文档库 最新最全的文档下载
当前位置:文档库 › Towards AGV Safety and Navigation Advancement- Obstacle Detection using a TOF Range Camera

Towards AGV Safety and Navigation Advancement- Obstacle Detection using a TOF Range Camera

Towards AGV Safety and Navigation Advancement- Obstacle Detection using a TOF Range Camera
Towards AGV Safety and Navigation Advancement- Obstacle Detection using a TOF Range Camera

Abstract— The performance evaluation of an obstacle detection and segmentation algorithm for Automated Guided Vehicle (AGV) navigation using a 3D real-time range camera is the subject of this paper. Our approach has been tested successfully on British safety standard recommended object sizes and materials placed on the vehicle path. The segmented (mapped) obstacles are then verified using absolute measurements obtained using a relatively accurate 2D scanning laser rangefinder. Sensor mounting and sensor modulation issues will also be described through representative data sets.

Index Terms—3D range camera, real-time, safety standard, ground truth, obstacle segmentation.

I.INTRODUCTION

bstacle detection and mapping are crucial for autonomous indoor driving. This is especially true for

Automated Guided Vehicle (AGV) navigation in factory-like environments where safety of personnel and that of the AGV itself is of utmost importance. This paper describes the performance of an obstacle detection and segmentation algorithm using a 3D real-time range camera.

The 3D range camera is based on the Time-Of-Flight (TOF) principle [8] and is capable of simultaneously producing intensity images and range information of targets in indoor environments. This range camera is extremely appealing for obstacle detection in industrial applications as it will be relatively inexpensive as compared to similar sensors and can deliver range and intensity images at a rate of 30 Hz with an active range of 7.5 m while incorporating no moving parts, such as a spinning mirror as in many off-the-shelf laser sensors.

Since obstacle detection plays a critical role in autonomous driving, there has been much research on many different types of sensors, such as sonar [13], color/gray level cameras [2], FLIR (Forward Looking InfraRed) cameras [12], and stereo cameras [1, 6, 11, 14]. Most of the vision approaches are not applicable to indoor scenes due to lack of texture in the environment. Other researchers have proposed LADAR (Laser Detection And Ranging) sensors for detecting obstacles [3, 4, 5]. However, one-dimensional LADAR, which has been used in the AGV industry, is not suitable for the 3D world of factory environments and other complex volumes without moving the sensor during operation.

Manuscript received November 16, 2004.

R.V. Bostelman is with the National Institute of Standards and Technology, Gaithersburg, MD 20899 USA (phone: 301-975-3426; fax: 301-921-6165; e-mail: roger.bostelman@https://www.wendangku.net/doc/111604525.html,).

T.H. Hong is with the National Institute of Standards and Technology, Gaithersburg, MD 20899 USA (e-mail: tsai.hong@https://www.wendangku.net/doc/111604525.html,).

R. Madhavan is with the National Institute of Standards and Technology, Gaithersburg, MD 20899 USA (e-mail: raj.madhavan@https://www.wendangku.net/doc/111604525.html,).

*

Commercial equipment and materials are identified in this paper in order to adequately specify certain procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Our proposed approach to obstacle detection uses a low cost, 3D, real-time, range camera. First, we calibrate the camera with respect to the AGV so that we can convert the range values to 3D point clouds in the AGV coordinate frame. Second, we segment the objects which have high intensity and whose elevation values are above the floor of the operating environment on the AGV path. The segmented 3D points of the obstacles are then projected and accumulated into the floor surface-plane. The algorithm utilizes the intensity and 3D structure of range data from the camera and does not rely on the texture of the environment. The segmented (mapped) obstacles are verified using absolute measurements obtained using a relatively accurate 2D scanning laser rangefinder. Our approach has been tested successfully on approximate British safety standard recommended object sizes covered with cotton, cloth material and placed on the vehicle path. The AGV remained stationary as the measurements were collected for this paper.

The American Society of Mechanical Engineers (ASME) B56.5-2004 standard [15] was recently changed1 to allow non-contact safety sensors as opposed to contact sensors such as bumpers to be used on AGVs. Prior to the change, the B56.5 standard defined an AGV bumper as a “mechanically actuated device, which when depressed, causes the vehicle to stop.” With the current B56.5 standard change and with state-of-the-art non-contact safety sensors, vehicles can be shorter in length, excluding mechanical bumpers since these bumpers extend much farther in front and behind the vehicle than non-contact sensors. This in turn allows shorter vehicle turning radii and they can potentially move faster as objects can be detected well before the vehicle is close to an object.

Ideally, the U.S. standard can be changed even further similar to the British EN1525 safety standard requirements [16]. Furthering the US safety standard will also provide support toward a unified, global safety standard for AGVs and other driverless vehicles.

The paper has five sections: Section II describes the concept of obstacle detection and segmentation including the

1 not cited here since the change was not published prior to the date of this paper.

Towards AGV Safety and Navigation Advancement -

Obstacle Detection using a TOF Range Camera*

R.V. Bostelman, T.H. Hong, and R. Madhavan

O

Proceedings of the 12th International Conference on Advanced Robotics (ICAR), Seattle, Washington, July 18-20, 2005.

3D range camera, algorithm, and a modulation issue using range camera images. Section III provides the experimental setup and results when the proposed algorithm is employed for detection and segmentation of British standard size and material-covered test apparatus. Section IV provides further discussion beyond the typical indoor factory environment application and indicates future research areas that are under investigation including sensor mounting and outdoor daylight tests and results. Section V provides a summary and conclusion followed by acknowledgments and a reference list.

II.O BSTACLE D ETECTION AND S EGMENTATION

A.3D Range Camera

In this section, we describe an algorithm to detect and segment obstacles in the path of the AGV using a solid-state Time-Of-Flight (TOF) range camera. The 3D range camera shown in Figure 1is a compact, robust and cost effective solid state device capable of producing 3D images in real-time.

Figure 1 - CSEM SwissRanger-2 3D Range Camera. The camera simultaneously generates intensity images and range information of targets in its field-of view at a rate of 20 Hz with an active range of 7.5 m.

The camera measures 14.5 x 4 x 3 cm (5.7 x 1.6 x 1.2 in), has a field-of-view of 42° (horizontal) x 46° (vertical), and is capable of producing range images of 160 x 124 pixels over a 7.5 m range. For a brief overview of the characteristics and operating principles of the camera, see [10].

The British EN1525 safety standard specifies that horizontal test pieces used to test sensors shall be 200 mm diameter x 600 mm long lying perpendicular to the vehicle path. Vertical test pieces shall be 70 mm diameter by 400 mm tall and completely within the vehicle path. Approximately sized British standard test obstacles, as shown in Figure 2(a and b),were placed on the travel path for our experiments.

B.Algorithm Details

Generally, the obstacle detection and segmentation algorithm combines intensity and range images from the range camera to detect the obstacles and estimate the distance to the obstacles. We first calibrate the camera with respect to the AGV so that we can convert the range values to 3D point clouds in the AGV coordinate frame.

(a)

(b)

Figure 2 - Experimental setup (a) vertical test apparatus where the center object most closely matches the British standard size test piece measuring 65 mm dia. x 400 mm long. The remaining vertical objects are all thinner. (b) horizontal test apparatus (mannequin leg) measuring a segment approximately tapered from 80 to 160 mm dia. x 600 mm long including the leg ankle to the thigh. Both (a) and (b) objects are covered in cloth as also specified in the standard. See Section III Experimental Setup and Results for further details. Next, we segment the objects which have high intensity pixels and whose elevation values are above the floor of the operating environment on the AGV path. The segmented 3D points of the obstacles are then projected and accumulated into the floor surface-plane. The algorithm utilizes the intensity and 3D structure of range data from the camera and does not rely on the texture of the environment. The segmented (mapped) obstacles are verified using absolute measurements obtained using a relatively accurate 2D scanning laser rangefinder.

Specifically, the steps of the algorithm are illustrated for a sample image from the camera:

1) a patch of data (e.g., 20 x 20 pixels) with high intensity values (i.e., the intensity value is greater than 20) in front of the robot are used to fit a plane for estimating the floor surface as shown in Figure 3(a).

2) the left and right edges of 3D robot paths are projected to the range and intensity images such that only obstacles on the path can be considered as shown in Figure 3(b).

3) all the intensity pixels between the left and right edges are used to hypothesize the potential obstacle. If the pixel intensity value is greater than half of the average of the intensity in the image then the pixel is considered as a potential obstacle as shown in Figure 3(c).

4) each potential obstacle pixel in the range image is used to find the distance to the floor plane when the distance to the floor is greater than some threshold as shown in Figure 3(d). The threshold is dependent on the traversability of the robot

.

