文档库 最新最全的文档下载
当前位置:文档库 › 二次函数典型例题——动点

二次函数典型例题——动点

二次函数典型例题——动点
二次函数典型例题——动点

二次函数典型例题——动点

在平面直角坐标系xOy 中,抛物线22y mx nx =+-与直线y =x -1交于A (-1,a )、B (b ,0)两点,与y 轴交于点C .

(1)求抛物线的解析式; (2)求△ABC 的面积;

(3)点(t,0)P 是x 轴上的一个动点.过点P 作x 轴的垂线交直线AB 于点M ,交抛物线于点N .当点M 位于点N 的上方时,直接写出t 的取值范围.

C B A

y

x

O

解:(1)∵ 抛物线过原点和A (23,0-),

∴ 抛物线对称轴为3-=x . ∴ B (3,3-).

设抛物线的解析式为2

+33y a x =+().

∵ 抛物线经过(0, 0), ∴ 0=3a +3. ∴ a =-1.

∴3)3(2++-=x y ……………………………………………1分 =.322x x --

∵ C 为AB 的中点, A (23,0-)、B (3,3-), 可得 C (333

,22

-

) . 可得直线OC 的解析式为x y 3

3

-

=. ……………………………………………2分 (2)连结OB . 依题意点E 为抛物线x x y 322--=与直线x y 3

3

-

=的交点(点E 与

点O 不重合).

由23

3

23,y x y x x ?=-

???=--?

, 解得 53,3

5,3x y ?=-????=??

或0,0.x y =??=?(不合题意,舍).

∴ E (535

,33

-

) …………………………3分 过E 作EF ⊥y 轴于F , 可得OF =5

3

∵ OE =DE ,EF ⊥y 轴, ∴ OF=DF . ∴ DO =2OF =103

. ∴ D (0,

10

)3

. ………………………………………………………………………4分 ∴ BD =2

21023

3733

-+-=()(). ……………………………………………5分 (3)E 点的坐标为(333,22-)或(31

,22

-). ……………………………………………8分

已知:抛物线1C :622-+-=bx x y 与抛物线2C 关于原点对称,抛物线1C 与x 轴分别交

于A (1,0),B (m,0),顶点为M ,抛物线2C 与x 轴分别交于C ,D 两点(点C 在点D 的左侧),顶点为N . (1)求m 的值;

(2)求抛物线2C 的解析式;

(3)若抛物线1C 与抛物线2C 同时以每秒1个单位的速度沿x 轴方向分别向左、向右

运动,此时记A ,B ,C ,D ,M ,N 在某一时刻的新位置分别为'

''''',,,,,N M D C B A ,当点'

A 与点'

D 重合时运动停止.在运动过程中,四边形'

'''N C M B 能否形成矩形?若能,求出此时运动时间t (秒)的值,若不能,说明理由.

(1)∵抛物线622-+-=bx x y 过点 A (1,0)

∴620-+-=b …………………………………1分

∴8=b

∴抛物线1C 的解析式为 2)2(26822

2

+--=-+-=x x x y ∴)2,2(M

令0=y ,则06822

=-+-x x 解这个方程,得3,121==x x

∴3=m ……………………………………2分

F C

D E B A

y

x

O

(2)由题意,抛物线2C 过点C (-3,0),D (-1,0),N (-2,-2)

∴抛物线2C 的解析式为 6822)2(222++=-+=x x x y …………3分 (3)过点'

M 作H M '

⊥x 轴于点H , …………………………………4分 若四边形''''N C M B 是矩形,则'

'OM OB =

由题意,设'

M )2,2(t -,'

B )0,3(t -,则H )0,2(t - ………………5分 在Rt △OH M '

中,2

2

2

2

'''OB OM H M OH ==+

∴222)3(2)2(-=+-t t …………………………………6分 解得2

1=t ∴2

1=

t 秒时,四边形'

'''N C M B 是矩形.………………………………7分

如图,在矩形ABCO 中,AO=3,tan ∠ACB=

3

4

,以O 为坐标原点,OC 为x 轴,OA 为y 轴建立平面直角坐标系。设D ,E 分别是线段AC ,OC 上的动点,它们同时出发,点D 以每秒3个单位的速度从点A 向点C 运动,点E 以每秒1个单位的速度从点C 向点O 运动,设运动时间为t 秒。

(1)求直线AC 的解析式;

(2)用含t 的代数式表示点D,点E 的坐标;

(3)当以O 、D 、E 三点为顶点的三角形是直角三角形时,求经过O 、D 、E 三点的抛物线的解析式(只需求出一条即可).

