文档库 最新最全的文档下载
当前位置:文档库 › 基于射线跟踪和Voronoi图的室内定位算法

基于射线跟踪和Voronoi图的室内定位算法

基于射线跟踪和Voronoi图的室内定位算法
基于射线跟踪和Voronoi图的室内定位算法

光线跟踪讲解及源代码

计算机图形学期末作业 作业题目:Ray Tracing算法的实现 姓名:李海广 学号:S130201036 任课教师:秦红星

摘要 Ray Tracing算法又叫光线跟踪算法,它能通过递归方法逐个计算每个像素点的光强,然后就可以绘制出高度真实感的图像,因此该方法在图形学领域得到了广泛的应用。Ray Tracing算法的思想还能应用到移动通信终端定位领域,该领域里的射线跟踪法与此算法思想类似。MFC是微软公司提供的一个类库,以C++类的形式封装了Windows的API,并且包含一个应用程序框架,以减少应用程序开发人员的工作量。其中包含的类包含大量Windows句柄封装类和很多Windows的内建控件和组件的封装类。MFC在处理Windows窗口应用程序方面具有很大的优势,因此,本文使用MFC在VC6.0里实现Ray Tracing算法,并给出了该算法的详细讲解。 【关键词】Ray tracing 光线跟踪递归像素光强 MFC C++

目录 1.Ray Tracing算法概述 (1) 1.1Ray Tracing算法简介 (1) 1.2Ray Tracing算法的实现原理 (1) 2.Ray Tracing算法的具体实现 (2) 2.1算法的实现环境 (2) 2.2实现算法的C++程序简介 (2) 2.3算法的具体实现过程 (3) 2.4 程序运行结果 (11) 3.总结 (11) 3.1 通过该算法学到的东西 (11) 3.2本程序未完成的任务 (12) 4.参考文献 (12)

1.Ray Tracing算法概述 1.1Ray Tracing算法简介 光线跟踪(Ray tracing),又称为光迹追踪或光线追迹,它是来自于几何光学的一项通用技术,它通过跟踪与光学表面发生交互作用的光线从而得到光线经过路径的模型。它用于光学系统设计,如照相机镜头、显微镜、望远镜以及双目镜等。这个术语也用于表示三维计算机图形学中的特殊渲染算法,跟踪从眼睛发出的光线而不是光源发出的光线,通过这样一项技术将具有一定数学模型的场景显现出来。这样得到的结果类似于光线投射与扫描线渲染方法的结果,但是这种方法有更好的光学效果,例如对于反射与折射有更准确的模拟效果,并且效率非常高,所以在追求高质量结果时我们经常使用这种方法。 在光线跟踪的过程中,我们要考虑许多因素。要跟踪的光线包括反射光线、散射光线和镜面反射光线,利用递归方法并且设定一定的阀值来跟踪;在计算光强度时,我们要考虑场景中物体的反射系数、漫反射系数和镜面反射系数,还有交点处的法向量,出射光线的方向向量;在求视线以及反射光线和场景中物体的交点时,要计算出离眼睛以及出射点最近的交点作为击中点,得到击中点之后,我们就可以计算出击中点的坐标。最终,通过三个公式计算出每一个像素点处三种光线的光强值,再将三个光强值相加,就得到了该像素点出的总光强值,最后将颜色缓冲器中的三种颜色值输出到屏幕上,就得到了我们需要的光线跟踪图像。 1.2Ray Tracing算法的实现原理 (1)对图像中的每一个像素,创建从视点射向该像素的光线; (2)初始化最近时间T为一个很大的值,离视点最近的物体指针设为空值; (3)对场景中的每一个物体,如果从视点出发的光线和物体相交,且交点处的时间t比最近时间T小,则将t的值赋给最近时间T,并设置该物体为最近物体,将物体指针指向该物体; (4)经过第三步的计算后,如果最近物体指针指向空值NULL,则用背景色填充该像素。如果该指针指向光源,则用光源的颜色填充该像素;