(a)

(b)

(c)

(d)

Figure 3 - Obstacle segmentation algorithm illustration. Potential obstacles in the world model can be accumulated as the AGV drives. Figure 4(b) shows an obstacle map representation that is part of the world model. The obstacles map is shown at 10 cm grid resolution. Nearly all the obstacles are found, although at the cost of false positives from the reflected objects. To increase the accuracy of obstacle detection, the obstacles in the map and information obtained from an added color camera may be temporally integrated. Such integration has proven to be a very useful cue for obstacle detection [9].

C.Modulation Issue

An issue with this particular range camera is the modulation of returned data at approximately 7.5 m. Within the range of approximately 7.5 m, the camera accurately senses (to within 5 mm) the range to objects. Beyond 7.5 m, the camera continues to sense objects although places the object within the modulation of 7.5 m. For example, an object detected at 11 m would be placed in the returned data at a range of (11 m – 7.5 m =) 3.5 m (see Figure 4).

To eliminate the modulation issue, a lower emitted light modulation frequency (ELMF) below the typical 20 MHz can be used to establish a longer, yet lower accuracy (as stated by the manufacturer) range modulation and could be used to compare with the 7.5 m range modulated range data. The compared data within the two modulation frequencies can then be used to mask objects detected beyond the 7.5 m range. Also, similar to how humans have and use peripheral vision, these longer-range objects created by a higher ELMF setting, could be placed in the world model for additional, lower range-accuracy environmental information. And as human peripheral vision provides excellent motion detection over foveal vision [7], the higher ELMF setting could produce low relative accuracy, yet larger range and volume (see Figure 5) motion detection of obstacles. While the disadvantage here is producing lower relative range accuracy, the advantage for vehicle control is that decisions can be made much earlier to react to potential obstacles farther away, even if their exact range is unknown.

(b)

Figure 4 – (a) Segmented obstacles and (b) obstacle map but,

due to range modulation, obstacles detected beyond 7.5 m

max. camera range are placed within the 7.5 m range.

Figure 5 – Graphic depicting range information (left) versus

potential range information (right) with an alternative emitted

light modulation frequency.

III.EXPERIMENTAL SETUP AND RESULTS

The experiments were conducted under two scenarios as

stated within the European British Standard:

? A test apparatus with a diameter of 200 mm and a

length of 600 mm placed at right angles on the path

of the AGV.

? A test apparatus with a diameter of 70 mm and a

height of 400 mm set vertically within the path of the

AGV.

Figures 2(a and b)show the experimental setup for the two

aforementioned scenarios. The center of the camera lens was

centered approximately horizontal and vertical on the

apparatus for all measurements. The scanning laser

rangefinder was offset from the camera by 0 mm horizontally,

250 mm vertically, and to the left of the camera as viewed

from the camera to the test apparatus. The range camera was

used to detect known test apparatus mounted on a stand and

moved to different locations with respect to the camera.

The obstacle detection and segmentation algorithm was

tested on two British standard test apparatus’ as described in

[15], and was evaluated against ground truth and placed at 0.5

m to 7.5 m distances to the sensor. A single-line scanning

laser rangefinder, shown in Figure 6, mounted below the

range camera, simultaneously verified the distance to the test

apparatus for each data set and served as ground truth. The

rangefinder produced 401 data points over a 100° semi-

circular region in front of the robot with each scan.

Figure 6 - Experimental setup of the AGV, the scanning laser

rangefinder, and the range camera.

Table 1 shows the performance of the range camera for

detecting the distance to the test apparatus placed at several

distances from the range camera (beyond 3.5 m,

measurements must be reevaluated to ensure validity). As can

be seen, the accuracy (mean) of the range decreases as the

distance of the apparatus placed in front of the range camera is

increased.

Figure 7 shows the test apparatus placed at a distance of 2.5

m from the range camera. Each object in the test apparatus

was clearly detected even though the range camera detected

the reflectors on the hallway wall. Figures 7 (a), (b) and (c)

3D Range Camera

Scanning Laser

Rangefinder

Robot vehicle

shows the resultant intensity, range, and segmented images, respectively. Figure 7(d) shows the ground truth provided by the scanning laser rangefinder rotated to show a top-down view.

Table 1 - Quantitative Comparison of Performance

Nominal Obstacle Distance (cm) 3D Range Camera Mean (cm)

2D Rangefinder

Mean (cm) 64 64.1

64.7 111 111.0

111.3 160 161.4

160.7 210 204.0 210.0 259 249.5 259.1 310 284.7 310.2

Similar to Figure 3, [9] shows additional data taken with a mannequin leg placed on the floor and with an approximate diameter of 200 mm and a length of 600 mm at the leg thigh region. This test apparatus is more challenging for the algorithm because the entire object is close to the floor. The legs are detected, but at the cost of detecting farther objects. Again, this deficiency can be eliminated by using two different modulation frequencies (such as 10 MHz and 20 MHz) where the detected objects would be coarsely represented at a more appropriate distance. The control algorithm can then intelligently delete them.

(a)

(b)

(c)

(d)

Figure 7 - Results of the obstacle detection and segmentation algorithm for the experimental setup shown in Figure 2(a). The resultant intensity, range, and segmented images are shown in (a), (b) and (c), respectively. The ground truth provided by the scanning laser rangefinder is shown in (d) and has been rotated to show a top-down view.

7 m 6 5 4 3 2 1

IV. FURTHER RESEARCH

A. Sensor Mount

Critical to the sensor itself is the mounting configuration of the sensor to enable detection of objects within the vehicle path. Although there are no specific guidelines within the US safety standard for sensor mounts, it does suggest that the sensor be “fail-safe” and regarding bumpers, they “shall activate from a force applied parallel to the floor.” Fix-mounting the sensor with its’ view in the direction of vehicle travel seems ideal where for example, a sensor that was mounted on perhaps a rotary head might possibly not detect an approaching obstacle outside the rotated FOV (field of view). A range camera fix-mounted on the vehicle and near the floor is also ideal where reflected data off the floor is less likely to detect the floor as an object. However, taller vehicles may require the need to view higher volumes as overhead objects may be within the vehicle path. Similarly, AGVs typically have sensors that detect objects such as human feet to the side of the vehicle. Non-contact safety sensors must therefore, wrap their FOV around the vehicle or duplicate sensors, especially as camera prices decrease, to incorporate these potentially hazardous regions.

7 m 6 5 4 3 2 1

Figure 8 shows one possible configuration of 3D range cameras mounting locations to detect not only in front of the vehicle but, also to the sides. This concept could have potential detection issues that may be simply solved by timing the light emission from each camera to consecutively, as opposed to simultaneously, enable light emission and detection from the sensor. For example, camera 3 could be turned on, collect data, and turn off before camera 4 senses emission from camera 3 and cycled fast enough to stop the vehicle in an emergency. NIST currently controls the camera at 30 Hz. Moreover, cameras 1, 2 and 5, 6 could be combined from independent camera FOVs into a dual camera FOV. Additionally, the side cameras could be added too.

Figure 8 - Graphic showing one possible configuration of 3D range cameras mounting locations to detect not only in front of the vehicle but, also to the sides.

Data was collected with two 3D cameras and is shown in Figure 9. Figure 9 (a) shows a photograph of a scene using the same vertical-post test apparatus as shown in Figure 2(a). It was placed at approximately 0.8 m (30 in) above the floor between a table (left) and a desk (right). The 3D camera was at approximately 1 m (39 in) above the floor. The two images were merged in real-time such that the left and right 3D cameras can be viewed as a single image. The processed image was colored slightly different so the operator could distinguish between the two camera responses. Clearly, objects within the scene, including a small crane model on the left can be determined as objects. Ideally, as graphically shown in Figure 8, additional cameras can be joined together to provide an even larger field of view surrounding the vehicle.

(a)

(b)

(c)

Figure 9 – (a) Photo of a test scene, (b) 3D range camera image from two, merged cameras, and (c) segmented objects. The left and right cameras processed data are shown with different colors to allow the operator to easily understand each camera’s data.

B.Outdoor daylight tests and results

In an effort to move beyond typical indoor AGV applications toward increased robot navigational intelligence, the sensor was taken outdoors. Moving vehicles from indoors to outdoors could open a wide area of applications where safety sensors may become necessary and require alternative sensing capability. For example, AGV applications could include material handling from indoors to outdoors to a staging area or into another building. The shipbuilding industry typically has long, narrow facilities along water, potentially supporting the need for autonomous vehicles carrying a variety of part sizes and shapes and navigating around people, clutter, buildings, and other vehicles. Safety of people and equipment is a large concern and will require sensors capable of sensing through all weather and light conditions to which the vehicle is exposed as well as from indoor lighting or outdoor shade to full sun no matter what time of day the vehicle is functional.