解:(1)根据题意,得CO =AB =BC ?tan ∠ACB =4, ∴A (0,3),C (4,0).

设直线AC 的解析式为:y =kx +3,代入C 点坐标, 得:4k +3=0,k =43

-

. ∴直线AC :y =4

3

-x+3.

(2)分别作DF ⊥AO ,DH ⊥CO ,垂足分别为F ,H , 则有△ADF ∽△DCH ∽△ACO .

∴AD :DC :AC =AF :DH :AO =FD :HC :OC ,

而AD =3t (其中0≤t ≤3

5),OC =AB =4,AC =5, ∴FD =t AD 51254=,AF =t AD 5953=,DH =t 59

3-,HC =t 5

124-.

∴D (

t 5

12,t 59

3-).

∵CE = t ,

∴OE =OC -CE =4- t . ∴E (4-t ,0) (3)当DO ⊥DE 时,

∠DOH =∠EDH .

∵tan ∠DOH =tan ∠EDH , ∴DH EH OH DH

= 即2D H E H O H = ∵DH =t 59

3-,OH =FD =125

t ,EH =CH -CE =1745t -,

∴(t 59

3-)2=(1745t -)·125 .

即:19t 2-34t +15=0 . t 1=1, t 2=

1519

. ①当t =1时, D (

12

6

55

,), E (3,0). 设抛物线解析式为y =ax 2+bx , 代入D 、E 坐标 解得 a =56

-,b =

.

∴y =255

62

x x -

+ . ②当t =1519

时,同理可得 y =2

196130

30

x x -

+

.

以上①、②解出一种即可.

已知:在如图1所示的平面直角坐标系xOy 中,A ,C 两点的坐标分别为(2,3)A ,

(,3)C n -(其中n >0),点B 在x 轴的正半轴上.动点P 从点O 出发,在四边形OABC 的边上依次沿O —A —B —C 的顺序向点C 移动,当点P 与点C 重合时停止运动.设点P 移动的路径的长为l ,△POC 的面积为S ,S 与l 的函数关系的图象如图2所示,其中四边形ODEF 是等腰梯形.

(1)结合以上信息及图2填空:图2中的m = ;

(2)求B ,C 两点的坐标及图2中OF 的长;

(3)在图1中,当动点P 恰为经过O ,B 两点的抛物线W 的顶点时, ① 求此抛物线W 的解析式;

② 若点Q 在直线1y =-上方的抛物线W 上,坐标平面内另有一点R ,满足以B ,

P ,Q ,R 四点为顶点的四边形是菱形,求点Q 的坐标.

解:(1)图2中的m =13.……………………………………………………………1分

(2)∵ 图11(原题图2)中四边形ODEF 是等腰梯形,点D 的坐标为(,12)D m ,

∴ 12E D y y ==,此时原题图1中点P 运动到与点B 重合, ∵ 点B 在x 轴的正半轴上,

∴ 11

31222

BOC C S OB y OB ?=

??=??=. 解得 8OB =,点B 的坐标为(8,0). ………………………………………2分

此时作AM ⊥OB 于点M ,CN ⊥OB 于点N .(如图12).

∵ 点C 的坐标为(,3)C n -, ∴ 点C 在直线3y =-上.

又由图11(原题图2)中四边形ODEF 是等腰梯形可知图12中的点C 在过点O 与AB 平行的直线l 上,

∴ 点C 是直线3y =-与直线l 的交点,且ABM CON ∠=∠. 又∵ 3A C y y ==,即AM= CN ,

可得△ABM ≌△CON .

∴ ON=BM=6,点C 的坐标为(6,3)C -.……………………………………3分 ∵ 图12中 22223635AB AM BM =+=+=.