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB 实现 李志辉 刘争平 (西南交通大学土木工程学院 成都 610031) 摘 要:本文探讨了在MA TLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所编程序在射线追踪正演计算中的应用。 关键词:最短路径法 射线追踪 MATLAB 数值模拟 利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作用。地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解程函方程法和最小路径法。最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用域地震射线追踪中。Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。通过科技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。 被称作是第四代计算机语言的MA TLAB 语言,利用其丰富的函数资源把编程人员从繁琐的程序代码中解放出来。MA TLAB 用更直观的、符合人们思维习惯的代码,为用户提供了直观、简洁的程序开发环境。本文介绍运用Matlab 实现最短路径法的方法和步骤,便于科研院校教学中讲授、演示和理解最短路径方法及其应用。 1 最短路径法射线追踪方法原理 最短路径法的基础是Fermat 原理及图论中的最短路径理论。其基本思路是,对实际介质进行离散化,将这个介质剖分成一系列小单元,在单元边界上设置若干节点,并将彼此向量的节点相连构成一个网络。网络中,速度场分布在离散的节点上。相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。将波阵面看成式由有限个离散点次级源组成,对于某个次级源(即某个网格节点),选取与其所有相邻的点(邻域点)组成计算网格点;由一个源点出发,计算出从源点到计算网格点的透射走时、射线路径、和射线长度;然后把除震源之外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径、和射线长度;将每次计算出来的走时加上从震源到次级源的走时,作为震源点到该网格节点的走时,记录下相应的射线路径位置及射线长度。 图1 离散化模型(星点表示震源或次级震源,空心点为对应计算网格点) 根据Fermat 原理逐步计算最小走时及射线方向。设Ω为已知走时点q 的集合,p 为与其相邻的未知走时点,tq 分别和p 点的最小走时,tqp 为q 至p 最小走时。r 为p 的次级源位置,则 )}(min :{qp q P t t t q r q +==Ω ∈ 根据Huygens 原理,q 只需遍历Q 的边界(即波前点),当所有波前邻点的最小走时都求出时,这些点又成为新的波前点。应用网络理论中的最短路径算法,可以同时求出从震源点传至所有节点之间的连线近似地震射线路径。 2 最短路径法射线追踪基本算法步骤 把网格上的所有节点分成集合p 和q ,p 为已知最小旅行时的结点总数集合,q 为未知最小旅行时的节点的集合。若节点总数为n ,经过n 次迭代后可为求出所有节点的最小旅行时。过程如下: 1) 初始时 q 集合包含所有节点,除震源s 的旅行时已知为ts =0外,其余所有节点的旅行时均为ti =(i 属于Q 但不 等于s )。P 集合为空集。 2) 在Q 中找一个旅行时最小的节点i ,它的旅行时为ti ; 3) 确定与节点i 相连的所有节点的集合V ; 4) 求节点j (j 属于V 且j 不属于P )与节点i 连线的旅行时dtij ; 5) 求节点j ()的新旅行时tj (取原有旅行时tj 与tj +dtij 的最小值); 6) 将i 点从Q 集合转到P 集合; 7) 若P 集合中的节点个数小于总节点数N ,转2,否则结束旅行时追踪; 8) 从接收点开始倒推出各道从源点道接收点的射线路径,只要每个节点记下使它形成最小旅行时的前一个节点号,

室内定位追踪系统—MoteTrack

Mote Track A Robust, Decentralized Approach to RF-Based Location Tracking Introduction Wireless sensor networks deployed throughput an indoor environment offer the opportunity for accurate location tracking of mobile users. Using radio signal information alone, it is possible to determine the location of a roaming node at close to meter-level accuracy . We are particularly concerned with applications in which the robustness of the location-tracking infrastructure is at stake. For example, firefighters and rescuers entering a building can use a heads-up display to track their location and monitor safe exit routes. Likewise, an incident commander could track the location of multiple rescuers in the building from the command post. We are developing a robust, decentralized approach to RF-based location tracking. Our system, called MoteTrack, is based on low-power radio transceivers coupled with a modest amount of computation and storage capabilities. MoteTrack does not rely upon any back-end server or network infrastructure: the location of each mobile node is computed using a received radio signal strength signature from numerous beacon nodes to a database of signatures that is replicated across the beacon nodes themselves. This design allows the system to function despite significant failures of the radio beacon infrastructure. In our deployment of MoteTrack, consisting of 25 beacon nodes distributed across our Computer Science building, we achieve a 50th-percentile and 80th-percentile location-tracking accuracy of 1 meter and 1.7 meters respectively when diversifying the radio signal over 16 frequencies. In addition, MoteTrack can tolerate the failure of up to 60% of the beacon nodes without severely degrading accuracy, making the system suitable for deployment in highly volatile conditions. We investigate in detail MoteTrack's performance under a wide range of conditions, including variance in the number of obstructions, beacon node failure, radio signature perturbations, receiver sensitivity, and beacon node density.