Although the 3D range camera manufacturer has stated that the camera is currently only reliable when used during indoor lighting conditions, the authors felt that a minimal inclusion in this paper is relevant to current AGV applications and provides the reader with a broader scope of future sensor applications. Replacing the LEDs (light emitting diodes) on the camera with laser diodes may improve the bright lighting condition challenges. We took the LED camera outdoors during reduced daylight conditions. The conditions were

cloudy (full overcast) and the robot supporting the sensor was positioned in the shade beneath leaf-covered tree branches. The experiment therefore, began addressing outdoor lighting and object detection issues, such as sensing objects that are potentially recognizable without fully exhausting all outdoor light conditions.

Figure 10 shows a photo of a large tree trunk and branches along with 3D range information from the camera positioned about 2.5 m away. The rear, right branch also shows a clear difference in range data toward 3.5 m where it measures, using a ruler, approximately 1 m behind the front, center branch. Objects behind the tree are approximately a minimum of 14 m away and the ground incrementally approaches in range from 1 m to 2.5 m between the camera and the tree as the range data shows. Notice the similarity of the tree in the photo to the range and segmented data where range information about the tree is accurate to within several centimeters. This accuracy is left somewhat vague as the tree has a very irregular surface and shape. And since the manufacturer states that the camera has range accuracy to within 5 mm, the authors feel that the data is valid. Similarly, Figure 11 shows a photo of the corner of a building along with the 3D range information, again from about 2.5 m away. In this case however, the sun was shining brighter on the left side while more shaded on the right. Similar to the tree data, the corner range data was accurate to within a few centimeters. Although the sharp corner is indecipherable perhaps due to the angle of reflection being approximately 45°, there is definite range response from the camera showing that a large object is in front of the robot regardless of the bright/shaded light conditions. Some small detail can also be picked out of the building corner range data as the right side brick, from the corner to 43 cm away from the corner, is recessed by 1.5 cm and the recess is visible in the data as a vertical line. However, an algorithm to determine this line from the overall corner data may be difficult to design.

(a)

7 m

6

5

4

3

2

1

(b)

(c)

Figure 10 (a) shows a photo of a tree and (b) shows 3D range information and (c) shows segmented data about the tree with

respect to the camera.

V.SUMMARY AND CONCLUSIONS

This paper describes an obstacle detection and segmentation algorithm for Automated Guided Vehicle (AGV) navigation in factory-like environments using a novel 3D range camera. The range camera is highly attractive for obstacle detection in industrial applications as it will be relatively inexpensive and can deliver range and intensity images in real-time. The performance of the 3D range camera was evaluated by comparing it with ground truth provided by a single-line scanning laser rangefinder.

A concept for sensor mounting was also described with corresponding data collected and represented for combining two or more sensors for a larger sensor FOV. Also, a sensor modulation issue was described with a suggested remedy to allow objects beyond the 7.5 m modulation distance to be known or eliminated from the data. We have taken and analyzed some outdoor data and the preliminary results show good promise in using this sensor for outdoor forest environments, in other areas that are shaded, and in night conditions.

(b)

(c)

Figure 11 (a) shows a photo of the corner of a building and (b) shows 3D range information and (c) shows segmented data about the corner with respect to the camera. Note how the corner is not distinctly defined, except for the vertical inset brick line on the right, although clearly a large object (corner) is evident in the data.

We envisage the extension of the work detailed in this paper toward: ? moving obstacle detection from a moving AGV for

indoor applications, ? combining the sensor with a color camera for

detecting and tracking obstacles over long distances, and ? outdoor environments.

Some prospective applications include: mapping factory environments (“lights-out”) manufacturing inside and outside during night (dark) hours, and even for use in space

due to its lightweight and compactness.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Peter Russo, student worker from the University of Maryland, for his contribution of dual, 3D camera sensor processing. Also, the authors thank John Gibbons, Transbotics Corp. for suggesting the study of wrap-around mounted sensors.

VII. REFERENCES

[1] P. Batavia and S. Singh. Obstacle Detection Using Adaptive Color

Segmentation and Color Stereo Homography. In Proc. of the IEEE Intl. Conf. on Robotics and Automation, May 2001.

[2] M. Bertozzi, A. Broggi, A. Fascioli, and P. Lombardi. Artificial Vision

in Road Vehicles. In Proc. of the 28th IEEE Industrial Electronics Society Annual Conf., 2002.

7 m

6 5 4 3 2 1

[3] T. Chang, T-H. Hong, S. Legowik, and M. Abrams. Concealment and

Obstacle Detection for Autonomouos Driving. In Proc. of the Intl. Association of Science and Technology for Development - Robotics and Application, 1999.

[4] A. Ewald and V. Willhoeft. Laser Scanners for Obstacle Detection in

Automotive Application. In Proc. of the Intell. Vehicles Symp., 2000. [5] J. Hancock, M. Hebert, and C. Thorpe. Laser Intensity-based Obstacle

Detection. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 1998.

[6] M. Hariti, Y. Ruichek, and A. Koukam. A Voting Stereo Matching

Method for Real-Time Obstacle Detection. In Proc. of the IEEE Intl. Conf. on Robotics and Automation, 2003.

[7] Hecht, Eugene, Optics, Schaum's Outline Series, McGraw-Hill ,1975 [8] T-H. Hong, T. Chang, C. Rasmussen, and M. Shneier. Feature Detection

and Tracking for Mobile Robots Using a Combination of Ladar and Color Images. In Proc. of the IEEE Intl. Conf. on Robotics and Automation, May 2002.

[9] T. Hong, R. Bostelman, and R. Madhavan, Obstacle Detection using a

TOF Range Camera for Indoor AGV Navigation, PerMIS 2004, Gaithersburg, MD, June 2004.

[10] T. Oggier, M. Lehmann, R. Kaufmann, M. Schweizer, M. Richter, P.

Metzler, G. Lang, F. Lustenberger, and N. Blanc. An All-solidstate Optical Range Camera for 3D Real-time Imaging with Subcentimeter Depth Resolution. In Proc. of the SPIE Conf. on Optical System Design, September 2003.

[11] C. Olson, L. Matthies, H. Schoppers, and M. Maimone. Robust Stereo

Ego-motion for Long Distance Navigation. In Proc. of the IEEE Intl. Conf. on Computer Vision and Pattern Recognition, 2000.

[12] K. Owens and L. Matthies. Passive Night Vision Sensor Comparison for

Unmanned Ground Vehicle Stereo Vision Navigation. In Proc. of the IEEE Intl. Conf. on Robotics and Automation.

[13] N. Sgouros, G. Papakonstantinous, and P. Tsanakas. Localized

Qualitative Navigation for Indoor Environments. In Proc. of the IEEE Intl. Conf. on Robotics and Automation, 1996.

[14] R. Williamson and C. Thorpe. A Trinocular Stereo System for Highway

Obstacle Detection. In Proc. of the IEEE Intl. Conf. on Robotics and Automation, 1999.

[15] American Society of Mechanical Engineers’ Safety Standard for Guided

Industrial Vehicle and Automated Functions of Manned Industrial Vehicle. Technical Report ASME B56.5, 1993.

[16] British Standard Safety of Industrial Trucks - Driverless Trucks and their

Systems. Technical Report BS EN 1525, 1998.

工业无线遥控系统解决方案

地面工业遥控系统解决方案 工业无线遥控器正越来越广泛的应用于各个工业领域,并带来了许多积极的效应。应用工业无线遥控系统,工作人员可以手持轻便的发射器,自由行走,选择最佳位置进行操作,这使员工的工作环境得到改善,提高安全性,减少工伤等意外的发生;另外它可以节省操作过程中的人力投入,操作人员借助无线遥控系统,一人可以独立完成多项任务,大大提高了工作效率。ELinkCS的遥控产品,就是致力于在人员与机器之间架起简便和安全的沟通桥梁。我们可以自信地说,应用ELinkCS产品,大多数的工业设备都可以实现无线遥控操作。ELinkCS的产品设计和材质出众,可以适应每一个独特的工业环境,满足现代工业对品质和安全性的苛刻要求。目前,我们的产品已经被广泛应用在各个领域,客户遍步于世界各地。 我们已经为以下领域提供了无线遥控方案和产品:起重设备、工程机械、冶金工业、汽车行业、移动/输送设备、门控系统、港口码头等。 标准功能 比例量输出:24路高性能开关,每路驱动能力达到2.2安培,8V-33V操作范围;脉宽调制(PWM)可直接驱动感性负载;具备短路保护功能;用户通过手提电脑可配置工作参数,包括:PWM频率,截止频率,最大通信速率等。 数字量输出:24路数字量输出,每路都可以配置为直接驱动,如液压电磁阀线圈、继电器线圈等感性负载。 数字和模拟输入:8路数字量8-33V灌电流输入,4路模拟量0-5V电压输入,与微处理之间实现光电隔离。 安全性能:在手柄单元和车载单元具有上电检测,紧急停机功能。同时,在手柄单元上集成了倾斜开关、灭火开关、空档、驻车以及无人安全闭锁功能。订制功能:所有控制信号可根据设备种类不同进行订制。 视距遥控 视距内遥控系统由四个部分构成: 1.车载单元 2.手控单元 3.液压或气压单元 4.电气接口单元1. 车载单元 -1个基于ARM内核的处理器-1个2.4GHz无线通信模块 -1个符合IP65以上的外壳-车载单元发光二极管指板 -2.4GHz鞭状天线-驱动电路板 -CAN和RS232通信接口-车载单元10针军用快速连接器 -车载单元19针军用快速连接器-安装基座

