文档库 最新最全的文档下载
当前位置:文档库 › 萘系高效减水剂

萘系高效减水剂

萘系高效减水剂
萘系高效减水剂

萘系高效减水剂

萘系高效减水剂,学名萘磺酸盐甲醛缩合物,是经化工合成的非引气型高效减水剂,对水泥粒子有很强的分散作用,对配制大流态砼有有很好的使用效果,对具有早强、高强要求的现浇砼和予制构件效果明显,可全面提高和改善砼的各种性能,广泛用于公路、桥梁、大坝、港口码头、隧道、电力、水利及工民建工程、蒸养及自然养护予制构件等。

一、主要技术指标(低浓度萘系高效减水剂):

1、外观:粉剂棕黄色粉末,液体棕褐色粘稠液。

2、固体含量:粉剂≥94%,液体≥40%

3、净浆流动度≥230mm。

4、硫酸钠含量≤10。

5、氯离子含量≤0.5%。

二、性能特点:

1、在砼强度和坍落度基本相同时,可减少水泥用量10-25%。

2、在水灰比不变时,使混凝土初始坍落度提高10cm以上,减水率可达15-25%。

3、对砼有显著的早强、增强效果,其强度提高幅度为20-60%。

4、改善混凝土的和易性,全面提高砼的物理力学性能。

5、对各种水泥适应性好,与其它各类型的混凝土外加剂配伍良好。

6、特别适用于在以下混凝土工程中使用:流态混凝土、塑化混凝土、蒸养混凝土、抗渗混凝土、防水混凝土、自然养护预制构件混凝土、钢筋及预应力钢筋混凝土、高强度超高强度混凝土。

三、掺量范围:

粉剂:0.75-1.5%; 液体:1.5-2.5% 。

四、注意事项:

1、采用多孔骨料时宜先加水搅拌,再加减水剂。

2、当坍落度较大时,应注意振捣时间不易过长,以防止泌水和分层。

萘系高效减水剂根据其产品中Na2SO4含量的高低,可分为高浓型产品(Na2SO4含量<3%)、中浓型产品(Na2SO4含量3%~10%)和低浓型产品(Na2SO4含量>10%)。目前大多数萘系高效减水剂合成厂都具备将Na2SO4含量控制在3%以下的能力,有些先进企业甚至可将其控制在0.4%以下。

萘系减水剂是我国目前生产量最大,使用最广的高效减水剂(占减水剂用量的70%以上),其特点是减水率较高(15%~25%),不引气,对凝结时间影响小,与水泥适应性相对较好,能与其他各种外加剂复合使用,价格也相对便宜。萘系减水剂常被用于配制大流动性、高强、高性能混凝土。

单纯掺加萘系减水剂的混凝土坍落度损失较快。另外,萘系减水剂与某些水泥适应性还需改善,本公司将致力于这方面的科研攻关。

萘系高效减水剂(高浓型)

ZG-1萘系高效减水剂(高浓型) 简要 ZG-1萘系高效减水剂(高浓型),是在萘系高效减水剂生产基础上经过深加工提纯的更高性能的混凝土高效减水剂。它不含氯盐,硫酸钠含量5%以下,对钢筋无锈蚀,无毒、无污染。除具备萘系高效减水剂的全部优点外,可免除因集料活性较大或在潮湿环境中混泥土工程产生碱集料反应,延长混泥土使用寿命。它属于低碱高浓非引气型高效减水剂,对水泥粒子具有极强的分散塑化作用;可配制C60以上的高效混泥土。广泛用于铁路、公路、桥梁、水电、港口、码头、工业与民用建筑、预制构件等各种混泥土工程和有硫酸钠含量要求的混泥土。它使萘系高效减水剂的性能得到了进一步的延展和发挥。产品技术指标 1、匀质性指标

2、混泥土物理力学性能 主要技术性能和特点 1、本品对人畜无害、对水泥有广泛的适应性。 2、掺量为胶凝材料的0.5~1.5%,减水率为15~25%。 3、外观为黄棕色粉末或棕褐色液体,易溶于水,化学性能稳定,长期存放不变质。 4、在保持混凝土和易性和强度不变的情况下,可节约水泥15~20﹪;

同配合比条件下,可使混凝土初始坍落度提高10㎝以上。 5、减水效果明显,能在低水灰比情况下改善砼混凝土和易性,提高混凝土的流动性。 6、增强效果显著,可使混凝土1d强度提高50~100%,3d强度提高40~80%,7d强度提高30~70%,28d强度提高30~60%。 7、本品低碱,低硫酸钠、有效避免了混凝土碱骨料反应,低温无沉淀,无结晶。 应用技术要点 1、严格遵照《混凝土外加剂应用技术规范》中的规定应用。 2、在初次使用或更换水泥时,应先做适应性试验和确定最佳掺量。 3、采用后惨法会有更好的经济效益,但要适当延长搅拌时间。 4、宜采用机械搅拌,做好养护工作。 5、掺量按胶凝材料的百分比计算,如果使用液体产品,折固后在配比中减掉所含水量。 包装和贮存 1、粉剂产品用内塑外编织双层包装,每袋25kg;液体采用塑料桶或铁桶包装,每桶50公斤、220公斤或槽车运输,根据用户需要随时调整。 2、粉剂应存放在干燥通风处,结块可粉碎后使用,不影响使用效果,超期经试验合格后仍可使用。