[能效,模型,系统]基于能效的WLAN 室内定位系统模型设计与实现

基于能效的WLAN 室内定位系统模型设计与实现 摘要:基于能效的WLAN室内定位系统模型的设计目的,一方面是为了降低位置指纹数据库规模,另一方面为了减少服务器与客户端的数据传输量,同时减少相关的计算量。为了实现这个定位系统,笔者提出了AP预处理算法、聚类算法以及精定位AP选择算法。该文主要是分析如何设计基于能效的WLAN室内定位系统模型,以及如何实现这个系统的应用目的。 关键词:WLAN;室内;定位系统;模型设计 Abstract:Design model of WLAN indoor positioning system based on energy efficiency,on the one hand is to reduce the size of the location fingerprint database,on the other hand,in order to reduce the amount of data transmission of the server and the client,at the same time,reduce the amount of computation associated.In order to achieve this positioning system,experts have proposed a AP preprocessing algorithm,clustering algorithm and precision positioning AP selection algorithm.This paper is the analysis of how to design the WLAN indoor positioning system model based on energy efficiency,and how to realize the application of the system Key words: WLAN; interior; positioning system; model design 1 前言 由于无线局域网的迅速发展,基于WLAN的室内定位技术也越来越受到相关研究人员的关注。WLAN主要是通过检测无线接入点发射的信号强度判断用户的位置,而根据信号强度来进行定位的系统主要分为两种,其中一种基于传播模型的室内定位系统,另外一种是基于位置指纹算法的室内定位系统,在这两种室内定位系统中,前一种的限制条件比较多,后一种的优势比较突出。但是基于位置指纹算法的室内定位系统的实现需要解决数据库构造、离线采样数据预处理、定位AP的选择以及终端设备位置的估计,因此本文主要是针对这个问题,分析如何设计基于能效的WLAN室内定位系统模型,并加以实现。 2 关于基于能效的WLAN室内定位系统模型设计分析 2.1 定位系统模型整体设计 以往定位系统的能耗比较大,而能耗主要发生在两个点,其中一个点是服务器与客户端的数据交互,另外一个点是在位置估计中的计算。为了使定位系统能耗降低,就必须缩减数据库规模,减少服务器与客户端的信息传输量,同时还要在位置估计的计算过程中选用比较简单的计算方法。基于能效的WLAN室内定位系统模型主要包括两个阶段,一个是离线阶段,包括指纹采集、AP选择、数据库预处理以及聚类等四部分;另一个是在线阶段,包括测量值预处理、大概定位、AP选择以及精确定位等四部分。 2.2 定位系统模型设计特征

车辆定位及货物追踪系统(GIS)

1.1.1 系统概述 车辆定位及货物追踪系统面向中小物流企业提供对其自有车辆监控调度、货运管理,面向中小物流企业和货主提供货物跟踪支持功能,各会员企业只需购买GPS/GS智能车载单元即可为客户提供高质量的物流状态跟踪服务。同时,实现了对政府部门运政执法车辆、应急指挥车辆等的及时监控,一方面在处理突发事件时,便于应急交通指挥工作的开展,另一方面,还将起到规范交通行政执法人员执法行为、提高文明执法水平、确保交通运输安全、提升交通文明形象等作用。 车辆定位及货物追踪系统功能框架图 1.1.2 功能设计 1.1. 2.1 实时监控 1. 车辆实时监控 车辆实时监控功能主要面向物流企业和政府部门,用户通过实时监控功能可以掌握车辆的位置信息、车辆状态信息等车辆实时监控 功能可以有效的使运输企业监督驾驶员的驾驶行为,了解下属车辆的 运行信息,同时为政府部门在处理突发紧急事件时的指挥工作提供了依据。 2. 货物跟踪监控 货物实时监控功能主要面向货源单位和物流企业。用户通过实时监控功能可以掌握货物的位置信息、货物状态信息等。从而为了解货物位置、货物状态、监督运输过程、制定生产决策等提供帮助。 1.1. 2.2 轨迹回放 轨迹回放功能主要面向物流企业和货主,用户通过轨迹回放可以了解了解车辆/ 货物历史的行驶情况,便于运输企业查看、监督下属车辆和驾驶员的工作情况,便于货源单位了解货物运输情况,监督运输企业运输过程。回放前用户可以自定义回放的电子地图,回放过程中用户可以自行调节回放速度、 同时系统在明显信息中详细显示每点轨迹信息。

1.1. 2.3 报警管理 报警管理功能主要面向车主、运输企业,在报警管理功能模块用户可以设定各种发出警报条件,如盗车报警、断电报警、越界报警、超速报警、温度报警等,当车辆状态超出设定范围时系统自动向用户发送警报信息,如车辆位置、报警原因等,以便用户更快掌握车辆和货物当前信息,对突发状况尽快提出解决方案。 发状况。 1.1. 2.4 远程控制 远程控制功能主要面向物流企业,为物流企业提供对车机呼叫、车机回复参数设计、车机限拨号码限制、遥控车辆熄火、监听车内状 况等功能,以便运输企业能及时了解车辆状况、控制调度车辆行程、处理突发事件等。 1.1. 2.5 统计报表 统计报表功能主要面向物流企业和政府部门,为用户提供车辆情况统计报表、驾驶情况统计报表、警情信息统计报表等服务。帮助企业掌握下属车辆、司机的工作信息,对制定企业工作计划、监督司机工作行为等起到参考作用。政府部门通过统计报表可以了解企业的生产行为,加强对企业的监管。 1.1. 2.6 系统管理 系统管理功能主要面向企业用户和系统管理员。企业用户可以通过系统管理功能管理下属车辆资料、车辆运行任务、公司工作人员资料,为企业用户高效管理智能化调度提供支持。系统管理员通过系统管理功能可以管理用户权限。为用户分配权限,用户登录系统后根据登录用户的权限,系统自动设置运行环境及用户可使用的功能项。用户不会看到其没有权限的车辆,也不能操作没有权限的功能。 1.1.3 业务流程 1.1.3.1 车辆监控流程