物联网应用系统设计

武汉华夏理工学院 信息工程课程设计报告书 课程名称物联网应用系统设计 课程设计总评成绩 学生姓名 学号 学生专业班级 指导教师姓名 课程设计起止日期201

一、课程设计项目名称 基于ZigBee协议栈的智能家居控制灯系统 二、项目设计目的及技术要求 项目设计目的 通过《物联网应用系统设计》课程设计,使学生能够掌握物联网应用系统 设计的开发流程、设计方法,使学生能够综合应用《无线传感器网络技术》、《嵌入式技术》、《JAVA WEB程序设计》《Andriod程序设计》、《物联网应用系统设计》等物联网工程专业课程的知识。要求学生经过课程设计的教学环节进一步理解物联网应用系统总体架构,掌握物联网应用系统的基本设计方法,程序开发流程, 从而使学生对物联网应用系统设计能力有较大提高。 项目的主要任务 1.设计内容: 课程设计题目一般由指导教师提供,也可以在老师的同意下学生自己题; 4人一组,每组完成的内容不能雷同。设计参考题目如下: 1)智能家居环境监测系统 2)智能家居控制灯系统 3)智能农业区-自动灌溉系统 2.基本要求: 1)学会单片机的应用方法,开发环境; 2)结合任务要求,完成系统设计和调试,鼓励功能扩展和创新; 3)会应用protues工具,根据设计的电路,画电路图,并利用protues进行验证仿真; 4)熟悉汇编或C51语言,用C51完成系统的软件编程; 5)按规范撰写课程设计说明书。 3. 项目分工 上位机:李永红、夏智君 下位机:陈建、李元毅

三、项目设计方案论证 基于ZigBee 协议栈的智能家居控制灯系统设计的整体方案 对ZigBee 协议框架结构进行分析,然后通过论述协议的应用层、网络层、数据链路层、物理层和MAC 层的功能,将无线传感器网络与ZigBee 技术相结合,阐述无线传感器网络节点的硬件和软件设计方法。在本设计中,选用功耗较小的CC2530芯片作为通信芯片来设计节点。通过编写协议栈程序,进行包含汇聚节点及传感器节点的组网通信实验。利用VC++编写上位机程序,通过串口进行数据交互,从而控制小灯。此系统的组成框图如图3-1所示: 图3-1 基于ZigBee 协议栈的智能家居控制灯系统设计的整体方案 系统实现原理 硬件原理图 本实验使用的是CC2530芯片, CC2530 具有一个IEEE 兼容无线收发器。RF 内核控制模拟无线模块。另外,它提供了MCU 和无线设备之间的一个接口,这使得可以发出命令,读取状态,自动操作和确定无线设备事件的顺序。无线设备还包括一个数据包过滤和地址识别模块。本系统主要涉及LED 、RS485模块、USB 转串口电路、CC2530典型应用电路。如下图所示: C C 2530 Z i g b e e 4模块 C C 2530 Z i g b e e 3模块 发送 无线模块 接收

物联网与智能交通系统

物联网与智能交通系统 物联网的英文名:Internet of Things(IOT),也称为Web of Things。被视为互联网的应用扩展,应用创新是物联网的发展的核心,以用户体验为核心的创新是物联网发展的灵魂。 物联网定义为通过各种信息传感设备,如传感器、射频识别(RFID)技术、全 球定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时采 集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化 学、生物、位置等各种需要的信息,与互联网结合形成的一个巨大网络。其目的 是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。 智能交通系统(ITS),是指将先进的传感器技术、信息技术、网络技术、自 动控制技术、计算机处理技术等应用于整个交通运输管理体系从而形成的一种信 息化、智能化、社会化的交通运输综合管理和控制系统。智能交通系统使交通基 础设施能发挥最大效能。随着互联网、移运通信网络和传感器网络等新技术的应 用,物联网应用于智能交通已见雏形,在未来几年将具有极强的发展潜力。 智能交通体系: 智能交通是一个综合性体系,它包含的子系统大体可分为以下几个方面: 一、车辆控制系统。指辅助驾驶员驾驶汽车或替代驾驶员自动驾驶汽车的系 统。该系统通过安装在汽车前部和旁侧的雷达或红外探测仪,可以准确地判断车 与障碍物之间的距离,遇紧急情况,车载电脑能及时发出警报或自动刹车避让, 并根据路况自己调节行车速度,人称“智能汽车”。目前,美国已有3000多家 公司从事高智能汽车的研制,已推出自动恒速控制器、红外智能导驶仪等高科技 产品。

二、交通监控系统。该系统类似于机场的航空控制器,它将在道路、车辆和驾驶员之间建立快速通讯联系。哪里发生了交通事故。哪里交通拥挤,哪条路最为畅通,该系统会以最快的速度提供给驾驶员和交通管理人员。 三、运营车辆高度管理系统。该系统通过汽车的车载电脑、高度管理中心计算机与全球定位系统卫星联网,实现驾驶员与调度管理中心之间的双向通讯,来提供商业车辆、公共汽车和出租汽车的运营效率。该系统通讯能力极强,可以对全国乃至更大范围内的车辆实施控制。目前,行驶在法国巴黎大街上的20辆公共汽车和英国伦敦的约2500辆出租汽车已经在接受卫星的指挥。 四、旅行信息系统。是专为外出旅行人员及时提供各种交通信息的系统。该系统提供信息的媒介是多种多样的,如电脑、电视、电话、路标、无线电、车内显示屏等,任何一种方式都可以。无论你是在办公室、大街上、家中、汽车上,只要采用其中任何一种方式,你都能从信息系统中获得所需要的信息。有了该系统,外出旅行者就可以眼观六路、耳听八方了。 随着信息技术的发展,智能交通系统也开始实现不停车收费、交通信号灯智能控制、智能抓拍违章车辆等功能。 目前我国的智能交通系统主要有三部分: 1)城市智能交通 为了缓解越来越大的城市交通压力,智能交通系统在我国城市交通管理中得到了重视和应用。城市智能交通系统是通过先进的交通信息采集技术、数据通信传输技术、电子控制技术和计算机处理技术等,把采集到的各种道路交通信息和各种道路交通相关的服务信息传输到城市交通指挥中心,交通指挥中心对来自交通信息采集系统的实时交通信息进行分析处理,并利用交通控制与交通组织优化

物联网系统课程设计..

, 物联网系统课程设计 学系名称:物联网工程 班级名称:物联网工程 2 班 ) 学生姓名:朱泓锦 指导教师:肖迎元助教: 二零一六年十月 ;

摘要 $ 智能车辆是集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,是智能交通系统的一个重要组成部分。它在军事、民用、太空开发等领域有着广泛的应用前景。随着电子工业的发展,智能技术广泛运用于各种领域,运用于智能家居中的产品更是越来越受到人们的青睐。 以arduino程序和蓝牙模组,app为基础,是蓝牙模组,arduino小车和手机之间信息交互的关键。本课题所研究的物联网应用系统以arduino 程序为核心,利用蓝牙模组,arduino小车和app等实现基本功能。 基本功能:利用蓝牙模组和app之间的信息交互,控制小车的移动,从而达到无线控制的效果 注:仅能实现小车的基本操作 关键词:arduino程序,arduino小车,app,蓝牙模组 —

】 1 绪论 随着科技进步,现代工业技术发展越来越体现出机电一体化的特征。无论是在金属加工、汽车技术、工业生产等等方面,机器设备表现了所谓智能化、集成化、小型化、高精度化的发展趋势。 选题背景 ' 随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。可见其研究意义很大。本设计就是在这样的背景下提出的,指导教师已经有充分的准备。本题目是结合科研项目而确定的设计类课题。设计的智能电动小车应该能够实现适应能力,能自动避障,可以智能规划路径。 智能化作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。同遥控小车不同,遥控小车需要人为控制转向、启停和进退,比较先进的遥控车还能控制器速度。常见的模型小车,都属于这类遥控车;智能小车,则可以通过计算机编程来实现其对行驶方向、启停以及速度的控制,无需人工干预。操作员可以通过修改智能小车的计算机程序来改变它的行驶方向。因此,智能小车具有再编程的特性,是机器人的一种。

