文档库 最新最全的文档下载
当前位置:文档库 › 大学物理课后习题(第十章)

大学物理课后习题(第十章)

大学物理课后习题(第十章)
大学物理课后习题(第十章)

101

第十章 波动光学

选择题

10—1 两个LC 无阻尼自由振荡电路,它们的自感之比12:1:2L L =.电容之比12:2:3C C =,则它们的振荡频率之比12:νν为 ( C ) (A) 13

; (D) 3. 10—2 平面电磁波的电场强度E 和磁场强度H ( C )

(A) 相互平行,相位差为0; (B)相互平行,相位差为π2

; (C) 相互垂直,相位差为0; (D)相互垂直,相位差为

π2. 10—3 在杨氏双缝干涉实验中,若双缝间的距离稍微增大一点,其他条件不变,则干涉条纹将 ( A )

(A) 变密; (B) 变稀; (C) 不变; (D) 消失. 10—4 在杨氏双缝干涉实验中,为了使屏上的干涉条纹间距变大,可以采取的办法是

( B )

(A) 使屏靠近双缝; (B) 使双缝的间距变小;

(C) 使双缝的间距变大; (D) 改用波长较小的单色光入射. 10—5 如图所示,在杨氏双缝干涉实验中,屏幕E 上的P 处是明纹.若将缝2S 盖住,并在1S 、2S 连线的垂直平分面上放一平面反射镜M ,其它条件不变,则此时 ( B )

(A) P 处仍为明纹;

(B) P 处为暗纹;

(C) P 处光强介于明、暗纹之间;

(D) 屏幕E 上无干涉条纹.

102

10—6 真空中波长为λ的单色光,在折射率为n 的透明介质中,从点A 沿某路径传播到点B ,其相位的变化为3π,则路径AB 的光程为 ( A )

(A) 1.5λ; (B) 1.5n λ; (C) 3λ; (D) 1.5n

λ. 10—7 在透镜上镀一层折射率为n (比透镜的折射率大)的透明介质薄膜,要使波长为

λ的单色光增加透射,薄膜的最小厚度应为 ( B )

(A) 4n λ; (B) 2n λ; (C) n

λ; (D) n λ. 10—8 波长为λ的平行单色光垂直入射到宽度为b 的单缝上,衍射图样中第一级暗纹的衍射角为o 30,则单缝宽度b 的大小为 ( C ) (A) 2

λ; (B) λ; (C) 2λ; (D) 3λ. 10—9 在单缝夫琅禾费衍射中,单缝宽度为2000nm ,入射光的波长为500nm .对于衍射角为o 30的衍射光而言,单缝处波面被划分成半波带的数目为 ( C )

(A) 2; (B) 3; (C) 4; (D) 5.

10—10 在光学仪器中,将透镜的孔径增大一倍,入射光波长减小一半,则其分辨率是原来的 ( D )

(A) 1倍; (B) 2倍; (C) 3倍; (D) 4倍.

10-11 一束平行白光垂直照射到透射光栅上,所得到的一级光谱按衍射角从小到大排列的顺序是 ( A )

(A) 紫黄红; (B) 红紫黄; (C) 黄红紫; (D) 红黄紫.

10—12 波长为550nm 的单色光垂直入射到光栅常量为6210m -?的光栅上,能够观察到的谱线的最高级次为 ( B )

(A) 2; (B) 3; (C) 4; (D) 5.

10—13 两个偏振片叠在一起,它们偏振化方向之间的夹角为o 30.当自然光入射时,出射光强与入射光强之比为 ( D ) (A) 18; (B) 34; (C) 14; (D) 38

. 10—14 一束光是自然光和线偏振光的混合光,让它垂直照射到偏振片上,若以入射光

103

为轴旋转偏振片,测得出射光强的最大值是最小值的5倍,则在该入射光中,自然光与线偏振光的光强之比为 ( B ) (A) 14; (B) 12

; (C) 1; (D) 2. 10—15 在两种介质的分界面上,当自然光以o 60角入射时,反射光是线偏振光,则折射

角为 ( B )

(A) o 60; (B) o 30; (C) o 45; (D) o

56.

10—16 一束自然光以布儒斯特角0i 入射到玻璃片堆上,当玻璃片堆中的玻璃片足够多时,从玻璃堆出射的折射光近似为 ( A )

(A) 线偏振光; (B) 自然光; (C) 部分偏振光; (D) 以上皆非.