Atoll 射线跟踪操作手册

Aster 射线跟踪模型 操作手册 版本:2.5.4

目录 1介绍 (3) 2安装 (4) 系统要求和硬件要求 (4) 程序安装 (4) 硬件狗驱动安装 (6) 3地图数据 (6) 地图对象数据模拟Above Surface Object Digital Model(ASODM) (6) 3.1.1确定性传播类型 (7) 3.1.2统计性传播类型 (7) 支持的地图数据的不同搭配 (8) 3.2.1仅有地物分类地图 (8) 3.2.2仅有地物高度地图,无地物分类地图 (8) 3.2.3地物高度和地物分类地图都有 (8) 3.2.43D Building Vector地图 (8) 4Aster模型中的设置 (8) General 标签 (8) Configuration标签 (9) Clutter标签 (10) Geo标签 (11) Ray Tracing标签 (12) 5Aster模型预测覆盖图示例 (13) 6Aster模型校正 (15) Aster模型 Analysis (15) Aster模型校正 (16)

1介绍 Aster模型是Atoll中一个可选的射线追踪传播模型,由Forsk公司发布和支持,作为Atoll的一个可选功能。 Aster模型是一个预校正模型,支持所有无线技术,GSM、UMTS、CDMA2000、LTE、Wi-Fi等,支持从150MHz到5GHz范围内的频段。Aster模型支持所有的小区类型,从微蜂窝小区、迷你蜂窝小区到宏蜂窝小区等等。支持不同类型的传播环境:密集城区、城区、郊区等,特别适合于带有高精度地图的密集城区环境。利用CW测量数据,Aster模型可以进行自动模型校正。 Aster模型主要考虑楼顶的垂直衍射和基于射线追踪算法的水平衍射和反射。 本文档主要介绍Aster模型的先进功能特性,及从安装、参数设置到在Atoll中进行使用的过程,主要目的让用户能了解Aster的基本特性,及学会如何在Atoll中使用Aster模型进行计算。 本文档在介绍参数设置及操作的过程中,会涉及到Demo工程中的地图和数据,用户可以在我们提供的Aster试用光盘中找到本文档涉及的所有工程与地图数据。更多关于Aster的描述,请参考Aster英文版用户使用手册。 本文档工程所用的是Aster 2.5.4.234版本。

室内定位系统

无线私人网络的室内定位系统的研究 援引:A Survey Of Indoor Positioning System For Wireless Personal Networks 摘要: 近来,室内定位系统(IPSs)被设计来为个人和设备提供位置信息。私人网络(PNs)被设计来满足用户的需求并且使用户的装备了不同交流软件且在不同地点的设备进行交流并组建一个网络。PNs中的位置可获取服务需要被发展来提供流畅且可获得的私人服务并且提高生活的质量。本篇论文给出了一个易于理解关于多个IPSs的调查。我们以一个PN中的用户的角度比较现存的IPSs和这些系统的大纲轮廓。 1.介绍 准确可靠且实时的室内定位和基于定位的协议和服务在未来通信网络中是不可或缺的。定位系统使得设备的位置信息对于导航,跟踪,监控之类的服务是可获得的。一些基于定位的室内追踪系统已经被应用于医院中的贵重设备上,以免设备被偷盗。 在迅速发展的综合网络和PNs的服务中极为强调用户的需求。人们很多的注意力被放在个人使用的智能情境感知服务上,这使得人们的行为举止更为方便简单。动态和室内环境的不断变化带来的不确定性被定位信息的实用性减小。GPS 是应用最为广泛的卫星定位系统。然而GPS不能在室内使用。相较于室外,室内环境更为复杂,室内有着各种干扰因素。例如气压,噪声,其他的的无线网络信号...... IR,RFID,WLAN,UWB基于这些基本技术,很多公司,大学发展出了很多新的技术。在这篇论文中,我们介绍了很多实用的和科研的IPSs。本篇论文给出了17个现存的17IPSs并且分成了6个标准。我们同样给出了他们各自优点和缺点。 2.个人网络室内定位系统的概述 这一节我们介绍了IPSs和私人网络PNs。我们强调为什么PNs需要位置信息以及现存的IPSs分类。提出了不同的评价标准来比较PNs中的用户需求。

基于GPS和GSM定位车辆短信追踪系统设计

目录 1.引言 (1) 2.系统的总体设计 (2) 2.1车辆监控系统中关键技术 (2) 2.2系统结构总体框架 (2) 3.电路硬件设计 (4) 3.1 STC12C5A60S2单片机 (4) 3.2 GPS模块 (4) 3.3 短消息模块 (6) 3.4硬件的总体电路设计 (7) 4.软件设计 (7) 4.1开发环境 (7) 4.2系统软件的设计和实现 (8) 4.3系统各模块子程序的流程设计 (9) 5. 设计测试与分析 (11) 6.结语 (14) 参考文献 (15)