12 基于物联网的智慧校园系统的开发与设计

十二. 基于物联网的智慧校园系统的开发与设计 (一)物联网概念的提出 物联网的概念是在1999年提出的。物联网的英文名称叫“The Internet of things”,简言之,物联网就是“物物相连的互联网”。 2003年,美国《技术评论》提出传感网络技术将是未来改变人们生活的十大技术之首; 2005年,国际电信联盟发布了《ITU互联网报告2005:物联网》,正式提出了“物联网”的概念。国际电信这份报告曾描绘“物联网”时代的图景:当司机出现操作失误时汽车会自动报警;公文包会提醒主人忘带了什么东西;衣服会“告诉”洗衣机对颜色和水温的要求等等。美国总统奥巴马就职以后,在他和工商领袖举行的圆桌会议上,“智慧地球”的概念被提出,其中包括美国要形成智慧型基础设施“物联网”,被美国人认为是振兴经济、确立竞争优势的关键战略。 2009年2月24日消息,IBM大中华区首席执行官钱大群在2009IBM论坛上公布了名为“智慧的地球”的最新策略。 2009年8月7日,温家宝总理在江苏无锡调研时,对微纳传感器研发中心予以高度关注,提出了把传感网络中心设在无锡、辐射全国的想法。温家宝总理指出“在传感网发展中,要早一点谋划未来,早一点攻破核心技术”,“在国家重大科技专项中,加快推进传感网发展”,“尽快建立中国的传感信息中心,或者叫‘感知中国’中心”。 (二)物联网的相关技术 物联网的实现主要分为三个层次: 第一是传感系统(设备层),通过各种技术手段,来实现和物相关的信息识别和采集; 第二是通信网络(信号传输和获取层),包括现在的互联网、通信网、广电网以及各种接入网和专用网,目的是对采集来的信息进行可靠传输和处理; 第三是应用和业务(业务应用层),即输入输出控制终端,可基于现有的手机、个人电脑等终端进行。 其中传感技术和通信技术实现了前两个层次,主要由无线射频识别(RFID)、传感网技术等技术构成,而第三个层次则是以软件为主的数据处理技术。

PDT公安无线通信网解决方案

PDT公安无线通信网解决方案 一、系统概述 NPT-8800数字集群通信系统是优能通信科技有限公司针对我国公共安全行业目前集群通信的实情和特点,基于TDMA双时隙通信技术体制研制的数字集群通信系统。系统采用先进的数字软件交换技术,提供强大的网络交换能力,有效地提高系统容量、使用的可靠性和组网的灵活性。 系统采用先进的AMBE++数字语音编码技术,提供高品质无线语音和数传应用,将为用户实现快速、准确、安全、可靠的联网提供最有力的保障。 系统无线工作频率范围为135MHz~520MHz。 系统支持数字集群手持机和车载台入网,由我公司在MOTOTRBO终端上加入选件板功能研发的数字手持机和数字车载台,可支持数字/模拟、集群/常规等各种工作模式,具备数据传输(状态信息、短数传等)功能。 NPT-8800数字集群通信系统系统采用三级组网架构,可实现如省市县三级互联,同时系统是一套可由小及大的具备灵活组网能力的数字集群通信系统,可支持单站工作,多基站小型联网以及多基站大型联网。 系统按照军用标准设计生产,具备数字通信系统的优势,和大区制信号覆盖区域大的优点,满足大量无线用户共享联网信道的需求,保障紧急突发事件中联网的通畅和通信的安全性。特别是军队、公共安全行业(公安、武警、安全、司法、检察、海关等关键部门)在执行治安防范、安全警卫、值勤巡逻、防暴制乱等特种任务时,对及时、稳定、可靠的安全保密移动通信的需求。 二、系统网络结构 NPT-8800数字集群通信系统在满足单基站数字集群通信需求的基础上,提供多种联网方式,实现全网统一管理和调度。 移动终端可以在基站覆盖范围实现单呼、组呼、全呼等集群呼叫功能,基本能够满足不同部门、不同场合下统一指挥调度以及日常工作的无线通信要求。(系统预留接口,方便用户今后的联网扩展需要。)如系统需扩大覆盖范围,可以很方便通过E1/IP链路架设延伸基站,由主站点统一管理。) NPT-8800数字集群系统由数字集群控制器,调度子系统,网管子系统,基站子系统及传输线路五大部分组成: 第一部分:数字集群控制器包括数字集群控制器以及单站集群控制器,数字集群控制器安装于中心基站机房,是整个系统的交换控制核心设备,具备自动主备切换功能;单站集群控制器安装与各延伸基站机房,当网络出现故障时代替数字集群控制器控制本地基站工作。 第二部分:调度子系统,安装于中心基站机房或调度控制室,包括综合业务网关、调度终端,调度软件,调度坐席话机,扬声器,有线接口,供电设备,接地避雷设备和其他附属设备。 第三部分:网管子系统,安装于中心基站机房或调度控制室,包括网管终端,录音终端,网管软件,录音软件,供电设备,接地避雷设备和其他附属设备。

江苏中职赛项规程《物联网系统集成与应用开发》

2021年江苏省职业院校技能大赛中职赛项规程 一、赛项名称 赛项编号:JSZ202120 赛项名称:物联网系统集成与应用开发 赛项组别:中职组、教师组 赛项归属专业大类:信息技术大类 二、竞赛目的 物联网系统是将射频自动识别、红外感应器、全球定位系统、激光扫描仪、图像感知器等信息设备按约定的通信协议实现信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的计算机控制应用系统。本赛项学生组竞赛重点考查中职学生理解分析典型物联网应用系统的系统集成技术和物联网应用软件开发能力,主要包括:典型物联网系统通信链路搭建,典型物联网系统传感及执行器件安装、配置,典型物联网系统集成调试技术,典型物联网系统PC端及移动端应用软件的开发能力,同时兼顾考查参赛学生系统集成施工技艺、施工质量、工作效率、施工成本和工程规范意识。本赛项教师组竞赛重点考查专业教师利用物联网知识和技术解决典型物联网应用系统集成调试能力,物联网相关软件开发能力和整个赛项指导协调能力。 同时,通过竞赛不断促进中职院校适应国家产业结构调整和产业发展对新型物联网应用技术人才的需求,引导职业院校关注绿色、安全、智能的物联网技术发展趋势和产业应用方向,进一步优化课程设置、改善教学方法、创新人才培养模式、深化校企合作,促进院校、教师、企业实现教产互动、校企融合,推动中职学校相关专业的建设和改革,增强中职学校学生的新技术学习能力和就业竞争力。 三、竞赛内容 (一)中职组竞赛内容 竞赛主要考核团队协同工作能力,项目组织与时间管理能力,理解分析典型物联网系统架构及组成的能力,通信链路搭建及配置能力,传感及执行设备安装、

配置与调试能力,典型传感信息采集、处理、存储、查询、展示能力、典型物联网系统控制方法、技术应用能力,工程文档规范编制能力等。 1.竞赛模块设置 (1)物联网基础理论知识测试模块 主要考核选手物联网相关基础理论知识以及典型物联网应用系统核心技术相关理论知识。主要包括:物联网原理、RFID、传感器、智能传感器与无线传感网技术、物联网智能设备与嵌入技术、计算机网络、移动通信技术、物联网定位技术、物联网数据处理、物联网应用、数据库技术,C#、Java开发技术等。 本模块利用省技能大赛理论测试平台在操作技能竞赛前进行测试,测试时间为60分钟,满分100分,占竞赛总成绩10%。 (2)操作技能竞赛模块 本操作技能模块主要由参赛选手在竞赛期间利用大赛操作技能竞赛平台完成典型物联网系统的集成、部署、调试和客户端应用程序开发任务,具体任务见下表。