∴ 图11中35DE =,221335D OF x DE =+=+. …………………4分

(3)①当点P 恰为经过O ,B 两点的抛物线的顶点时,作PG ⊥OB 于点G .

(如图13)

∵ O ,B 两点的坐标分别为(0,0)O ,(8,0)B ,

∴ 由抛物线的对称性可知点P 的横坐标为4

,即OG=BG=4.

由3tan 6AM PG

ABM BM BG

∠=

==

可得PG=2. ∴ 点P 的坐标为(4,2)P .………………5分 设抛物线W 的解析式为(8)y ax x =-(a ≠0). ∵ 抛物线过点(4,2)P ,

∴ 4(48)2a -=.

解得 18

a =-.

∴ 抛物线W 的解析式为218

y x x =-+.

…………………………………6分

②如图14.

i )当BP 为以B ,P ,Q ,R 为顶点的菱

形的边时,

∵ 点Q 在直线1y =-上方的抛物线W

上,点P 为抛物线W 的顶点,结合抛 物线的对称性可知点Q 只有一种情况,

点Q 与原点重合,其坐标为1(0,0)Q .

……………………………………7分

ii )当BP 为以B ,P ,Q ,R 为顶点的菱形的对角线时,

可知BP 的中点的坐标为(6,1),BP 的中垂线的解析式为211y x =-.

∴ 点2Q 的横坐标是方程212118

x x x -+=-的解.

将该方程整理得 28880x x +-=.

解得4226x =-±.

由点Q 在直线1y =-上方的抛物线W 上,结合图14可知点2Q 的横坐标

为2264-.

∴ 点2Q 的坐标是2(2264,42619)Q --. …………………………8分 综上所述,符合题意的点Q 的坐标是1(0,0)Q ,2(2264,42619)Q --.

图13

图14

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数典型例题解析与习题训练

又∵y=x 2-x+m=[x 2-x+(12)2]- 14+m=(x -12)2+414 m - ∴对称轴是直线x=12,顶点坐标为(12,41 4 m -). (2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即41 4 m ->0 ∴m> 14 ∴m>1 4 时,顶点在x 轴上方. (3)令x=0,则y=m . 即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴 ∴B 点的纵坐标为m . 当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m ) 在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =1 2 OA ·AB=4. ∴ 1 2 │m │·1=4,∴m=±8 故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8. 【点评】正确理解并掌握二次函数中常数a ,b ,c 的符号与函数性质及位置的关系是解答本题的关键之处. 例2 已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m

为D,试求出点C,D的坐标和△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标. 【分析】(1)解方程求出m,n的值.用待定系数法求出b,c的值. (2)过D作x轴的垂线交x轴于点M,可求出△DMC,梯形BDBO,△BOC的面积,用割补法可求出△BCD的面积. (3)PH与BC的交点设为E点,则点E有两种可能:①EH=3 2EP,②EH=2 3 EP. 【解答】(1)解方程x2-6x+5=0, 得x1=5,x2=1. 由m

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数经典例题与解答

、中考导航图 顶点 对称轴 1. 二次函数的意义 ; 2. 二次函数的图象 ; 3. 二次函数的性质 开口方向 增减性 顶点式: y=a(x-h) 2+k(a ≠ 0) 4. 二次函数 待定系数法确定函数解析式 一般式: y=ax 2+bx+c(a ≠ 0) 两根式: y=a(x-x 1)(x-x 2)(a ≠0) 5. 二次函数与一元二次方程的关系。 6. 抛物线 y=ax 2+bx+c 的图象与 a 、 b 、 c 之间的关系。 三、中考知识梳理 1. 二次函数的图象 在 画二 次函数 y=ax 2+bx+c(a ≠ 0) 的图象 时通常 先通 过配 方配成 y=a(x+ b ) 2+ 2a 公式来求得顶点坐标 . 2. 理解二次函数的性质 抛物线的开口方向由 a 的符号来确定 , 当 a>0 时, 在对称轴左侧 y 随 x 的增大而减小 b 4ac-b 2 反之当 a0时,抛物线开口向上 ; 当 a<0时,?抛物线开口向 下 ;c 的符号由抛物线与 y 轴交点的纵坐标决定 . 当 c>0 时, 抛物线交 y 轴于正半轴 ; 当 c<0 时,抛物线交 y 轴于负半轴 ;b 的符号由对称轴来决定 .当对称轴在 y?轴左侧时 ,b 的符号与 a 二次函数 4ac-b 的形式 , 先确定顶点 4a (- 2b a 4ac-b 2 ), 然后对称找点列表并画图 ,或直接代用顶点 4a 在对称轴的右侧 ,y 随 x 的增大而增大 简记左减右增 , 这时当 x=- b 时 ,y 2a 最小值= 4ac-b 2 4a