工业萘工艺操作规程

- 1 -

参加编写人员:王建平贺攀科郑志国审核:薛勤照张建平 审定:李元狮 - 2 -

工业萘工艺规程 1、产品概述 1.1 产品名称、化学结构、理化性质: 1.1.1 产品名称:工业萘 1.1.2 化学结构:分子式:C10H8 1.1.3 理化性质: 白色或微黄色晶体,不溶于水,溶于醚,氯仿等有机溶剂,分子量128,密度ρ20=1.145g/cm3,沸点218℃,溶剂(冰点)80.2℃。 1.2产品技术要求、包装运输、贮存期限 1.2.1 产品技术要求: 工业萘:GB/T6699-1998 技术要求: - 3 -

萘酚油:含萘≤10% 洗油:含萘≤5% 吸苯专用洗油,含萘量≤5.0%(M/M);230-270o C,馏出量:≥65%(V/V),水分≤1%(注水分指标不作质量考核依据,超过部分作计价因素)。 1.2.2 包装运输 固体工业萘用包装袋包装,属危险品,运输须按规定办理手续。 1.2.3贮存期限:一年 1.3主要用途: 萘用作生产苯酐、表面活性剂、分散剂、高效增塑剂、减水剂、α、β萘酚、合成鞣革制剂等,产品广泛用于颜料、塑料、制药等行业。 2、原辅材料 已洗三混油:含酚:≤0.8% 含萘:40-50% 3、化学反应过程和带控制点工艺流程图3.1化学反应过程 - 4 -

3.1.1工业萘蒸馏:为物理过程,无化学反应。 3.2带控制点工艺流程图;见附图 4、工艺路线及其基本原理 蒸馏部分 经洗涤脱酚后的已洗三混油于原料槽中加热后,由原料泵送入预热器与工业萘蒸汽换热到150-200o C进入初馏塔,初馏塔顶酚油蒸汽经酚油冷凝冷却器冷却至40±10o C,再经酚油油水分离器分离后,进入酚油回流槽,一部分酚油打回流控制初馏塔顶温度,另一部分满流至酚油槽。初馏塔底部萘洗油由初馏塔热油泵抽出,一部分经初馏加热炉加热至270-290o C左右回到初馏塔底,以热油循环方式供给初馏塔热量,另一部分进入精馏塔。工业萘由精馏塔顶采出,塔顶混合油汽经与三混油原料换热后入工业萘汽化冷凝冷却器,冷却至110±10o C自流进工业萘回流槽,一部分作精馏塔顶回流,满流部分入工业萘接受槽,精馏塔底洗油由精馏塔热油泵抽出,一部分经精馏加热炉加热至295—320 o C回到精馏塔底,以热油循环方式供给精馏塔热量,另一部分经洗油冷却器冷却至50—70 o C入洗油槽。由成品泵将贮存在酚油槽、洗油槽中的中间成品送往库区相应贮槽中贮存、外售,工业萘经切片打包后外售。 - 5 -

萘系高效减水剂与聚羧酸系 减水剂的性能比较

萘系高效减水剂与聚羧酸系减水剂的性能比较 一、混凝土减水剂概述及作用机理 减水剂是一种重要的混凝土外加剂,能够最大限度地降低混凝土水灰比,提高混凝土的强度和耐久性。减水剂分为普通减水剂和高效减水剂,减水率大于5%小于10%的减水剂称为普通减水剂,如松香酸钠、木质素磺酸钠和硬脂酸皂等;减水率大于10%的减水剂称为高效减水剂,如三聚氰胺系、萘系、氨基磺酸系、改性木质素磺酸系和聚羧酸系等。在众多高效减水剂中,具有梳形分子结构的聚羧酸系高效减水剂因其减水率高、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为近年来国内外研究和开发的重点。 减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影响混凝土工作性的条件下,能使单位用水量减少;或在不改变单位用水量的条件下,可改善混凝土的工作性;或同时具有以上两种效果,又不显著改变含气量的外加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。 水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性(又称工作性,主要是指新鲜混凝土在施工中,即在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性能)。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。 混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面带有相同符号的电荷,于是在同性相斥的作用下,不但能使水泥-水体系处于相对稳定的悬浮状态,而且,能使水泥在加水初期所形成的絮凝状结构分散解体,从而将絮凝结构内的水释放出来,达到减水的目的。减水剂加入后,不仅可以使新拌混凝土的和易性改善,而且由于混凝土中水灰比有较大幅度的下降,使水泥石内部孔隙体积明显减少,水泥石更为致密,混凝土的抗压强度显著提高。减水剂的加入,还对水泥的水化速度、凝结时间都有影响。这些性质在实用中都是很重要的。但是,减水剂在有效地破坏水泥浆体的絮凝结构释放出内部的自由水的同时也削弱了水泥颗粒与水之间的作用。从这个角度来说,它总是会不同程度地加剧拌合物的泌水和沉降离析现象,这是现今混凝土浇注后常在表面出现花斑,严重时则形成蜂窝麻