智能交通与物联网

物联网与智能交通系统

一、前提简介: 物联网的英文名:Internet of Things(IOT),也称为Web of Things。被视为互联网的应用扩展,应用创新是物联网的发展的核心,以用户体验为核心的创新是物联网发展的灵魂。 物联网定义为通过各种信息传感设备,如传感器、射频识别(RFID)技术、全球定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。 智能交通系统(ITS),是指将先进的传感器技术、信息技术、网络技术、自动控制技术、计算机处理技术等应用于整个交通运输管理体系从而形成的一种信息化、智能化、社会化的交通运输综合管理和控制系统。智能交通系统使交通基础设施能发挥最大效能。随着互联网、移运通信网络和传感器网络等新技术的应用,物联网应用于智能交通已见雏形,在未来几年将具有极强的发展潜力。二、智能交通体系: 智能交通是一个综合性体系,它包含的子系统大体可分为以下几个方面: 一、车辆控制系统。指辅助驾驶员驾驶汽车或替代驾驶员自动驾驶汽车的系统。该系统通过安装在汽车前部和旁侧的雷达或红外探测仪,可以准确地判断车与障碍物之间的距离,遇紧急情况,车载电脑能及时发出警报或自动刹车避让,并根据路况自己调节行车速度,人称“智能汽车”。目前,美国已有3000多家公司从事高智能汽车的研制,已推出自动恒速控制器、红外智能导驶仪等高科技产品。 二、交通监控系统。该系统类似于机场的航空控制器,它将在道路、车辆和驾驶员之间建立快速通讯联系。哪里发生了交通事故。哪里交通拥挤,哪条路最为畅通,该系统会以最快的速度提供给驾驶员和交通管理人员。 三、运营车辆高度管理系统。该系统通过汽车的车载电脑、高度管理中心计算机与全球定位系统卫星联网,实现驾驶员与调度管理中心之间的双向通讯,来提供商业车辆、公共汽车和出租汽车的运营效率。该系统通讯能力极强,可以对全国乃至更大范围内的车辆实施控制。目前,行驶在法国巴黎大街上的20辆公共汽车和英国伦敦的约2500辆出租汽车已经在接受卫星的指挥。 四、旅行信息系统。是专为外出旅行人员及时提供各种交通信息的系统。该系统提供信息的媒介是多种多样的,如电脑、电视、电话、路标、无线电、车内

智能仓储无线通讯解决方案

智能仓储无线通讯解决方案 项目介绍: 为了适应仓库智能应用得需求,同时也是改善传统物流响应速度慢,效率低的现状,目前智能仓储提倡使用最新的AGV系统,能大大提高移动物流的智能程度和高效。 无人搬运车(Automated Guided Vehicle,简称AGV),指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车,工业应用中不需驾驶员的搬运车,以可充电之蓄电池为其动力来源。一般可透过计算机来控制其行进路线以及行为,或利用电磁道道(electromagnetic path-following system)来设立其行进路线,电磁道道黏贴于地板上,无人搬运车则依循电磁道道所带来的讯息进行移动与动作。 在现代化的仓库中,为了减少人工操作的复杂度和人力资源的投入,同时增加自动化的应用程度,保障物料的快速响应和节省物料在途的时间,使得工厂生产的效率最大化,这一切都需要高速,便捷的物流通道。AGV系统的引用,也正是契合了智能化仓储的需求,它扮演快速物流和智能物流的重要角色。但如何在物料运输过程中,能够及时监控物料状态,保证将物料从仓库中转移到生产在线,对AGV车辆的监控就成了自动化物流中必须要解决的问题。 系统需求: AGV车辆的监控需要了解车辆的运行状态和运行路线以及故障报警还有物 料目前的状态等一系列的运行状态读取,并且系统必须要实时性和准确性,当车辆在运行过程中发生任何的故障时候,都可以从中央监控中心对车辆进行启停的动作,防止小车发生意外,而导致危险作业发生。为了及时了解车辆运行状态,

杜绝发生事故,我们引进车辆与控制室的通讯方案。 AGV车辆监控系统主要由组态控制软件、通讯系统及车载PLC三部分组成,其功能分别介绍如下: 组态控制软件: 监控AGV车辆的运行状态和运行路线以及故障报警、物料目前的状态等信息。当车辆在运行过程中发生任何的故障时候,可以从中央监控中心对车辆及时进行启停的动作,防止小车发生意外,而导致危险作业发生。 通讯系统: 通讯系统由高速、冗余光纤环网通讯链路及若干无线AP、无线串口服务器产品构成,实现监控中心与现场运动中AGV车辆的可靠通讯。 车载PLC系统: 车载PLC系统负责将AGV车辆状态信息向监控中心反馈并响应监控中心的相关指令,对AGV车辆进行实时控制。 系统实施: AGV车辆通讯系统由无线AP、串口服务器、工业以太网交换机和组态软件四部分组成。主干网络采用无线通信,通过无线AP与车辆的终端进行连接,确保通讯即稳定又便捷。 研华的EKI-6311GN是一款高性能的带有控制器无线AP,支持IEE802.11n 协议,其传输速率为传统802.11g产品的3倍以上。EKI-6311GN还支持STP和IGMP Snooping等协议,能够非常有效的改善无线网络连接的质量,在网络安全方面,EKI-6311GN提供目前已经发布的所有加密方式,如64/128/512位WEP 加密以及WPA2/WPA/802.1x等加密方式,为网络传输提供有利的安全保证。另外6311GN还支持PoE的电源供电方式,极大方便现场电源的连接。 无线串口服务器将工业总线无缝转换为网络协议进行传输,一端串口连接的是AGV车载PLC,另外一端采用WiFi进行通讯。研华的EKI-1351是一款支持802.11b/g协议的无线串口服务器,可以通过WiFi高效的连接到主机,将 RS-232/422/485的总线连接的工业I/O数据传输到上位机程序进行监控,并且数据的转换都是在EKI-1351中进行转换,主机无需进行任何的编程,提高了工作效率及降低了开发成本。 光纤端口工业以太网交换机可以让用户快速有效地扩充工业网络,应用光纤

智能交通与物联网之间的关联

1. 1 物联网基本概念 物联网( T he internet o f thing s) 是将各种物体相互联系在一起的网络。按照国际电信联盟的定义, 物联网是一种通过各种信息标示和传感设备, 如射频识别( RFID) 装置、红外感应器、全球定位系统、激光扫描器等, 将物体连接成网, 以进行信息的交换和共享, 最终实现物体的实时、智能化管理的网络。 1. 2 物联网的原理和结构 1. 2. 1 原理部分 物联网是通过在物体上嵌入电子标签等能够存储物体信息的标识, 由相应阅读器读取其中信息并通过无线网络将即时信息发送到后台信息处理系统, 而各大信息系统可互联形成一个庞大的网络, 从而达到对物品实施跟踪、监控等智能化管理的目的。其实质是利用射频自动识别( RFID) 技术, 通过计算机互联网、电信网等实现物体的自动识别和信息的互联与共享 智能交通是将信息、通信、控制、计算机网络等高新技术有效地综合运用于地面交通管理体系,从而建立起一种大范围、全方位发挥作用、实时、准确、高效的交通运输管理系统。它是目前世界交通运输领域研究的前沿课题,也是目前国际公认的解决城市交通拥挤、改善行车安全、提高运行效率、减少空气污染等的最佳途径。可以预见,智能交通系统将成为21 世纪现代化地面交通运输体系的模式和发展方向,是交通运输进入信息时代的重要标志 3. 1 智能交通与物联网之间的关联 智能交通是一个很宽泛的概念, 其主要特点是将先进的信息技术、数据通讯传输技术、电子控制技术、传感器技术以及计算机处理技术等有效的综合运用于整个运输系统, 从而建立起的一种在大范围内、全方位发挥作用的实时、准确、高效的运输综合管理系统。其目的是使人、车、路密切的配合、和谐的统一, 极大地提高交通运输效率、保障交通安全、缓解交通问题、改善环境质量和提高能源利用率。智能交通领域是物联网重要的应用领域, 也是物联网最有可能取得产业化成功的行业之一。智能交通系统( IT S) 所涉及的技术较多, 从数据的采集到信息的发布和共享其中涉及到各种技术且跨度较大, 但稍加对比不难发现, ITS 许多方面都与物联网技术息息相关, 两者之间有着天然的联系, 物联网与ITS关联 1) 物联网具有强大的数据采集功能, 可为ITS提供较为全面交通数据。底层的数据是系统的基础。IT S 离不开基础数据的采集, ITS 需要时刻不间断的掌握路网上的交通信息才能有效的控制和管理道路交通。实时、准确和全面的交通数据是智能交通系统高效运行的基本保障。物联网最重要和本质的特点就是实现物物相连, 只要嵌入有电子标签的物体都可以成为被采集的对象。大量交通参与者, 无论是人或车, 甚至是道路相关设施的信息都将快速的汇集到物联网中, 利用物联网ITS 可以方便的采集到路面上各类交通数据。 2) 物联网可为交通数据的传输提供良好的渠道, 为交通信息的发布提供广阔的平台。物联网本身就是一个巨大的信息传输渠道, ITS 如果能与物联网无缝的连接, 利用物联网的底层的传输体系, 通过有线和无线传输方式, ITS 所需的交通数据即可实现从采集设备到处理中心的传输。ITS 在实际应用中不仅需要底层的设备为上层提供数据, 有时上层也会有向下传送相关指令的要求, 也就是说, IT S中数据或信息的传输不是单向的, 兼有上传和下行的需求。