基于GPS 和GSM 定位车辆短信追踪系统设计 1 基于GPS 和GSM 定位车辆短信追踪系统设计 学生姓名:黄 玥 指导教师:纪辛然 宋子晔 摘要:GPS 定位系统起初的研究的应用领域为军事领域,但是在社会快速发展和人们的生活 水平得到了较大改观的情况下,使用汽车的人数在不断的增长。而且, GPS 定位技术的快速发展,GPS 在民用领域得到了很大发展,GPS 定位技术逐步的应用到交通管理和车辆监控GPS 就是一种可以实现精度高、高效的监控,以及存在着很多的功能的系统,是一种现代化的高科技产品。而GSM 除了可以识别出很多人的语音信息之外,在进行数据传输和进行短消息发送的业务中取得了很好的成效,有效地对信息进行控制和定位,为GPS 这种高科技产品的使用奠定了坚实的基础,在民用领域进行推广和使用提供了有效地保障。因此,GPS 和GSM 等两种技术构成的产物,可以对移动的目标进行跟踪。 关键词:单片机GPS 模块短消息模块 1.引言 伴随着我国的经济不断发展、城市化的进程极具加快、人们物质生活和汽车工业生产力的不断提高,作为我国国民经济基础的交通运输业得到了快速的发展,汽车早已逐步进入千家万户。随着汽车保有量的数量急剧增多和交通事业的快速发展,而且面临着很大的运输压力,交通的道路变得越来越拥挤,与此同时交通事故不断发生,十分严重的影响了人们的生活和出行。在此期间,许多和汽车有关的行业就开始迅猛发展。例如,公交车,出租车,医院急救车,旅游客运等行业中所辖车辆就在不断增加,这些车辆慢慢出现了一些无法应对的问题。另外,有不少的行业对于安全工作提出了新的规定,如运钞车,以及货车等以及夜间往偏远地方出行的出租车等等。怎样科学有效的管理并控制车辆,对车辆进行合理的安排,提高车辆利用率并保证车辆行驶安全,已成为大众和国家所关注的焦点问题。 基于以上的问题,车辆监控系统的研究与发展也就越来越受到人们的关注和重视。车辆监控系统的研发会在车辆管理、交通运输和监控中起到很重要的作用。近几年来,由于GPS 技术的发展,使车辆的实时定位变得简单,期间无线通信技术也飞快进展,因此以全球定位技术为前提的交通监控和管理成为可能,依靠其高效率、高精度的优点,已被非常多的人所关注和认识,随着GPS 入网费用的降低,因此这一技术也越来越受到厂商的青睐,逐渐在各个领域之中得以应用。 此次毕业设计是利用GPS 定位模块、单片机处理和短消息发送模块,用GPS 网络作为传输途径,模拟并跟踪对车辆数据的传输和采集。基本内容如下:此系统主要由空间—GPS 卫星星座。地面控制—GPS 地面监控系统;用户设备端—GPS 信号接收模块三个模块组成。GPS 卫星及其星座由21颗工作卫星与3颗备用卫星组成GPS 卫星群,记作(21+3)GPS 星群。监控处所使用的设备主要为:前端接入装置、监控装置、数据库、业务终端装置。

光线投射,光线追踪与路径追踪的概念与区别

光线投射,光线追踪与路径追踪的概念与区别 光线投射Ray Casting [1968] 光线投射(Ray Casting),作为光线追踪算法中的第一步,其理念起源于1968年,由Arthur Appel在一篇名为《Some techniques for shading machine rendering of solids》的文章中提出。其具体思路是从每一个像素射出一条射线,然后找到最接近的物体挡住射线的路径,而视平面上每个像素的颜色取决于从可见光表面产生的亮度。 光线投射:每像素从眼睛投射射线到场景 光线追踪Ray Tracing [1979] 1979年,Turner Whitted在光线投射的基础上,加入光与物体表面的交互,让光线在物体表面沿着反射,折射以及散射方式上继续传播,直到与光源相交。这一方法后来也被称为经典光线跟踪方法、递归式光线追踪(Recursive Ray Tracing)方法,或Whitted-style 光线跟踪方法。 光线追踪方法主要思想是从视点向成像平面上的像素发射光线,找到与该光线相交的最近物体的交点,如果该点处的表面是散射面,则计算光源直接照射该点产生的颜色;如果该点处表面是镜面或折射面,则继续向反射或折射方向跟踪另一条光线,如此递归下去,直到光线逃逸出场景或达到设定的最大递归深度。 经典的光线追踪:每像素从眼睛投射射线到场景,并追踪次级光线((shadow, reflection, refraction),并结合递归 光线追踪(Ray tracing)是三维计算机图形学中的特殊渲染算法,跟踪从眼睛发出的光线而不是光源发出的光线,通过这样一项技术生成编排好的场景的数学模型显现出来。这样得到的结果类似于光线投射与扫描线渲染方法的结果,但是这种方法有更好的光学效果,例如对于反射与折射有更准确的模拟效果,并且效率非常高,所以当追求高质量的效果时经常使用这种方法。