环境影响评价报告公示:萘系高效减水剂生产线17风险专题环评报告

环境影响评价报告公示:萘系高效减水剂生产线17风险专题环评报告

第十七章环境风险影响评价 17.1概述 本项目生产中部分物料具有易燃易爆的特性以及一定的毒性,整个生产过程中存在事故隐患,生产过程存在着发生有毒有害物料泄漏等突发性风险事故的可能性,以及易燃易爆的可能性。根据《建设项目环境风险评价技术导则》(HJ/T1610-2004)规定:涉及有毒有害、易燃易爆化学品的生产建设项目,应进行环境风险评价。按照国家环境保护总局环发[2005]152号文《关于加强环境风险管理,防范环境风险的通知》的规定和要求,本次环境风险评价采用风险识别、风险分析和对环境后果计算等方法对项目进行评估,全面分析本项目产品、中间产品和原辅材料的规模及物理化学性质、毒理指标和危险性等;针对项目运行期间发生事故可能引起的易燃易爆、有毒有害物质的泄漏,从水、气、环境安全防护等方面考虑并预测环境风险事故影响范围,评估事故对人身安全及环境的影响和损害;同时,提出环境风险应急预案和事故防范、减缓措施,特别要针对特征污染物提出有效的防止二次污染的应急措施,为本工程设计和环境管理提供资料和依据,以期达到降低危险、减少公害的目的。 17.2 评价等级及范围 17.2.1工作等级划分原则 《建设项目环境风险评价技术导则(HJ/T1610-2004)》中规定的环境风险评价的工作等级划分原则见表17-1所示。 表17-1 环境风险评价工作等级划分原则 17.2.2物质危险性判定 根据《建设项目环境风险评价技术导则》HJ/T1610-2004附录A1中物质危险性

判定标准,对本工程主要物质的危险性进行判定,判定结果见表17-2。 17.2.3重大危险源判断 根据《建设项目环境风险评价技术导则》HJ/T1610-2004附录A1中易燃物质临

(整理)萘系高效减水剂制备工艺流程

我国从20 世纪70 年代开始研制萘系高效减水剂,以精萘和工业萘为原料的产品有NNO 、SPA 、BW 、FE 、NF 、FDN 、UN F -2 、SN —Ⅱ等,以甲基萘和萘残油为原料的产品有MF 、建1 、DH 4 ,以蒽油为原料的产品有AF 、JW — 1 等。这些产品的生产工艺,大同小异。以工业萘为例,其工艺流程( 见图2) 如下: 图 1 萘磺酸钠甲醛缩合物 图 2 萘系减水剂制备工艺流程图 1 .原料 (1) 萘 工业萘或精萘的分子式为 C 10 H 8 。生产实践证明,用含萘量高的物料生产的产品引气性较小,性能较好,所以目前一些大的减水剂生产厂,大都使用工业萘或精萘,以利于产品质量稳定。当从煤焦油中提取精萘或工业萘时,馏分温度为21 0 ℃。萘为白色易挥发片状晶体,具有可燃性和强烈的焦油味,密度(d 乳) 1.145g /cm 3 ,熔点80. 2 ℃,沸点217.7 6 ℃,闪点17 6 ℉( 8 0 ℃) ,自燃点97 9 ℉( 526.11 ℃) ,溶于苯、无水乙醇和醚,不溶于水。 (2) 硫酸 用作磺化的硫酸常用浓度为98 %的浓硫酸,磺化反应为亲电子反应,参加反应的不是阴离子SO 和HSO ,而是阳离子H 3 SO 广和中性分子SO 3 ,后者只有在浓度大于75 %的硫酸和发烟硫酸中才存在。 (3) 甲醛工业品 甲醛工业品,其浓度为35 %~37 %,五色透明液体,有刺激气味,15 ℃时密度1.10g /cm 3 ,分子式HCHO 。 (4) 烧碱工业品 固碱、液碱均可。使用固碱时应配制成30 %~40 %的水溶液。 2 .磺化反应 磺化反应是浓硫酸作用于萘,磺酸根取代萘的氢原子,反应结果生成萘磺酸。 磺化反应控制的好坏,直接影响β- 萘磺酸的含量,对缩合后产品质量影响较大。影响磺化反应的因素主要有磺化温度、磺化时间、硫酸浓度、硫酸加入量及杂质等。

