛坯的制造方式 有零件的要求可知,零件的材料为HT20-40,考虑到本零件的精度较高,形状复杂,所以选择铸造,以满足要求。 (二) 基准的选择 粗基准选择:以零件的外圆表面为定位基准。

精基准选择:考虑到保证零件的加工精度和装夹方便,以肩胛面上两孔和内孔为精基准。 (三) 制定工艺路线方案 1时效处理; 2车左端面; 3车右端面及肩胛面,倒角; 4钻深孔及Φ18的孔; 5精镗深孔; 6钻左端Φ12.5及Φ10.5的孔; 7攻M12的螺纹孔; 8钻肩胛面孔; 9铣尺寸16的端面; 10铣凸台面; 11钻凸台面孔; 12倒角,攻M22的螺纹孔; 13钻Φ0.7的透孔及Φ3.5不透孔; 14钻Φ3.5的孔; 15珩磨深孔; 16去毛刺; 17涂漆; 18检验。

(四) 机械加工余量,工序尺寸及毛坯尺寸确定 总泵缸体,其材料为HT20-40。由于产品的形状复杂,生产纲领是成批生产,所以铸造为毛坯,根据原材料及加工工艺,分别确定各加工面的机械加工余量(所用计算公式及参考文献<械加工工艺手册><余量手册>。 mm 由此,即可绘出零件的毛坯图(见图2) (五) 确定切削用量及基本工时 1.加工右端面及肩胛面 由粗车、精车两次加工完成,由《切削余量简明手册》,取精加工余量为1mm,故其粗加工余量为2mm.由《机械加工工艺手册》,取精加工进给量f=0.5m/r,取粗加工进给量f=0.3mm/r。 由《机械加工工艺手册》,取粗、精加工的主轴转速分别为600r/min和750r/min。故相应的切削速度分别为: V粗=3.14Dn/1000=3.14x32x600/1000=60.3m/min V精=3.14Dn/1000=3.14x32x750/1000=75.4m/min 2.加工左端面 由车削完成,工序余量为3mm

制动总泵工作原理

制动总泵工作原理 泵的分类 按工作原理分: 1.容积式泵 靠工作部件的运动造成工作容积周期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。 根据运动部件运动方式的不同又分为:往复泵和回转泵两类。 根据运动部件结构不同,有:活塞泵和柱塞泵;有齿轮泵、螺杆泵、叶片泵和水环泵。 2.叶轮式泵 叶轮式泵是靠叶轮带动液体高速回转而把机械能传递给所输送的液体。 根据泵的叶轮和流道结构特点的不同可分为: 1)离心泵 2)轴流泵 3)混流泵 4)旋涡泵。 3.喷射式泵 是靠工作流体产生的高速射流引射流体,然后再通过动量交换而使被引射流体的能量增加。 4.泵的其它分类 泵还可以按泵轴位置分为: 1)立式泵 2)卧式泵 按吸口数目分为: 1)单吸泵 (single suction pump) 2)双吸泵 (double suction pump) 按驱动泵的原动机来分: 1)电动泵 2)汽轮机泵 3)柴油机泵 [其他详细拓展] 泵 pump 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 广义上的泵是输送流体或使其增压的机械,包括某些输送气体的机械。泵把原动机的机械能或其他能源的能量传给液体,使液体的能量增加。 水的提升对于人类生活和生产都十分重要。古代已有各种提水器具,如埃及的链泵(前17世纪)、中国的桔槔(前17世纪)、辘轳(前11世纪)、水车(公元1世纪),以及公元前3世纪古希腊阿基米德发明的螺旋杆等。公元前200年左右,古希腊工匠克特西比乌斯发明了最原始的活塞泵灭火泵。早在1588年就有了关于4叶片滑片泵的记载,以后陆续出现了其他各种回转泵。1689年,法国的D.帕潘发明了4叶片叶轮的蜗壳离心泵。1818年,美国出现了具有径向直叶片、半开式双吸叶轮和蜗壳的离心泵。1840~1850年,美国的H.R.沃辛顿发明了泵缸和蒸汽缸对置的蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。1851~1875年,带有导叶的多级离心泵相继发明,使发展高扬程离心泵成为可能。随后,各种泵相继问世。随着各种先进技术的应用,泵的效率逐步提高,性能范围和应用也日渐扩大。