计算题

10—17 在杨氏双缝干涉实验中,设双缝间距为0.4mm ,在距双缝2m 远的屏上产生干涉条纹,若测得第四级明纹到中央明纹的距离为11mm .求:

(1) 相邻明纹间距;

(2) 入射光的波长.

(1) 双缝干涉条纹间距相等.因此相邻明纹间距为 11mm 2.75mm 4

k x x k ?=== (2) 由D x d

λ?=,可得入射光的波长为 3

370.410 2.7510 5.510m 550nm 2

d x D λ---?=?=??=?= 10—18 在杨氏双缝干涉实验中,双缝与屏之间的距离 1.2m D =,双缝间距0.45mm d =,若测得干涉条纹中相邻明纹间距为1.5mm .求入射光的波长λ.

104

解 由D x d

λ?=,可得入射光的波长为 3

370.4510 1.510 5.62510m 563nm 1.2

d x D λ---?=?=??=?= 10—19 钠光在真空中波长为589.3nm ,垂直入射到一个空气劈尖上.实验观测到,第1条暗纹与第51条暗纹之间的距离是10mm .求该劈尖的劈角θ.

解 第1条暗纹到第51条暗纹之间的条纹数为50N =.相邻二条纹之间的距离为L l N =,式中10mm L =.空气的折射率1n =.将L l N =和1n =代入2nl

λθ=,可得劈尖的劈角为

9

3350589.310rad 1.4710rad 221010

N L λθ---??===??? 10—20 金属片夹在两块平板玻璃之间形成劈角θ很小的空气劈.现以波长600nm λ=的单色光垂直入射到空气劈上,测得相邻暗纹间距为11.010mm -?,若已知棱边到金属片的距离50mm D =.求:

(1) 金属片厚度d ;

(2) 如果金属片受热膨胀,则干涉条纹总数将增加还是减少?

解 (1) 空气劈的劈角为

9

3460010rad 3.0010rad 22 1.010l λ

θ---?===??? 金属片的厚度为

3345010 3.0010m 1.510m 0.15mm h D θ---==???=?=

(2) 干涉条纹总数为h N e =?.式中相邻二条纹处膜厚之差2

e λ?=是不变化的.由此可见,若金属片受热膨胀,其厚度h 增加,干涉条纹总数N 会随之成正比地增加.

10—21 在制作珠宝时,为了使人造水晶( 1.5n =)具有很强的反射本领,就要在其表面上镀一层一氧化硅(2n =).要使波长为560nm 的光强烈反射.求镀层的最小厚度.

解 符合22ne λλ+

=的镀层厚度e ,都能使波长为λ的光增反.式中n 为镀层材料的折

105

射率.使560nm λ=的光强烈反射的镀层的最小厚度为

98min 56010m 7.010m 0.07μm 442e n λ

--?===?=? 10—22 波长为589.3nm 的单色光垂直入射到牛顿环上,测得第k 个暗环直径为

4.20mm ,第10k +个暗环直径为6.80mm .求牛顿环装置中平凸透镜的曲率半径R .

解 平凸透镜的曲率半径为

2262296.80 4.201022m 1.21m 10589.310

k m k r r R m λ-+-??????-??? ? ?????-????===?? 10—23 波长500nm λ=的绿色平行光,垂直入射到缝宽0.5mm b =的单缝上.缝后放一焦距为2m 的透镜.求:

(1) 透镜的焦平面上中央明纹的宽度;

(2) 若缝宽变为0.51mm ,中央明纹宽度减小多少?

解 (1) 在透镜的焦平面上,中央明纹的宽度为

9

30322250010 4.0010m 4.00mm 0.510

f x b λ--????===?=? (2)若缝宽变为0.51mm ,则中央明纹的宽度为

9

30322250010 3.9210m 3.92mm 0.5110

f x b λ---???'?===?='? 0

0(3.92 4.00)mm 0.08mm x x '?-?=-=- 中央明纹宽度减小了0.08mm .

10—24 单缝宽度0.5mm b =,透镜焦距0.5m f =,有一与狭缝平行的屏放置在透镜焦平面上.若以波长650nm λ=的单色光垂直入射到单缝上,求第一级暗纹在屏上的位置.

解 屏上第一级暗纹中心到中央明纹中心的距离为

9

4130.565010 ==6.5010m=0.650mm 0.510

f x b λ---??=?? 10—25 在单缝夫琅禾费衍射实验中,用波长1650nm λ=的平行光垂直入射到单缝上,

106

已知透镜焦距 2.0m f =,测得第二级暗纹距中央明纹中心3.2mm .再用波长为2λ的单色光做实验,测得第三级暗纹距中央明纹中心4.5mm .求缝宽b 和波长2λ.