萘系高效减水剂

萘系高效减水剂 萘系高效减水剂,学名萘磺酸盐甲醛缩合物,是经化工合成的非引气型高效减水剂,对水泥粒子有很强的分散作用,对配制大流态砼有有很好的使用效果,对具有早强、高强要求的现浇砼和予制构件效果明显,可全面提高和改善砼的各种性能,广泛用于公路、桥梁、大坝、港口码头、隧道、电力、水利及工民建工程、蒸养及自然养护予制构件等。 一、主要技术指标(低浓度萘系高效减水剂): 1、外观:粉剂棕黄色粉末,液体棕褐色粘稠液。 2、固体含量:粉剂≥94%,液体≥40% 3、净浆流动度≥230mm。 4、硫酸钠含量≤10。 5、氯离子含量≤0.5%。 二、性能特点: 1、在砼强度和坍落度基本相同时,可减少水泥用量10-25%。 2、在水灰比不变时,使混凝土初始坍落度提高10cm以上,减水率可达15-25%。 3、对砼有显著的早强、增强效果,其强度提高幅度为20-60%。 4、改善混凝土的和易性,全面提高砼的物理力学性能。 5、对各种水泥适应性好,与其它各类型的混凝土外加剂配伍良好。 6、特别适用于在以下混凝土工程中使用:流态混凝土、塑化混凝土、蒸养混凝土、抗渗混凝土、防水混凝土、自然养护预制构件混凝土、钢筋及预应力钢筋混凝土、高强度超高强度混凝土。 三、掺量范围: 粉剂:0.75-1.5%; 液体:1.5-2.5% 。 四、注意事项: 1、采用多孔骨料时宜先加水搅拌,再加减水剂。 2、当坍落度较大时,应注意振捣时间不易过长,以防止泌水和分层。 萘系高效减水剂根据其产品中Na2SO4含量的高低,可分为高浓型产品(Na2SO4含量<3%)、中浓型产品(Na2SO4含量3%~10%)和低浓型产品(Na2SO4含量>10%)。目前大多数萘系高效减水剂合成厂都具备将Na2SO4含量控制在3%以下的能力,有些先进企业甚至可将其控制在0.4%以下。 萘系减水剂是我国目前生产量最大,使用最广的高效减水剂(占减水剂用量的70%以上),其特点是减水率较高(15%~25%),不引气,对凝结时间影响小,与水泥适应性相对较好,能与其他各种外加剂复合使用,价格也相对便宜。萘系减水剂常被用于配制大流动性、高强、高性能混凝土。

工业萘生产工艺过程概述

工业萘生产工艺过程概述 工业萘生产工艺过程概述 经洗涤脱酚后的已洗三混油于原料槽中加热到70---90 C,由原料泵送入预热器与工业萘蒸汽换热到190 土5 C进入处馏塔,初馏塔顶酚油蒸汽经酚油冷却器冷却到50--60 C,再经 酚油油水分离器,进入酚油回流槽,一部分打回流控制出馏塔顶温度,另一部分满流到酚油槽。初馏塔底部的萘洗油由初塔热油泵抽出,一部分经管式炉加热250--265 C回到初馏塔底,以热油循环的方式供给初馏塔热量,另一部分进入精馏塔。工业萘由精馏塔塔顶采出,塔顶萘蒸汽与三混原料油换热后经汽化冷却器冷却到100--120 C,自流到工业萘回流 槽,一部分作精塔顶回流,满流部分进入工业萘接受槽,经转鼓结晶切片打包。精塔底洗油由热油泵抽出,一部分经加热炉加热到270--300 C回到精馏塔底,以热油循环的方式供给精塔热量,另一部分经洗油冷却器冷却到50--70 C入洗油槽。 一、工业萘蒸馏操作规程(法) 1 、工艺控制指标和操作指标 1 )工业萘蒸馏工艺控制指标: 萘酚油含酚:W 5% ;含萘:W 10%

已洗三混油含萘:45--60% ;含酚:W 0.8%萘酚油含酚:W 5% ;含萘:W 10%

洗油含萘:W 5% 工业萘结晶点:》77.5 C 2)工业萘蒸馏操作指标项目 指标 初馏塔塔顶温度 170 ?190C 初塔热油温度242±5 C 初塔进料温度190±5 C 初馏塔回流液温度50?70 C 初馏塔底气相温度W 0 . 0 7Mpa (表压) 初塔进料量0.5?1.8m3/h 精馏塔顶温度215±5 C 精塔热油温度 260?290C