车辆定位及货物追踪系统(GIS)

1.1车辆定位及货物追踪系统 1.1.1系统概述 车辆定位及货物追踪系统面向中小物流企业提供对其自有车辆监控调度、货运管理,面向中小物流企业和货主提供货物跟踪支持功能,各会员企业只需购买GPS/GSM智能车载单元即可为客户提供高质量的物流状态跟踪服务。同时,实现了对政府部门运政执法车辆、应急指挥车辆等的及时监控,一方面在处理突发事件时,便于应急交通指挥工作的开展,另一方面,还将起到规交通行政执法人员执法行为、提高文明执法水平、确保交通运输安全、提升交通文明形象等作用。 车辆定位及货物追踪系统功能框架图 1.1.2功能设计 1.1. 2.1实时监控 1.车辆实时监控 车辆实时监控功能主要面向物流企业和政府部门,用户通过实时

监控功能可以掌握车辆的位置信息、车辆状态信息等。车辆实时监控功能可以有效的使运输企业监督驾驶员的驾驶行为,了解下属车辆的运行信息,同时为政府部门在处理突发紧急事件时的指挥工作提供了依据。 2.货物跟踪监控 货物实时监控功能主要面向货源单位和物流企业。用户通过实时监控功能可以掌握货物的位置信息、货物状态信息等。从而为了解货物位置、货物状态、监督运输过程、制定生产决策等提供帮助。 1.1. 2.2轨迹回放 轨迹回放功能主要面向物流企业和货主,用户通过轨迹回放可以了解了解车辆/货物历史的行驶情况,便于运输企业查看、监督下属车辆和驾驶员的工作情况,便于货源单位了解货物运输情况,监督运输企业运输过程。回放前用户可以自定义回放的电子地图,回放过程中用户可以自行调节回放速度、同时系统在明显信息中详细显示每点轨迹信息。 1.1. 2.3报警管理 报警管理功能主要面向车主、运输企业,在报警管理功能模块用户可以设定各种发出警报条件,如盗车报警、断电报警、越界报警、超速报警、温度报警等,当车辆状态超出设定围时系统自动向用户发送警报信息,如车辆位置、报警原因等,以便用户更快掌握车辆和货物当前信息,对突发状况尽快提出解决方案。

光线跟踪算法思想

光线跟踪算法思想 一、概述 本试验完成了基本光线跟踪、高级光线跟踪(反射、折射、透明、阴影)、光线跟踪加速算法等三个与光线跟踪有关的内容。 二、算法简述 1.面片求交 面片求交采用了先求交后判断的方法。现将光线的方程代入平面方程中求出交点。然后将该面片与交点都投影到同一个平面中如XOY平面。投影时需要判断投影结果是否会退化为一条直线,如果发生这种情况则要投影到另一平面内。 投影后,将交点坐标代入到面的边线方程中(要保证线的方向一致),并判断符号,如果符号始终相同,则表示点在面内。 2.球体求交 球体求交也采用了将光线方程代入球体方程的方式。如果方程无解表示没有交点。如果有两个大于0的解,则取较小的一个;如果一个大于0,一个小于0的解,则取大于零的解。 如果没有大于零的解则仍判定为不相交。 3.光线跟踪算法 设定视点和画布 for 画布上的每一行 { for 每一行上的每个像素 { 生成一条从视点到像素点的光线ray LT[i,j] = ray.RayTrace(物体数组,光源数组,1) } } //计算光线与物体的交点,并计算光强 V oid RayTrace(物体数组,光源数组,递归深度) { for 每个物体 { 计算光线与该物体的交点 if 光线起点到交点的距离小于已记录的最短距离且大于0 { 将最短距离设置为该距离

在这条光线对象中记录交点坐标,平面法向量,透明度,物体序号等 } } 对于距光线起点最近的那个点,执行 ComputeIntensity(物体数组,交点数组序号,光源数组,递归深度) } V oid ComputeIntensity(物体数组,交点数组序号,光源数组,递归深度) { 给物体加上环境光强 for (每个光源) { 生成一条从光源指向交点的光线 判断该光线是否与其他不透明的物体相交 if (不相交) 将该光线光强乘以满反射系数和镜面反射系数加到被跟踪光线的光强中 } if (递归深度< 设定深度) { if (需要反射) { 生成一条以交点为起点的反射光线reflectRay reflectRay.RayTrace(物体数组,光源数组,递归深度+1) 将reflectRay的光强与镜面反射系数相乘,加到原被跟踪光线光强中} if (需要折射) { 生成一条以交点为起点的折射光线refractRay refractRay.RayTrace(物体数组,光源数组,递归深度+1) 将refractRay的光强与透明系数相乘,加到原被跟踪光线光强中} } } 4.光线跟踪加速算法(层次包围球) 本作业选择了包围球而不是包围和来实现加速。这是基于光线与包围球求交比与包围盒求交速度快的考虑。虽然包围盒比包围球能更紧密地包围住物体,但与包围盒求交时需要处理所有可见面片并且对求出的交点还要判断是否在面片内,这样,当物体数量较少时反而起不到加速的作用。因此我觉得包围盒更适合于规模很大的光线跟踪计算。