解 用波长为1650nm λ=的平行光垂直入射到单缝上,焦面上二级暗纹到中央明纹中心的距离为

31122 3.210mm f x b

λ-=

=? 由此可得缝宽b 为 9

413322265010 =m 8.12510m 0.813mm 3.210 3.210

f b λ----???==?=?? 用波长为2λ的单色平行光垂直入射到单缝上,三级暗纹到中央明纹中心的距离为

32233 4.510mm f x b

λ-=

=? 由此可得波长2λ为 333

72 4.510 4.5100.81310m 6.0910m 609nm 332

b f λ----????===?=? 10-26 已知地球到火星的距离为7

8.010km ?.在理想情况下,试估计火星上两物体间的距离为多大时,恰好能被地球上的观测者用5.08m 孔径的望远镜所分辨.设望远镜对波长为555nm 的光对敏感.

解 对555nm λ=的光,望远镜的最小分辨角为 9

70555101.22 1.22rad 1.3310rad 5.08D λ

θ--?===? 在火星上,正对着望远镜,最小分辨距离为

778.010 1.3310km 10.7km x D θ-?==???=

也就是说,在垂直于望远镜镜筒的方向上,火星上相距10.7km 以上的两个物体,能被这架望远镜分辨.

10—27 波长为589.3nm 的钠光垂直入射到每毫米有500条刻痕的光栅上.求第一级

107

明纹的衍射角.

解 每毫米500条刻痕的光栅的光栅常数为1mm 500

b b '+=.由光栅方程()s i n b b k θλ'+=,第一级明纹的衍射角的正弦为

9

3589.310sin 0.29465110500b b λ

θ--?==='+? 衍射角为

o 17.14θ=

10—28 波长632.8nm λ=的平行单色光垂直入射到光栅上,若测出第一级明条纹的衍射角o

30θ=.求该光栅每毫米的刻痕数.

解 由光栅方程()sin b b k θλ'+=,可得该光栅的光栅常数为 9

63632.810()m 1.265610m 1.265610mm sin sin 30b b λ

θ---?'+===?=?

每毫米内的刻痕数为

3

117901.265610N b b -==='+? 10—29 一束具有两种波长1λ和2λ的平行光垂直入射到光栅上,在屏上将产生对应上述波长的两组条纹.已知1450nm λ=,2600nm λ=.求:

(1) 波长为1λ的第4级明纹与波长为2λ的第几级明纹重合;

(2) 若重合处对应的衍射角o

60θ=,则光栅常数d 为多少.

解 (1) 设波长为1λ的平行光垂直照射光栅的第4级明纹,与波长为2λ的平行光垂直照射光栅的第m 级明纹重合,则由光栅方程()sin b b k ?λ'+=,可得 124m λλ=

1

2444503600

m λλ?===

108

即波长为2λ的第3级明纹与波长为1λ的第4级明纹重合.

(2) 若重合处对应的衍射角60θ=,则光栅常数为

1o o 44450nm 2078nm 2.08μm sin sin 60sin 60

k b b λλθ?'+===== 10—30 一束自然光通过两个偏振片后,光强变为原来的

1

4.求这两个偏振片的偏振化

方向之间的夹角. 解 设自然光的光强为02I ,则其通过的一片偏振片后,光强为0I .通过第二片偏振片后,光强为

20cos I I α= 将0124

I I =代入上式,可得两个偏振片的偏振化方向之间的夹角的余弦为

cos 2

α=

== 夹角为 45α=

10—31 三块偏振片叠在一起,第二块偏振片与第一块偏振片偏振化方向之间的夹角为o 45,第三块偏振片与第二块偏振片偏振化方向之间的夹角亦为o 45.一束光强为0I 的自然光垂直入射到第一块偏振片上.求透过每一块偏振片后的光强.

解 自然光透过第一块偏振片后,成为全偏振光,光强为

012

I I =

透过第二块偏振片后,仍然是全偏振光,光强为 220021cos 45cos 4524

I I I I ==

= 透过第三块偏振片后的全偏振光的光强为 220232cos 45cos 4548

I I I I ===

109

10—32 有两个偏振片,一个用做起偏器,一个用做检偏器.当它们偏振化方向之间的夹角为o 30时,一束自然光穿过它们,出射光强为1I .当它们偏振化方向之间的夹角为o

60时,另一束自然光穿过它们,出射光强为2I ,且12I I =.求这两束自然光的光强之比.