粗萘精制工艺简介

粗萘精制工艺简介 焦油蒸馏的主要任务之一就是切取含萘馏分用于进一步分离精制。在焦油蒸馏过程中,按馏分切取工艺制度不同,富集萘的馏分有萘油馏分、萘洗混合馏分及酚萘洗三混馏分等。 工业萘是焦油加工的主要产品,.由煤焦油分离,高温煤焦油中萘约占8%-12%,将煤焦油蒸馏,切取煤油,经脱酚,脱喹啉,蒸馏得成品萘。每吨萘消耗10t煤焦油; 目前工业萘的生产方法主要是精馏法和冷却结晶法。 一、原料及产品 生产工业萘的原料为焦油蒸馏所得的富集萘的馏分,这些馏分中还含有酚类、盐基类化合物及不饱和化合物,其中有些组分的沸点和萘的沸点相近,精馏时易进入工业萘中,需要先经过碱洗和酸洗。 二、精馏法生产工业萘 (1)双炉双塔连续精馏工艺 所谓双炉双塔,是指该流程中采用了两台管式炉、两座精馏塔(初馏塔和精馏塔)。其生产工艺流程如图所:

1—原料槽;2—原料泵;3—原料与工业萘换热器;4—初馏塔;5—精馏塔;6—管式炉;7—初馏塔热油循环泵;8—精馏塔热油循环泵;9—酚油冷凝冷却器;10—油水分离器;11—酚油回流槽:12—酚油回流泵;13—酚油槽;14工业萘汽化冷凝冷却器;15—工业萘回流槽;16工业萘回流泵;17—工业萘贮槽;18—转鼓结晶机;19—工业萘装袋自动称量装置;20—洗油冷却器;21—洗油计量槽;22—中间槽 双炉双塔连续精馏工艺流程如图,此流程采用两个管式加热炉和两个精馏塔,所用原料为经过碱洗或酸洗的萘油或混合馏分油。含萘馏分经静置脱水后,由原料泵送至工业萘换热起起器,温度由80~90℃升至200℃左右,进入初馏塔。初馏塔顶逸出的酚油蒸气经冷凝冷却和油水分离后进入回流槽,大部分作初馏塔的回流,回流比为20~30(对酚油产品);少部分流入酚油成品槽。初馏塔底已脱除酚油的含萘馏分用热油泵送往初馏塔管式炉加热至265~270℃,再返回初馏塔低,以供给初馏塔热量。同时在初馏塔热油循环泵出口分出一部分馏分油打入精馏塔,进料温度为230~235℃。精馏塔顶蒸汽温度控制在218℃左右,工业萘蒸气在热交换器中与原料油换热后进入冷凝冷却器,工业萘被冷却到100~110℃后流入工业萘回流槽,一部

环境影响评价报告公示:萘系高效减水剂生产线17风险专题环评报告

第十七章环境风险影响评价 17.1概述 本项目生产中部分物料具有易燃易爆的特性以及一定的毒性,整个生产过程中存在事故隐患,生产过程存在着发生有毒有害物料泄漏等突发性风险事故的可能性,以及易燃易爆的可能性。根据《建设项目环境风险评价技术导则》(HJ/T1610-2004)规定:涉及有毒有害、易燃易爆化学品的生产建设项目,应进行环境风险评价。按照国家环境保护总局环发[2005]152号文《关于加强环境风险管理,防范环境风险的通知》的规定和要求,本次环境风险评价采用风险识别、风险分析和对环境后果计算等方法对项目进行评估,全面分析本项目产品、中间产品和原辅材料的规模及物理化学性质、毒理指标和危险性等;针对项目运行期间发生事故可能引起的易燃易爆、有毒有害物质的泄漏,从水、气、环境安全防护等方面考虑并预测环境风险事故影响范围,评估事故对人身安全及环境的影响和损害;同时,提出环境风险应急预案和事故防范、减缓措施,特别要针对特征污染物提出有效的防止二次污染的应急措施,为本工程设计和环境管理提供资料和依据,以期达到降低危险、减少公害的目的。 17.2 评价等级及范围 17.2.1工作等级划分原则 《建设项目环境风险评价技术导则(HJ/T1610-2004)》中规定的环境风险评价的工作等级划分原则见表17-1所示。 17.2.2物质危险性判定 根据《建设项目环境风险评价技术导则》HJ/T1610-2004附录A1中物质危险性判定标准,对本工程主要物质的危险性进行判定,判定结果见表17-2。

表17-2本工程主要物质危险性判定 17.2.3重大危险源判断 根据《建设项目环境风险评价技术导则》HJ/T1610-2004附录A1中易燃物质临界量的规定,本工程无重大危险源。 17.2.4环境敏感性判断 本工程所在区域不属于《建设项目管理名录》中规定的需特殊保护地区、生态敏感与脆弱区及社会关注区,生产厂区周围主要敏感目标情况见表17-3。 表17-3厂区周围近距离主要敏感目标情况一览表 17.2.5评价等级及范围的确定 根据《建设项目环境风险评价技术导则》HJ/T1610-2004,依据评价项目的物质危险性和功能单元重大危险源判定结果,以及环境敏感程度等因素。将本项目环境风