基于4G技术的移动无线通信系统 解决方案

基于3G/4G技术的移动无线通信解决方案 一、引言 3G是第三代移动通信技术的简称,是指支持高速数据传输的蜂窝移动通讯技术,3G服务能够同时传送声音及数据信息,随着3G在全世界范围的大规模商用,传输速率在支持静止状态下为2Mbit/s,步行慢速移动环境中为384kbit/s,高速移动下为144kbit/s,定位于多媒体IP业务。 4G是第四代移动通信及其技术的简称,4G是集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像等。4G可称为宽带接入和分布网络,具有非对称的超过2Mb/s的数据传输能力,是支持高速数据率(2~20Mb/s)连接的理想模式,上网速度从2Mb/s提高到100Mb/s,具有不同速率间的自动切换能力。第四代移动通信是多功能集成的宽带移动通信系统,可以在不同的固定、无线平台和跨越不同的频带的网络中提供无线服务,可以在任何地方用宽带接入互联网,能够提供定位定时、数据采集、远程控制等综合功能。此外,第四代移动通信系统是集成多功能的宽带移动通信系统,也是宽带接入IP系统。 4G是多功能集成宽带移动通信系统,其技术特点主要有: 1)数据传输速率高,其系统传输带宽可在1.5~20 MHz 范围内灵活配置, 传输速率可达到20Mbps,峰值传输速率上行可达50 Mbps,下行达到100 Mbps。 2)真正的无缝漫游,能使各类媒体、通信终端及网络之间进行“无缝连接”。 3)采用智能技术,可以自适应的进行资源分配。采用的智能信号处理技术 对不同信道条件的各种复杂环境进行信号的正常收发,有很强的智能 型、适应性和灵活性。 4)达到用户共存,4G能够根据网络的状况和信道条件进行自适应处理,使 低、高速用户和各种设备并存与互通,从而满足多类型用户的需求。 5)具有业务上的多样性,4G能提供各种标准的通信业务,满足带宽和综合 多种业务需求。

工业4G路由器在自动售货机无线通信解决方案

工业4G路由器在自动售卖机无线通信解决方案 一、市场分析 随着近些年中国经济的发展,很多店商经营规模越来越大,随着分店越来越多,连锁经营模式也越来越盛行,已成为各行各业的主流经营模式。但随着连锁规模的不断扩大、连锁网点的不断增加,信息交互和管理上的难题也越来越多。很多商家都寻求一种方便、快捷、成本低的远程监控方式来对所有分店进行远程的集中监控和管理。 4G工业路由器通过串口或以太网口将自动售货机到以太网,通过互联网平台对自动售货机进行智能化管理。4G工业路由器设置了自动售货机联网解决方案,通过专用VPN无线网络,实现自动售货机和监控中心的数据双向通信,实现自动售货机故障查询工作自动化、补货及时化、管理简约化。针对当前需求状况提出连锁店的远程无线监控方案,使用无线联网的方式对各分店进行数据和视频监控的联网,实现统一监控管理。 系统简介: 连锁店的联网主要是POS机、自动售卖机等的数据联网以及远程的视频监控。 前端设备:主要由POS机、自动售卖机、摄像头、烟雾报警器等设备组成。 传输设备:主要使用XX才茂的CM520系统路由器。 传输网络:主要是是使用运营商的4G无线网络。 监控端:主要是本地的视频监控和远程总店的数据联网和视频监控。 整个系统由caimore的cm520无线路由器,走运营商的4G/4G网络来实现分店与总店的网络连接,销售数据联网及远程视频监控。 示意图如下:

二、系统描述 售货信息、故障报警等通过4G路由器信息传送到监控中心,4G路由器收到监控中心下发的命令并控制自动售货机实现各种指令。如:货道缺货补货、价格调整、停止售货等。监控中心通过运营商专网与公共网络连接,并向自动售货机上的RTU下发控制信息,同时接收自动售货机上报的数据及其他信息,并采集数据进行管理,提供查询、统计、报表等功能。 监控中心实现以下功能: 1、能够给自动售货机的RTU下发组态信息、控制命令、能够校准RTU的时钟; 2、自动售货机的RTU发送来的数据采集上来后自动存入数据库,数据库具备移动安全措施; 3、处理自动收集RTU上的报警信息,报警信息包括各种故障、缺货、调价等信息; 4、数据遥测功能:定时巡测、手动巡测、随机抽测、分组召测; 5、遥控功能:控制售货机自动开关、调整售价等; 6、进销存系统功能:具有常规进销存管理信息系统功能; 7、结合进销存功能,进行数据挖掘,并作出补货、检修、机器放置等相应策略。

物联网系统技术方案

物联网系统技术方案南京绛门通讯科技股份有限公司 2016年12月

目录 一.前言 (4) 1.1.建设背景 (4) 1.2.设计原则 (4) 1.3.系统分析 (5) 系统说明 (5) 运行环境与开发模式的选择 (5) 可行性分析 (7) 四大特点 (8) 二.解决方案 (9) 2.1.总体方案设计 (9) 系统框架结构 (9) 总体系统架构 (10) 系统组网图 (11) 物理组网图 (12) 系统总体功能构架 (12) 2.2.应用层功能需求详细设计 (12) 登陆 (12) 采集设备管理 (13)

监控管理 (15) 告警管理 (15) 统计分析 (16) 系统管理 (16) 2.3.基础层功能设计 (17) 身份认证 (17) 账户管理 (17) 权限管理 (17) 提醒机制 (18) 日志管理 (18) 三.关键性技术 (18) 3.1.系统技术架构方面的技术路线 (18) 3.2.Mysql集群部署 (19) 3.3.Nginx负载均衡 (21) 3.4.地图接口/工作流引擎集成/报表工具 (21) 四.性能配置 (21) 4.1.业务指标 (21) 4.2.性能指标 (22) 五.软硬件配置清单 (23)

5.1.软件方案 (23) 5.2.硬件方案 (24) 六.项目资金预估 (24) 七.项目实际计划 (24) 一. 前言 1.1.建设背景 物联网是指通过各种信息传感设备,实时采集任何需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。其在2011年的产业规模超过2600亿元人民币。构成物联网产业五个层级的支撑层、感知层、传输层、平台层,以及应用层分别占物联网产业规模的2.7%、22.0%、33.1%、37.5%和4.7%。而物联网感知层、传输层参与厂商众多,成为产业中竞争最为激烈的领域。 1.2.设计原则 1、基础性和整体性 整个系统的各种软件应符合国际、国家及行业相关标准。 2、技术的先进、实用性 目前技术发展迅速,本系统需要考虑未来的扩展性,在采用的技术方面应体现先进、实用,才能确保本项目建设结束后相当一段时间内技术不落后。 由于此项目是工程建设项目,不是科研项目,所以使用先进技术并不能使用未经验证

林业对讲机无线通讯解决方案

林业对讲机无线通讯解决方案 林业部门肩负着保护森林资源、促进林业经济发展的职责。快速、准确、安全、可靠的无线通信系统则是林业部门完成职责的重要保障手段。为解决护林防火日益增长的通信需求,达到统一指挥的目的,迫切需要建设一套简单实用、性价比高的无线通讯系统。 而且,中国工信部666号文件已经明确指出,在2015年前必须完成模拟信号转为数字信号的工作,所以数字对讲机的采用,模拟信号平台的淘汰必将成为现实。如在期限内不能做好转换工作的单位,会被当地模委采取一定的信号监管措施。 解决方案 结合森林武警、防火指挥员及护林巡防员的实际通讯需求,海能达制定了森林防火无线通信系统解决方案。方案建设采用以下原则: (1)以部门负责的林区为单位,在辖区范围内相应的位置设置同频同播基站; (2)基站需解决供电问题,优先考虑太阳能供电。 (3)由于在森林大山中不具备有线链路,同播基站与中心链路站之间采用无线链路方式组网; (4)防火办公室或指挥中心配置无线调度台,负责对各同播基站的运行情况进行远程日常管理和监控; (5)调度台可与辖区人员实时通讯,并显示通化人员ID、呼叫时间、所属基站等信息; (6)系统需具备插入、监听、强拆等调度功能,满足紧急状态下统一指挥调度需求; 该方案采用同频同播技术,有效解决了林业大范围无缝覆盖的通信问题,同时引入了常规终端的信令,实现了对移动终端的管理以及对所有通话的数字录音和查询。