城市环境下射线追踪加速算法

城市环境下射线追踪加速算法 在三维城市建设的过程中,为了使得城市环境更具有真实感,往往需要为城市环境模拟一太阳光源,实现因为光照而引起的三维场景下的各种表现特征。研究在三维场景下的光线(射线)传播路径具有重要的应用价值,在广播数字电视、城市移动多媒体、移动通讯等领域,信号的传播都是利用电磁波实行的,而光本身也是一种电磁波,它们传播的方式一致。所以研究射线追踪技术,便能够将其引入到上述领域中展开应用。首先通过射线追踪技术找到发出的信号到达信号接收端的路径,然后结合信号在发射、路径传播过程中的电波传播特征,从而得到信号最终到达信号接收端的信号强度,实现基于射线追踪技术的电波传播预测,为广播数字电视、城市移动多媒体、移动通讯等领域的覆盖规划提供决策支持。本文在三维城区环境下,研究射线追踪技术的理论方法,即,某一光源(信号发射源)发出一条光线(射线)后,通过直射、反射、绕射等最终到达地面的光线(射线)传播路径。 1射线追踪介绍 射线跟踪方法的理论基础是几何光学(GeometricalOptics,GO)理论,即,光在空间中以射线的方式实行传播,在遇到障碍物时,遵循光的反射定律会产生反射现象,射线追踪即模拟光在空间中的反射路径。对于空间障碍物边缘发射的绕射,则引入几何绕射理论和一致性绕射理论,模拟信号在遇到障碍物时发生的绕射情况。图1为信号经过直射、反射、衍射(绕射)后到达信号接收端的示意图。因为从一个信号发射端会发出无数条射线,而且当遇到障碍物时,每条射线又会在障碍物表面发生反射、绕射等显现,所以在三维空间中找到所有射线的计算量巨大,甚至是计算机不可承受的。本文在充分研究传统射线追踪算法的基础上,提出基于城市布局分区、降维、加速多镜法的射线追踪技术,提升射线追踪算法的计算效率。 2.1分区加速算法

室内定位常用算法概述

室内定位常用算法概述 一.室内定位目的和意义 随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。但是受定位时间、定位精度以及复杂室内环境等条件的限制,比较完善的定位技术目前还无法很好地利用。因此,专家学者提出了许多室内定位技术解决方案,如A-GPS定位技术、超声波定位技术、蓝牙技术、红外线技术、射频识别技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等等。这些室内定位技术从总体上可归纳为几类,即GNSS 技术(如伪卫星等),无线定位技术(无线通信信号、射频无线标签、超声波、光跟踪、无线传感器定位技术等),其它定位技术(计算机视觉、航位推算等),以及GNSS和无线定位组合的定位技术(A-GPS或A-GNSS)。 由于在室内环境下对于不同的建筑物而言,室内布置,材料结构,建筑物尺度的不同导致了信号的路径损耗很大,与此同时,建筑物的内在结构会引起信号的反射,绕射,折射和散射,形成多径现象,使得接收信号的幅度,相位和到达时间发生变化,造成信号的损失,定位的难度大。虽然室内定位是定位技术的一种,和室外的无线定位技术相比有一定的共性,但是室内环境的复杂性和对定位精度和安全性的特殊要求,使得室内无线定位技术有着不同于普通定位系统的鲜明特点,而且这些特点是户外定位技术所不具备的。因此,两者区域的标识和划分标准是不同的。基于室内定位的诸多特点,室内定位技术和定位算法已成为各国科技工作者研究的热点。如何提高定位精度仍将是今后研究的重点。 二. 室内定位技术的国内外发展趋势 室内GPS定位技术 GPS是目前应用最为广泛的定位技术。当GPS接收机在室内工作时,由于信号受建筑物的影响而大大衰减,定位精度也很低,要想达到室外一样直接从卫星广播中提取导航数据和时

车辆定位及货物追踪系统(GIS)

1.1 车辆定位及货物追踪系统 1.1.1 系统概述 车辆定位及货物追踪系统面向中小物流企业提供对其自有车辆监控调度、货运管理,面向中小物流企业和货主提供货物跟踪支持功能,各会员企业只需购买GPS/GSM智能车载单元即可为客户提供高质量的物流状态跟踪服务。同时,实现了对政府部门运政执法车辆、应急指挥车辆等的及时监控,一方面在处理突发事件时,便于应急交通指挥工作的开展,另一方面,还将起到规范交通行政执法人员执法行为、提高文明执法水平、确保交通运输安全、提升交通文明形象等作用。 车辆定位及货物追踪系统功能框架图 1.1.2 功能设计 1.1. 2.1 实时监控 1.车辆实时监控