2-萘酚生产工艺1

2-萘酚生产工艺 一、性质 2-萘酚(2-naphthol),外观为白色或略带黄色的片状结晶或白色粉末,又名β-萘酚、乙萘酚、2-羟基萘。分子式C10H8O,分子量144.16。密度:1.28g/cm3;熔点:123~124℃;沸点:285~286℃;闪点:161℃;久置于在空气中颜色会变暗,有苯酚的气味;微溶于水,溶于乙醇、乙醚、氯仿、甘油,溶于氢氧化钠水溶液;其水溶液与三氯化铁溶液反应呈绿色。 二、用途 1、2-萘酚 2-萘酚又称乙萘酚、β-萘酚,是重要的有机化工原料和合成中间体,由其直接合成的染料、颜料品种达130多种,染料中间体20多个。在医药、农药、橡胶助剂、香料、皮革鞣制、纺织印染助剂和选矿剂等方面也有广泛应用。在染料方面,2-萘酚的主要衍生产品有2,3-酸、吐氏酸、重氮萘酚磺酸、G酸、R酸、Y酸、J酸、2,6酸等;在医药、农药方面,2-萘酚主要用于生产消炎镇痛剂萘普生、除草剂萘丙胺、植物调节剂2-萘氧基乙胺等。近年来,萘酚下游产品用于感光材料及液晶材料的生产,如羟基-1-萘甲酸、萘酚苄基醚、2-羟基萘-6-甲酸等,有着非常广泛的市场前景。 2、1-萘酚

1-萘酚又称甲萘酚、α-萘酚,也是一种重要的精细化工中间体,广泛应用于医药、农药、染料、香料制造,手性催化剂合成等方面。由于近年开发出许多1-萘酚的新用途,导致市场需求量不断增加,前景看好。它的生产方法类似于2-萘酚生产,是2-萘酚生产中的重要异构体。 三、工艺技术 利用工业萘为主要原料生产精萘和2-萘酚。生产过程主要包括:工业萘精制和利用精萘生产2-萘酚。 1、工业萘精制 工业萘原料,在80℃左右熔融后,在48~79.6℃区间进行分步结晶后得到精萘和分离萘油。 2、2-萘酚生产 2.1磺化 用98%硫酸与精萘,用调节导热油的方式控制反应温度在160~165℃,生成2-萘磺酸和水,用压缩空气压至水解锅供水解、吹萘岗位用。 2.2水解 磺化反应生成的2-萘磺酸和水在水解锅内反应,生成硫酸和萘。用蒸汽把萘吹走。 2.3吹萘 水解结束后,加一定量的水和30%的NaOH于水解后的物料中,中

萘酚工艺操作规程(最新)

2-萘酚工艺操作规程 (A版) 批准:惠晓新 审核:周宏钧 编写:孙金毛金兴官 王玉明 2012年1月3日批准 2012年1月4日实施宿迁思睿屹新材料有限公司

目录 1.产品概述 (3) 2.产品原料 (3) 3.生产工艺流程图 (4) 4.生产操作过程控制 (6) 5.异常现象及处理方法 (18) 6.主要设备一览表 (23) 7.主要工艺参数控制一览表 (25) 2—萘酚工艺操作规程

1 产品概述 1.1 产品名称 1.1.1 中文名称:β—萘酚(或2—羟基萘, 2—萘酚) 1.1.2 英文名称:β—Naphthol 1.2 产品物理、化学性质 2—萘酚为灰白色薄片或均匀粉末,易溶于乙醇、乙醚、氯仿、苯等及苛性钠的水溶液中。 1.3 产品的主要用途 2—萘酚用来制造苯胺染料工业中的各种中间体,制造橡胶工业的防老剂,制造晒盐工业用的蒸发促进剂,以及作颜料、油漆和棉织品的冰染染料等。 1.4 产品化学结构式 1.5 产品分子式: C10H8O 产品分子量: 144.16 2 产品、原料规格 2.1 原料规格 本工艺中使用的原料规格见LT/QG SJ0500《主要原料及其控 制指标》。 2.2产品规格 见相应的国家规范。 2.3 包装 2—萘酚装于内衬塑料袋的编织袋中,净重25Kg/袋。袋口用线扎紧,防

止散落及雨水浸入。 3 化学反应过程和生产工艺流程图 3.1 化学反应过程 3.1.1 磺化 +H 2SO 4 +H 2O 3.1.2 水解 +H 2O +H 2SO 4 3.1.3吹萘 加30%的NaOH 于水解后的物料中 3.1.3.1 与水解物中的游离酸起中和反应 2NaOH +H 2SO 4 Na 2SO 4+2H 2O 3.1.3.2 与部分2—萘磺酸生成2—萘磺酸钠盐结晶种子 NaOH ++H 2O 3.1.4 中和 用Na 2SO 3溶液中和萘物 +Na 2SO 3 +H 2O +SO 2 3.1.5 2—萘磺酸钠盐的碱熔 +2NaOH 330-340℃ +Na 2SO 3+H 2O