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

二次函数典型例题——旋转

二次函数典型例题——找规律 1、如图,一段抛物线:y =-x(x -3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A2旋转180°得C 3,交x 轴于点A 3; …… 如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 2、二次函数223 y x =的图象如图所示,点A 0位于坐标原点,点1232015,,,,A A A A ???在y 轴的正半轴上,点1232015,,,,B B B B ???在二次函数223 y x =位于第一象限的图象上,若△A 0B 1C 1,△A 1B 2C 2,△A 2B 3C 3,…△A 2014B 2015C 2015都为正三角形,则△011A B A 的边长= , △201420152015A B A 的边长= . 1,2015

3、如图,点A 1、A 2、A 3、……、A n 在抛物线2y x =图象上,点B 1、B 2、B 3、……、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、△A n B n -1B n 都为等腰直角三角形(点B 0是坐 标原点),则△A 2014B 2013B 2014的腰长= . (石景山区)已知关于x 的方程01)1(22=-+-+m x m mx 有两个实数根,且m 为非负 整数. (1)求m 的值; (2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的 表达式; (3)将抛物线2C 绕点(n n ,1+)旋转?180得到抛物线3C ,若抛物线3C 与直线 12 1+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围. (石景山区)解:(1)∵方程01)1(22=-+-+m x m mx 有两个实数根, ∴0≠m 且0≥?, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m 又∵m 为非负整数, ∴1=m . ………………………………2分 (2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2 )(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a , 同理:b a b +-=+2)4(12,可得3=b , …………………………4分 ∴2C :()322+-=x y )(或742+-=x x y . …………5分 (3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶 点为(322-n n ,), ………………6分 当n x 2=时,1122 1+=+?= n n y , 由题意,132+>-n n ,

商品利润问题与二次函数典型例题解析

商品利润问题与二次函数典型例题解析 知识链接复习: 1、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元 解:设每千克应涨价x 元,读题完成下列填空 问题一:涨价后每千克盈利 元; 问题二:涨价后日销售量减少 千克; 问题三:涨价后每天的销售量是 千克; 问题四:涨价后每天盈利 元 根据题意列方程得: 解方程得: 因为商家涨价的目的是 ;所以 符合题意。 答: 。 2、二次函数y=ax 2 +bx+c 的顶点坐标是x= y= 3、函数y=x 2+2x-3(-2≤x ≤2)的最大值和最小值分别是 新知解析: 例1、某商品现在的售价为每件35元,每天可卖出50件。市场调查发现:如果调整价格,每降价1元,那么每天可多卖出两件。请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少 解:设当降价X 元时销售额为y 元,根据题意得: y=(35-x )(50+2x )=-2x 2+20x+1750 x=-a b 2=-) 2(×220=5 因为0<5<35且a=-2<0 所以y=(35-5)(50+10)=1800 答:当降价5元时 销售额最大为1800元。 此类习题注意要点: 1、根据题意设未知量,一般设增加或者减少量为x 元时相应的收益为y 元,列出函数关系式。 2、判断顶点横坐标是否在取值范围内。因为函数的最值不一定是实际问题的最值 3、根据题意求最值。写出正确答案。 例2、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元租金最高是多少钱 解:设当张价X 元时租金为y 元,根据题意得:y=(100-10 ×2 x )(10+x )=-5x 2+50x+1000 x=-a b 2=-)5_( ×250=5

二次函数各知识点、考点、典型例题及对应练习(超全)