解 设两束自然光的光强分别为01I 和02I ,则从检偏器出射的光强1I 和2I 分别为 20112022cos 302cos 602I I I I == 由12I I =,可得两束自然光的光强之比为

202201cos 3031

cos 60I I == 10—33 一束自然光通过两个偏振化方向成o 60角的偏振片,出射光强为1I .在这两个偏振片之间插入另一偏振片,它的偏振化方向与前两个偏振片的偏振化方向均成o 30角.求这束自然光透过这三个偏振片后的出射光强.

解 设自然光的光强为0I ,则通过第一个偏振片后的光强为02

I .再通过与其偏振化方向成60角的第二个偏振片后,出射光强为

201cos 602

I I =

由此可得 1

022cos 60I I =

若在这两个偏振片之间,插入与上述两个偏振片的偏振化方向均成o

30角另一偏振片,这束自然光透过这三个偏振片后,出射光强为 2202cos 30cos 302I I =

将1

022cos 60I I =代入上式,可得

110 2212129cos 30cos 308cos 60I I I =

= 10—34 一束光以o 58角从空气入射到一平板玻璃的表面上,反射光是线偏振光.求:

(1) 折射光线的折射角;

(2) 玻璃的折射率.

解 因为反射光是全偏振光,所以这束光是以布儒斯特角0i 入射的,即o 058i =.

(1) 由o 090i γ+=,可得折射光的折射角为

o o o o 090905832i γ=-=-=

(2 )由布儒斯特定律201

tan n i n =,且空气的折射率11n ≈,可得这种玻璃的折射率为 o 210tan 1tan 58 1.60n n i ==?=

10—35 一束光以布儒斯特角入射到平板玻璃的上表面,试证明在玻璃下表面的反射光亦为偏振光.

证 如图,当一束光从折射率为1n 的介质以布儒斯特角0i 进入折射率为2n 玻璃时,反射广为全偏振光,且

102

tan n i n =

这时的折射角的正切为 201

πtan tan()2n i n γ=-= 进入玻璃的光从下表面透出时,对下表面的入

射角i γ'=,因此有

21

tan n i n '= 若下表面以下的介质的折射率为31n n =,则i '亦为布儒斯特角,从玻璃下表面反射回玻璃内部的光亦为全偏振光.

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

《大学物理》 第二版 课后习题答案 第十章

习题精解 10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是 3 ,,,424 λλλλ。设振源的振动方程为cos 2y A t πω? ?=+ ?? ? ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多 少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2x x π ?π ?π πλ λ???== ?== 3432,222x x π?π?ππλλ ???==?== (2) 112233440,, 2 2 2 3 ,222π π π ????ππ ??π??π = -?== -?=- =-?=-=-?=- (3) 121234 3411 , ,,2422 3,,,242t T T t T T t T T t T T ??ππ??ππ ???==?==???==?== 10-2 波源做谐振动,周期为0.01s ,振幅为2 1.010m -?,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1 400u m s -=?的速度沿x 轴的正方向传播,试写出波动方程。 解 根据题意可知,波源振动的相位为32 ?π= 2122200, 1.010,4000.01 A m u m s T ππωπ--====?=? 波动方程 231.010cos 2004002x y t m ππ-??? ?=?- + ??????? 10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。 解 (1)比较系数法 将波动方程改写成 0.05cos10 2.5x y t m π??=- ??? 与cos x y A t u ω?? =- ??? 比较得

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理知识总结习题答案(第十章)量子物理基础

第十章 量子物理基础 本章提要 1. 光的量子性 · 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。 · 在任何温度下都能全部吸收照射到它表面上的各种波长的光(电磁波),则这种物体称为绝对黑体,简称黑体。 · 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。 2. 维恩位移定律 · 在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm ,维恩从热力学理论导出T 和λm 满足如下关系 λm T b = 其中b 是维恩常量。 3. 斯忒藩—玻尔兹曼定律 · 斯忒藩—玻尔兹曼定律表明黑体的辐射出射度M 与温T 的关系 4T M σ= 其中s 为斯忒藩—玻尔兹曼常量。对于一般的物体 4T M εσ= e 称发射率。 4. 黑体辐射 · 黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量E hv =被称为一个量子。黑体辐射的能量为E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。 · 普朗克黑体辐射公式简称普朗克公式 25/λ2πhc 1()λ1 hc kT M T e l =-