萘系减水剂

萘系减水剂 一、概述 萘系减水剂是我国目前生产量最大,使用最广的高效减水剂(占减水剂用量的70%以上),其特点是减水率较高(15%~25%),不引气,对凝结时间影响小,与水泥适应性相对较好,能与其他各种外加剂复合使用,价格也相对便宜。萘系减水剂常被用于配制大流动性、高强、高性能混凝土。单纯掺加萘系减水剂的混凝土坍落度损失较快。另外,萘系减水剂与某些水泥适应性还需改善。 二、萘系减水剂的反应原理 工业萘是一种基础的化工原料,外观呈白色片状结晶体,有时带微红或微黄色,有强烈的焦油气味,溶于醚、甲醇、无水乙醇、氯仿等溶剂,主要用于生产减水剂、分散剂、苯酐、各种萘酚、萘胺等,是生产合成树脂、增塑剂、橡胶防老剂、表面活性剂、合成纤维、染料、涂料、农药、医药和香料等的原料。萘系减水剂合成工艺流程如下: 融萘——磺化——缩合——中和——液体成品 (1) 固体燃原料(萘)称量后投入融萘釜,液化萘经管道压入磺化釜。 (2) 按配方及工艺将硫酸注入磺化釜内,进行磺化。经检测后压入缩合釜。 (3) 按配方及工艺进行水解和缩合。该过程随反应程度需严格监控。完成此工艺后将中间物料压入中和釜。 (4) 按配方将液碱注入中和釜进行中和,直至中和完成。 (5) 由泵将液体成品自中和釜送至液体成品罐备用。 三、适用于萘系减水剂的泵送剂复配的产品 多性能调节剂(DT)系列产品 多性能调节剂DT系列产品是青岛鼎昌新材料有限公司自主研发的一种新型混凝土外加剂,该产品能使水泥颗粒表面吸附大量的外加剂中阴离子,提高了水泥颗粒表面的电荷密度,增加了水泥表面的电负性,使相邻水泥颗粒之间的排斥力增加,阻止了水泥颗粒絮凝状结构的形成,将絮凝状聚集体中的自由水释放出来,增加混凝土的流动性或表现出相应的减水率。该产品可以优先于减水剂吸附于水泥颗粒表面,对二氧化硫,游离氧化钙、氧化镁含量稍高的水泥或者掺合料组分复杂的水泥,具有良好的性能。本系列产品无毒、不易燃,对钢筋无锈蚀作用,可广泛应用与建筑、道路、桥梁、水工和地下工程等各类泵送施工的混凝土。在泵送剂复配中可大幅度降低母料用量,降低复配成本。 一、技术性能:

萘系高效减水剂MSDS

萘系高效减水剂安全技术说明书 第一部分:化学产品和公司标识 产品名称:萘系高效减水剂 化学名称:β-萘磺酸盐甲醛缩合物 英文名:β-Naphthalenesulfonic Acid-Formaldehyde Condensate CAS No.:36290-04-7 生产商: 地址: 联系电话: 第二部分:成分/组成信息 工业萘:纯度(质量分数)>96% 硫酸:含量95~96 % 甲醛:含量36~37% 液碱:含量30%左右 石灰:化学纯 煤焦油 糖钙:缓凝型减水剂 第三部分:危害性描述 健康危害:吸入、摄入或经皮肤吸收后对身体有害。对眼睛、皮肤、粘膜和上呼吸道有强烈的刺激作用。吸入后可引起喉和支气管的炎症、痉挛和水肿,肺水

肿。中毒表现可有烧灼感、咳嗽、喘息、气短、头痛、恶心、呕吐等。有轻度眼、鼻、咽喉刺激症状,皮肤干燥、皲裂、甲软化等。可引起皮肤过敏反应。 环境危害:对环境有危害,对水体和大气可造成污染。 燃爆危险:本品不可燃。 第四部分:急救措施 皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口。就医。 第五部分:消防措施 可燃性:不易燃 灭火介质:使用干化学剂、二氧化碳、水雾或泡沫。 灭火:必要情况下,灭火应佩戴自给式呼吸器。可以使用水雾冷却密闭容器。 第六部分:事故泄漏应对措施 材料发生泄漏或泄漏情况下应采取的步骤 清场,避免呼吸蒸汽、灰尘或接触液体。在保证安全的情况下,切断泄漏源。回收漏失的产品,清理残留物。喷水冲洗溢漏区域。避免溢漏材料进入下水道、沟渠和水体。 废物处置方法:按照当地规定和法规采用废物处置方法。

工业萘生产技术现状

工业萘生产技术现状 一、生产工业萘的原料与产品质量 (一)生产工业萘的原料 从焦油蒸馏的各种流程中所得到的含萘较高的馏分均可作为生产工业萘的原料,常见的原料如表1-1所示的前三种馏分 表1-1含萘馏分质量及组成 不管哪种馏分,均含有酸性组分、碱性组分、中性组分等。其中有的费电于萘的沸