车辆实时监控功能主要面向物流企业和政府部门,用户通过实时监控功能可以掌握车辆的位置信息、车辆状态信息等。车辆实时监控功能可以有效的使运输企业监督驾驶员的驾驶行为,了解下属车辆的运行信息,同时为政府部门在处理突发紧急事件时的指挥工作提供了依据。 2.货物跟踪监控 货物实时监控功能主要面向货源单位和物流企业。用户通过实时监控功能可以掌握货物的位置信息、货物状态信息等。从而为了解货物位置、货物状态、监督运输过程、制定生产决策等提供帮助。 1.1. 2.2 轨迹回放 轨迹回放功能主要面向物流企业和货主,用户通过轨迹回放可以了解了解车辆/货物历史的行驶情况,便于运输企业查看、监督下属车辆和驾驶员的工作情况,便于货源单位了解货物运输情况,监督运输企业运输过程。回放前用户可以自定义回放的电子地图,回放过程中用户可以自行调节回放速度、同时系统在明显信息中详细显示每点轨迹信息。 1.1. 2.3 报警管理 报警管理功能主要面向车主、运输企业,在报警管理功能模块用户可以设定各种发出警报条件,如盗车报警、断电报警、越界报警、超速报警、温度报警等,当车辆状态超出设定范围时系统自动向用户发送警报信息,如车辆位置、报警原因等,以便用户更快掌握车辆和

光线跟踪算法

光线跟踪算法的研究与进展 刘进 摘要:光线跟踪算法是图形绘制技术中的经典算法,但是该算法光线与物体的求交量庞大,严重制约着应用。本文从经典的光线跟踪算法出发,研究了目前光线跟踪算法的国内外研究状况,具体从改进的光线跟踪算法和光线跟踪算法的加速技术,并进行了对比和分析。最后对近几年的光线跟踪方法发展进行了总结,对未来研究热点及应用前景进行了展望。 关键词:可视化;光线跟踪算法;并行绘制;GPU Research Status and Prospect for ray tracing algorithms Abstract: As an classic algorithms of volume rendering in computer graphics, ray tracing algorithms is hindered by the huge computation cost in ray and volume. This paper summarizes the research status in ray tracing technology from the two main solutions: different extended ray tracing algorithms and the acceleration techniques in ray tracing algorithms. Comparison and analysis the different performance. Both current research focus and the future research prospect are also discussed in recent years. Key words: visualization; ray tracing algorithms; parallel rendering; GPU 引言 随着科学技术和计算机高速发展,人类已经进入到一个科技支撑的时代,在我们的生活中到处充满了高科技产品和技术,给我们的生活带来了改变和方便,其中计算机图形学的应用已经渗透到了各个工程技术领域,其已经成为计算机科学的重要学科之一,具有相当的重要性和无可替代的作用。计算机图形学自诞生以来得到了飞速发展,其通过计算机的输入设备、显示设备及绘制设备等对图形的表示、绘制、存储、显示等相关理论知识、算法技术进行研究的一门学科。真实感图形绘制是计算机图形学的主要研究内容之一,在虚拟现实、文物保护、影视游戏、三维动画、医学研究、建筑设计和系统仿真等领域中得到广泛应用,它追求对场景的逼真渲染[1]。其中逼真的图形绘制技术是最为活跃的研究领域之一。 光线跟踪算法是真实感图形绘制技术的主要算法之一,其原理简单,能够有效生成具有比较真实视观效果的各种各样的场景。该算法可通过一些光照明模型模拟在光源或环境光照射下物体表面发生的多种光照效果,例如漫反射、高光、镜面映像、场景消隐及阴影等。在计算机中对现实场景或是虚拟场景进行显示,除了要构建场景图形外,还要将场景中的各种光照效果模拟出来,这样生成的场景才能更逼真,光线跟踪算法就是既在几何上相似,也能模拟出大部分的光照效果的生成真实感图形的方法。光线跟踪算法是逆着真实光线的投射方向进行反向跟踪的,从视点向场景发射光线,光线与场景中的物体相交,计算光分量,因为视点向场景的光线较多,因而该算法光线与物体的求交量较大,但是因为其对场景的模拟的逼真,及其可以模拟漫反射、镜面反射、反射折射以及阴影等光照效果[1-2]。 进入90年代,随着计算机技术的发展,光线跟踪技术广泛应用于三维特技电影、电视广告、电子游戏的制作中,其应用领域也正在向如物理、化学、生物等其他学科领域渗透,其应用的范围正不断扩大,很多基于光线跟踪算法的新理论也应运而生,物理学中的相对论、地理中地层的绘图等与光线跟踪算法相结合的研究已经实现,极大的推动其学科的发展。可

相关文档