· 光是以光速运动的粒子流,这些粒子称为光量子,简称光子。 · 一个光子具有的能量为νh E =。 5. 粒子的波动性 · 德布罗意认为实物粒子也具有波粒二象性,它的能量E 、动量p 跟和它相联系的波的频率ν、波长λ满足以下关系 2E mc h ν== λ h p m u == 这两个公式称为德布罗意公式或德布罗意假设。与实物粒子相联系的波称为物质波或德布罗意波。 · x x p D D ?h 或者E t D D ?h 这一关系叫做不确定关系。其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。 · 物质波是一种表示粒子在空间概率分布的概率波。 6.薛定谔方程及其应用 · 微观粒子的运动状态需要用波函数来描述,通常以y 表示。一般来说,y 是空间和时间的函数,即(,,,)x y z t y y =。波函数的运动方程为薛定谔方程。 · 粒子出现在单位体积内的概率就是2y 。因此,2y 又叫概率密度。 · 定态薛定谔方程的非相对论形式为 22222222()0m E U x y z y y y y 抖?+++-=抖?h 其中,m 为粒子的质量,U 为粒子在外力场中的势能函数,E 是粒子的总能量。 · 在无限深方势阱中的粒子能量为 22 2222 22n k h h E n m ma p == 整数n 称为量子数。每一个可能的能量值称为一个能级。 · 在势垒有限的情况下,粒子可以穿过势垒到达另一侧,这种现象叫做势垒贯穿。 7. 电子运动状态 · 量子力学给出的原子中电子的运动状态由以下四个量子数决定 (1) 主量子数n ,它大体上决定了原子中电子的能量。 (2) 角量子数l, 1,2,3,,(1)l n =-L 它决定电子绕核运动的角动量的大小。一般说来,主量子数n 相同,而角量子数

清华大学《大学物理》习题库试题及答案__07_热学习题

清华大学《大学物理》习题库试题及答案热学习题 一、选择题 1.4251:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据 理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B) m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v [ ] 2.4252:一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据 理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ] 3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等 (D) ε和w 都不相等 [ ] 4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为: (A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 [ ] 5.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和 化学能)? (A) 66.7% (B) 50% (C) 25% (D) 0 [ ] 6.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位 体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质 量ρ,分别有如下关系: (A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同 (C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同 [ ] 7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平 衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同 (C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 [ ] 8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的 量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低 反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的 冷热程度。这些说法中正确的是 (A) (1)、(2)、(4);(B) (1)、(2)、(3);(C) (2)、(3)、(4);(D) (1)、(3) 、(4); [ ] 9.4039:设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过 具有相同温度的氧气和氢气的速率之比22 H O /v v 为 (A) 1 (B) 1/2 (C) 1/3 (D) 1/4 [ ] 10.4041:设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理期末考试试题

西安工业大学试题纸 1.若质点的运动方程为:()2r 52/2t t i t j =+-+(SI ),则质点的v = 。 2. 一个轴光滑的定滑轮的转动惯量为2/2MR ,则要使其获得β的角加速度,需要施加的合外力矩的大小为 。 3.刚体的转动惯量取决于刚体的质量、质量的空间分布和 。 4.一物体沿x 轴运动,受到F =3t (N)的作用,则在前1秒内F 对物体的冲量是 (Ns )。 5. 一个质点的动量增量与参照系 。(填“有关”、“无关”) 6. 由力对物体的做功定义可知道功是个过程量,试回答:在保守力场中,当始末位置确定以后,场力做功与路径 。(填“有关”、“无关”) 7.狭义相对论理论中有2个基本原理(假设),一个是相对性原理,另一个是 原理。 8.在一个惯性系下,1、2分别代表一对因果事件的因事件和果事件,则在另一个惯性系下,1事件的发生 2事件的发生(填“早于”、“晚于”)。 9. 一个粒子的固有质量为m 0,当其相对于某惯性系以0.8c 运动时的质量m = ;其动能为 。 10. 波长为λ,周期为T 的一平面简谐波在介质中传播。有A 、B 两个介质质点相距为L ,则A 、B 两个质点的振动相位差=?φ____;振动在A 、B 之间传播所需的时间为_ 。 11. 已知平面简谐波方程为cos()y A Bt Cx =-,式中A 、B 、C 为正值恒量,则波的频率为 ;波长为 ;波沿x 轴的 向传播(填“正”、“负”)。 12.惠更斯原理和波动的叠加原理是研究波动学的基本原理,对于两列波动的干涉而言,产生稳定的干涉现象需要三个基本条件:相同或者相近的振动方向,稳定的位相差,以及 。 13. 已知一个简谐振动的振动方程为10.06cos(10/5)()X t SI π=+,现在另有一简谐振动,其振动方程为20.07cos(10)X t =+Φ,则Φ= 时,它们的合振动振幅最 大;Φ= 时,它们的合振动振幅最小。 14. 平衡态下温度为T 的1mol 单原子分子气体的内能为 。 15. 平衡态下理想气体(分子数密度为n ,分子质量为m ,分子速率为v )的统计压强P= ;从统计角度来看,对压强和温度这些状态量而言, 是理想气体分子热运动激烈程度的标志。