二次函数 专题一:二次函数的图象与性质 考点1.二次函数图象的对称轴和顶点坐标 二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a -). 例 1 已知,在同一直角坐标系中,反比例函数5 y x =与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值; (2)求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a 、b 、c 的关系 抛物线y=ax 2 +bx+c 中,当a>0时,开口向上,在对称轴x=-2b a 的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小. 例2 已知2 y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 考点3.二次函数的平移 当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到. 例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2 -2 图1

专题练习一 1.对于抛物线y=13-x 2+ 103x 163 -,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4 D.抛物线与x 轴交点为(-1,0),(3,0) 3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________. 4.小明从图2所示的二次函数2 y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式 例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙 的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2 )与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围). 考点2.根据抛物线上点的坐标确定二次函数表达式 1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0); 2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0); 3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式. 图2 A B C D 图1 菜园 墙

初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数21(1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到. 5.抛物线342++=x x y 在x 轴上截得的线段长度是 . 6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212 y x =的图象,它们共同特点是 ( ) 22 3x y -=

二次函数知识点总结与典型例题讲解

二次函数知识点总结及典型例题讲解 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1 x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 三、二次函数的性质

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一

若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值. 讲义参考答案

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

二次函数典型例题50题

选择 1.二次函数y=(x-3)(x+2)的图象的对称轴是 ( ) A.x=3 B.x=-2 C.x=-12 D.x=1 2 2. 抛物线y=2x 2-5x+3与坐标轴的交点共有 ( ) A . 1个 B. 2个 C. 3个 D. 4个 3.二次函数y= a (x+m)2-m (a ≠0) 无论m 为什么实数,图象的顶点必在 ( ) A.直线y=-x 上 B. 直线y=x 上 C.y 轴上 D.x 轴上 4. 如图2,抛物线 ,OA=OC ,下列关系中正确的是 ( ) A .ac+1=b B .ab+1=c C .bc+1=a D .b a +1=c 5.如图6,是二次函数的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,则S 取值最接近( ). A.4 B.16 3 C.2π D.8 6.如图7,记抛物线 2 1y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为1P ,2P ,…1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点 2 y ax bx c =+ +21 2 2y x =- +

1Q ,2Q ,…1n Q -,再记直角三角形11OPQ ,122PP Q 的面积分别为1S ,2S ,这样就有 21312n S n -=,22342n S n -= ,…;记121 n W S S S -=+++… ,当n 越来越大时,你猜想W 最 接近的常数是( ) A. 23 B. 12 C. 1 3 D.14 7.定义[]为函数 的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(,); ② 当m > 0时,函数图象截x 轴所得的线段长度大于; ③ 当m < 0时,函数在x >时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( ) A. ①②③④ B. ①②④ C. ①③④ D. ②④ 8. (2010宿迁改编)如图11,在矩形ABCD 中, AB=4,BC=6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边线段 MP=A , 设直角三角板的另一直角边PN 与CD 相交于点Q .BP=x ,CQ=y ,那么y 与x 之间的函数图象大致是( ) ,,a b c 2 y ax bx c =++3138 23 41 C B A D

初中二次函数知识点详解及典型例题

知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程02 =++c bx ax 有 实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数 c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, 知识点三、二次函数的最值

人教版初中数学二次函数经典测试题含答案

人教版初中数学二次函数经典测试题含答案 一、选择题 1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当 2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲 B .乙 C .丙 D .丁 【答案】B 【解析】 【分析】 利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】 解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得 01442b c b c =-+?? =++? 解得:13 23b c ? =????=-?? ∴二次函数的解析式为:2 21212533636 ??=+-=+ ???-y x x x ∴当x=16-时,y 的最小值为25 36 -,与丙的结论矛盾,故假设不成立,故本选项不符合题意; B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()2 13y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意; C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得 1 2 01b b c ?-=???=-+? 解得:23b c =-??=-?

∴223y x x =-- 当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()2 13y x =-+ 当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】 此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键. 2.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( ) A .①④ B .②④ C .②③ D .①②③④ 【答案】A 【解析】 【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误; ③对称轴:直线12b x a =- =-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误; ④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确. 【详解】 解:①∵抛物线与x 轴由两个交点, ∴240b ac ->, 即24b ac >, 所以①正确; ②由二次函数图象可知, 0a <,0b <,0c >,

相关文档
相关文档 最新文档