开泵作业安全监督通用版

安全管理编号:YTO-FS-PD511 开泵作业安全监督通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

开泵作业安全监督通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1、主要风险 1.1 闸门倒错、安全阀泄压值设定过高、憋泵、管线刺漏等导致高压流体泄露或泥浆泵附件飞出,造成人身伤害。 1.2 冬季泥浆管线、闸门冻结,开泵憋压造成物体打击。 1.3 在泥浆泵上行走、作业,导致的机械伤害。 1.4 泥浆泵上存放的工具或配件坠落,造成物体打击。 1.5 泥浆泵运转过程中机件脱离,导致物体打击。 1.6 传动皮带绞断或万向轴脱落,导致物体打击。 1.7 冬季使用明火烘烤设备冻结部位,导致火灾。 2、监督要点 2.1 副司钻检查钻井泵冷却水、拉杆箱、连接卡子、传动皮带、护罩,安全阀保险销钉设置位置,高压管汇闸门组开关状态,立管闸门处于开位,管线连接处保险链(绳)等项点符合规定要求。 2.2 钻井泵闸门组高低压闸门开关状态正确。

微量泵用量计算法

微量泵用量计算法Last revision on 21 December 2020

☆微量泵用量计算法:微量泵用药剂量(ug/kg·min)=(药物总量mg×1000÷配液总量ml)×每小时入液量ml÷体重kg÷60min 例如:患者体重60kg,(5mg:1ml)10mg+%48ml配成50ml,2ml/h微量泵泵入,则此时微量泵的用药剂量为(10×1000÷50)×2÷60÷60≈(u g/k g·m i n)☆常用药物微量泵用法:1. 硝酸甘油注射液(5mg:1ml):硝酸甘油注射液50mg+NS(5%GS)40ml(避光),微量泵泵入,h(10ug/min)可用到200ug/min;或硝酸甘油注射液10mg+NS48ml,微量泵泵入,3ml/h (10ug/min)。推荐剂量范围10~200ug/min,剂量个体化。用来控制高血压或手术中保持低血压状态,推荐初始剂量为25u g/m i n,可每隔3~5m i n增加25u g/m i n;不稳定心绞痛,推荐初始剂量为10ug/min;隐匿性充血性心力衰竭,推荐初始剂量为20~25ug/min。 2.(50mg/支):注射用硝普钠50mg+5%GS 50ml(避光),微量泵泵入,h(10ug/min),可用到200-300u g/m i n。初始剂量k g·m i n(h)。 3.(20mg:2ml):盐酸多巴胺注射液(体重×3)mg+NS(或5%GS、10%GS)至50ml,微量泵泵入,1ml/h相当于1ug/kg·min。如:患者体重60kg,则盐酸多巴胺注射液180(60×3)mg+NS 32m l,微量泵泵入,5m l/h,用量为5u g/k g·m i n。 4.(20mg:2ml):+盐酸多巴酚丁胺注射液(体重×3)mg+NS(或5%GS、10%GS)至50ml,微量泵泵入,1ml/h相当于1ug/kg·min。初始剂量~10ug/ kg·min(~10ml/h)。需注意剂量>15ug/kg·min 时有可能加速心率并产生心律失常。 5.(10mg:1ml):甲磺酸酚妥拉明注射液50mg+NS 45ml,微量泵泵入,1ml/h(1mg/h)。用于心力衰竭时减轻心脏负荷、嗜铬细胞瘤术中控制血压。 6.(2mg:1ml):重酒石酸去甲肾上腺素注射液30mg+5%GS(GNS)35ml(避光),微量泵泵入,1ml/h(10ug/h),开始以每分钟8-12μg速度泵入,并调整泵速以使血压升至理想水平;维持量为每分

相关文档