大学物理 第十章 习题

第十章 机械振动和电磁振荡 例题:P 10 10-1 习题: 一、选择题(共5题) 1、一小球与轻弹簧组成的系统,按??? ? ?+=38cos 05.0ππt x 的规律振动,式中t 以s 为单位,x 以m 为单位,下列说法正确的是( ) (A) 角频率为25.12rad/s ,周期为0.25s ,振幅为0.05m ,初相为 3π (B)角频率为25.12rad/s ,周期为4s ,振幅为0.05m ,初相为3 π (C)角频率为25.12rad/s ,周期为4s ,振幅为0.05m ,t=1s 时的相位为 3 25π (D)角频率为25.12rad/s ,周期为0.25s ,振幅为0.05cm ,t=1s 时的相位为325π 2、一弹簧谐振子,振幅A 变为原来的2倍,周期变为原来的0.5倍,初相变为原来的3倍,则谐振子能量变为原来的( ) (A )4倍 (B)不变 (C)0.5倍 (D)3倍 3、某质点做简谐振动,周期为2s ,振幅为0.06m ,t=0s 时质点恰好在A/2处,且向负方向运动,则该质点的运动学方程为( ) (A)??? ??+=3cos 06.0ππt x (B)??? ? ?-=3cos 06.0ππt x (C)??? ??+=32cos 06.0ππt x (D)?? ? ??+=34cos 06.0ππt x 4、一谐振子从A 运动到-A/2,所需最短时间为( ) (A) T/6 (B)T/12 (C)T/3 (D)T/2 5、一质点做简谐振动,位移等于振幅的一半时 ,系统的动能与势能的比值为( ) (A) 1:6 (B)1:3 (C)6:1 (D)3:1 二、填空题(共5题) 1、一振动质点的振动曲线如图所示,质点的运动学方程为 ,点P 对应的相位 ,从振动开始到达P 点相应位置所需时间 。(建议利用旋转矢量法)

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

清华大学《大学物理》习题库试题及答案--04-机械振动习题

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单 摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π21 cos(2-+=αωt A x (C) ) π23 cos(2-+=αωt A x (D) )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 (B) 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(1042π+π?=-t x (SI)。从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 21 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) ) 21/cos(π-=t m k A x (C) ) π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取 v 2 1

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

清华大学《大学物理》习题库试题及答案__02_刚体习题

一、选择题 1.0148:几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和 为零,则此刚体 (A) 必然不会转动 (B) 转速必然不变 (C) 转速必然改变 (D) 转速可能不变,也可能改变 [ ] 2.0153:一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动。 若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大 (B) 必然减少 (C) 不会改变 (D) 如何变化,不能确定 [ ] 3.0165:均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所 示。今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一 种是正确的? (A) 角速度从小到大,角加速度从大到小 (B) 角速度从小到大,角加速度从小到大 (C) 角速度从大到小,角加速度从大到小 (D) 角速度从大到小,角加速度从小到大 [ ] 4.0289:关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关 (B )取决于刚体的质量和质量的空间分布,与轴的位置无关 (C )取决于刚体的质量、质量的空间分布和轴的位置 (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关 [ ] 5.0292:一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。 物体所受重力为P ,滑轮的角加速度为α。若将物体去掉而以与P 相等的力直接向下拉绳 子,滑轮的角加速度α将 (A) 不变 (B) 变小 (C) 变大 (D) 如何变化无法判断 [ ] 6.0126:花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0, 角速度为0ω。然后她将两臂收回,使转动惯量减少为31 J 0。这时她转动的角速度变为: (A) 031ω (B) () 03/1ω (C) 03ω (D) 03ω [ ] 7.0132:光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂 直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31 mL 2,起初杆静止。桌面上有两个质 量均为m v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非 弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速 度应为: (A) L 32v (B) L 54v (C) L 76v (D) L 98v (E) L 712v [ ] 8.0133:如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂 O v 俯视图

相关文档
相关文档 最新文档