方案采用对讲机设备 艾迪欧I-800PLUS对讲机

威泰克斯VXR-8900H中转台 方案特点 (1)话音清晰 该系统采用GPS同步技术,有效消除了重叠覆盖区的干扰,在任何信号覆盖区域均能够保证高质量的语音通信。 (2)维护方便 调度台可以远程监控管理链路基站和各同播基站等设备的运行情况,维护人员不需要爬到山顶铁塔进行日常的维护; (3)扩容能力强 具备可持续发展和扩容能力,一个链路中心站最多可连接32个无线同播基站。 以上信息出自:山东对讲机-济南对讲机-建伍对讲机-尤利尔对讲机-摩托罗拉对讲机-远盛通对讲机https://www.wendangku.net/doc/111604525.html,

物联网在智能交通系统中的应用

龙源期刊网 https://www.wendangku.net/doc/111604525.html, 物联网在智能交通系统中的应用 作者:南志海 来源:《硅谷》2013年第07期 摘要随着信息化的不断推进,物联网技术的发展受到政府和企业的重视。本文通过对物联网的发展现状以及存在的相关问题进行初步分析,结合智能交通系统的总体架构的叙述和发展智能系统的必要性,阐述物联网在智能交通系统中的应用。 关键词物联网;发展现状及存在问题;智能交通系统;应用 中图分类号:TN929 文献标识码:A 文章编号:1671—7597(2013)041-106-01 目前,我国的信息化技术不断发展,物联网技术也受到国家政府以及企业越来越多的支持和重视。作为走在国际最前沿的一项新技术,它被誉为:“技术的第四次产业革命”,在国家五大战略性新兴产业中,已被国务院上升到第二位。介于物联网关系到信息资源以及未来网络的应用,物联网将在推动世界迅速发展中占主导地位。 1 物联网概述 随着计算机、互联网以及移动通信网的广泛应用,物联网产业已经成为继它们之后的第三次世界信息产业发展浪潮。物联网概念第一次被提出是美国麻省理工大学Auto.ID实验室在1999年提出的,当时被称为EPC系统。它是通过信息传感设备,包括:RFID技术、红外感应、激光扫描器、各类传感设备装置、全球定位系统以及视频识别技术等,依照约定的协议,根据实际需要来完成物品互相联通的网络连接,然后进行通信以及交换信息,以至达到智能识别、定位、跟踪、监控以及管理的智能系统。 2 物联网发展现状及存在的问题 物联网技术的发展在我国起步比较早,所以现阶段在技术与标准等方面也存在一定的优势。在1991年,施乐公司的首席科学家Mark Weiser在《科学美国》这本权威杂志上对于计 算机的发展前景作出了大胆的预测,也就是物联网最早时候的萌芽状态。而中国在1999年有了传感网定义,并且开始了传感网的研究与开发,因此逐渐有了物联网的雏形。 感知、传输、处理、实现、及时、精确、全面地获取和处理信息是物联网技术发展的重要环节。根据相关不完全统计,我国物联网市场规模在2010年几乎达到两千亿元。在标准研制与技术研发中也取得了重大突破,我国在多领域实施了技术攻关措施达到了较好的效果,其中包括:通信协议、芯片、智能计算机、协同处理以及网络管理等。现阶段,我国在诸多领域应用了物联网技术,如:环保、物流、医疗、农业、电力、交通、安防等,并且这些物联网应用模式逐渐走向成熟。

物业小区无线对讲系统解决方案

物业小区无线对讲系统解决方案 概述 随着酒店业态的不断发展,酒店的管理人员也对酒店内部的通讯提出了新的需求,要求无盲区、无干扰、语音清晰,酒店的迎宾、前台、客房、餐饮、安保、后勤都能够随时在酒店内的任何地点、任何时间进行通信。提高酒店从业人员的工作效率,提高客户对酒店的满意度,给入住的客人营造一个宽松、舒适的环境,这对酒店行业的专业通讯设备提出了新的要求。 方案介绍 我们提供的酒店无线对讲系统解决方案是基于MOTOTRBO数字常规通讯系统和楼宇内部无线信号微功率覆盖系统,充分结合了MOTOTRBO数字常规通讯系统在通讯及数据应用方面的安全性和楼宇内部无线信号微功率覆盖系统(以下简称天馈分布系统)在信号覆盖方面的全面性。 解决方案 (1)采用XIR R8200数字无线对讲系统基站异频中转技术扩大对讲机通信范围 当对讲机之间由于距离较远或建筑物阻挡而无法实现通信时,基站可将对讲机信号进行异频中转,然后通过天馈分布系统将信号发送出去,由此扩大了对讲机之间的通信距离; (2)酒店内部布设天馈分布系统,解决室内信号覆盖问题 天馈分布系统由室内全向天线、平板定向天线、耦合分配器、功率分配器、干线放大器、连接器、低损耗射频电缆、泄漏电缆等设备组成,结合国家电磁辐射标准和酒店建筑结构,将天线分布在酒店的每个角落,然后通过电缆与基站中心相连,使无线信号通过天线进行接收或发射,以此达到整个酒店区域内的无线信号覆盖;

(3)天馈共用系统,增加通讯容量 天馈共用系统由合路器、分路器和信号汇接控制器组成,可将多达八台数字基站信号集成到同一套天馈分布系统上进行接收或发射,节省材料、重复布线、调试等不必要的投入,从而降低成本; (4)CapacityPlus多信道共享系统,充分利用信道资源(可选) 通过嵌入基站内的复杂控制逻辑软件实现动态信道分配和系统信道管理,只有当用户发起呼叫时,才会占用信道,通话结束则立即释放信道,所有系统用户可共享所有信道资源。信道利用率远高于常规用户只能使用固定信道的方式。 (5)IP互联系统,扩大通讯范围 借助IP基站互连漫游,就可以实现分散的地理位置和存在物理障碍的广大区域内通话,或在高耸林立的大楼内实现完全覆盖。 (6)数字电话互连系统,改进沟通(可选) 通过 MOTOTRBO?数字电话互连,您可以无缝地利用数字对讲机连接固定电话和手机。这种新功能可在 MOTOTRBO数字常规通讯系统、IP Site Connect 和 Capacity Plus 数字系统上工作。(7)定制开发与其他系统的融合(可选)

物联网在智能交通方面的应用

物联网在智能交通方面的应用 1、概述 随着经济的发展和社会的进步,城市人口增多,汽车数量持续增加,交通拥挤和堵塞现象日趋严重,由此引发的环境噪声、大气污染、能源消耗等已经成为现在全球各工业发达国家和发展中国家面临的严峻问题。智能交通系统作为近十年大规模兴起的改善交通堵塞减缓交通拥挤的有效技术措施,越来越收到国外政府决策部门和专家学者的重视,在许多国家和地区也开始了广泛的应用。 随着近两年物联网技术在国的迅捷发展,智能交通领域被赋予了更多的科技涵,在技术手段和管理理念上也引起了革命性变革。 目前,社会各界对物联网“理解”不一,专家对物联网解读各有侧重。一般认为:物联网指通过射频识别、传感器网络、全球定位系统等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。1999年由麻省理工学院Auto-ID 研究中心提出物联网概念,它实质上等于RFID技术和互联网的结合应用。2005年,ITU在《The Internet of Things》报告中对物联网概念进行扩展,提出任何时刻,任何地点,任何物体之间的互联,无所不再的网络和无所不在计算的发展愿景,除RFID技术外,传感器网络、纳米技术、智能终端等技术将得到更加广泛的应用。 相对于以前环形线圈和视频为主要手段的车流量检测及依次进行的被动式 交通控制,物联网时代的智能交通,全面涵盖了信息采集、动态诱导、智能管控等环节。通过对机动车信息的实时感知和反馈,在GPS、RFID、GIS(地理信息系统)等技术的集成应用和有机整合的平台下,实现了车辆从物理空间到信息空间的唯一性双向交互映射,通过对信息空间的虚拟化车辆的智能管控实现对真实物理空间的车辆和路网的“可视化”管控。 作为物联网感知层的传感器技术的发展,实现了车辆信息和路网状态的实时采集,从而使得路网状态仿真与推断成为可能,更使得交通事件从“事后处置”转化为“事前预判”这一主动警务模式,是智能交通领域管理体制的深刻变革。 目前的智能交通系统主要包括以下几个方面。先进的交通信息服务系统,先进的交通管理系统,先进的交通公共交通系统、先进的车辆监控系统、先进的运载工具操作辅助系统、先进的交通基础设施技术状况感知系统、货运管理系统、电子收费系统和紧急救援系统。 根据ITS的定义,ITS是将传感器技术、RFID技术、无线通信技术、数据处理技术、网络技术、自动控制技术、视频检测识别技术、GPS、信息发布技术等运用于整个交通运输管理体系中。从而建立起实时的、准确的、高效的交通运输综合管理和控制系统。显然,智能交通行业中无处不在利用物联网技术、网络和

相关文档
相关文档 最新文档