点相近,精馏时易混入工业萘中而影响产品质量。为保证工业萘的质量,在精馏前都需要进行碱洗和酸洗处理。经过碱洗和酸洗处理的馏分叫做已洗萘洗二混馏分或已洗酚萘洗三混馏分。这些已洗馏分均可做工业萘生产的原料。 但在实际生产中,若用只经过贱洗不经酸洗的混合馏分进行精馏,原料中的吡啶碱类大多转入酚油和精馏残油(洗油)中,而工业萘中仅有0.1%左右,基本上不影响萘的质量,因此某些焦化厂采用碱洗后的馏分精馏生产工业萘,对切取出酚油、洗油,再分别进行酸洗提取重吡啶碱类。当生产规模较小不需要提取吡啶类产品时,也可不用硫酸洗涤。 由于目前工业萘大部分用于支取邻苯二甲酸酐(苯酐),随着苯酐生产的工艺改进,含有少量不饱和化合物的工业萘,对苯酐产品质量及触媒催化剂性能均无不良影响。因此,现在许多焦化厂都用只经过碱洗的原料馏分提取工业萘。 (二)工业萘的质量 工业萘的质量标准如1-2所示。 表1-2 工业萘的质量标准 二、工业萘生产工艺流程 (一)双炉双塔工业萘连续精馏流程 所谓双炉双塔,是指该流程中采用了两台管式炉、两座精馏塔(初馏塔和精馏塔)。其生产工艺流程如图1-3所示。

1—原料槽;2—原料泵;3—原 料与工业萘换热器;4—初馏塔; 5—精馏塔;6—管式炉;7—初 馏塔热油循环泵;8—精馏塔热 油循环泵;9—酚油冷凝冷却器; 10—油水分离器;11—酚油回流 槽:12—酚油回流泵;13—酚油 槽;14工业萘汽化冷凝冷却器; 15—工业萘回流槽;16工业萘 回流泵;17—工业萘贮槽;18 —转鼓结晶机;19—工业萘装袋 自动称量装置;20—洗油冷却 器;21—洗油计量槽;22—中间 槽 图1-3 双炉双塔工业萘连续精馏过程 经碱洗后温度为80-90℃的原料,经静置脱水后,由原料泵2从原料槽1中抽出,打入原料与工业萘换热器3,与从精馏塔5顶部来的温度为218℃的萘蒸汽尽兴热交换使温度升至210-215℃,再进入初馏塔4。 原料在初馏塔中得出不分离,是靠管式炉6提供热量产生沿塔上升的蒸汽,靠冷凝冷却器9,油水分离得到的酚油作回流进行分馏的,原料中所含的酚油以190-200℃气态从初馏塔顶部逸出,进入酚油冷凝冷却器9被水冷凝冷却至30-35℃,再进入酚油油水分离器10,冷凝液中的分离水从分离器底部排入酚水槽(用来等待脱酚),冷凝液中的酚油则从分离器上部满流入酚油回流槽11,由回流泵12抽出,打入初馏塔4的顶部,以控制塔顶温度,其余酚油从回流槽上部满流入酚油槽13,送洗涤供需回收加工。 原料中所含的萘油和洗油馏分以液态混入热循环油,一起流入初馏塔底贮槽,再由初馏塔热油循环油泵7抽出,一部打入初馏塔管式炉6,被燃料燃烧加热至265-270℃部分气化后,再回到初馏塔下部,供作初馏塔的热量,另一部分则以230—235℃的温度打入精馏塔5。 精馏塔中的萘油、洗油混合馏分靠管式炉6循环加热而进行分馏,其中的萘以218℃的气态从精馏塔顶部逸出,经换热器3进行热交换后,在进入工业萘汽化冷凝冷却器14被水冷却至100—110℃,以液态进入工业萘回流槽15,不分工业萘由回流槽底被工业萘回流泵16抽出,打入精馏塔5的顶部,以控制塔顶温度,其余工业萘从回流槽上部满流入工业萘贮槽17,再放入转鼓结晶机18,便得到含萘>95%的工业萘。

萘系高效减水剂详情

萘系高效减水剂详情 萘系高效减水剂,学名萘磺酸盐甲醛缩合物,是经化工合成的非引气型高效减水剂,对水泥粒子有很强的分散作用,对配制大流态砼有有很好的使用效果,对具有早强、高强要求的现浇砼和予制构件效果明显,可全面提高和改善砼的各种性能,广泛用于公路、桥梁、大坝、港口码头、隧道、电力、水利及工民建工程、蒸养及自然养护予制构件等。 一、主要技术指标(低浓度萘系高效减水剂): 1、外观:粉剂棕黄色粉末,液体棕褐色粘稠液。 2、固体含量:粉剂≥94%,液体≥40% 3、净浆流动度≥230mm。 4、硫酸钠含量≤10。 5、氯离子含量≤0.5%。 二、性能特点: 1、在砼强度和坍落度基本相同时,可减少水泥用量10-25%。 2、在水灰比不变时,使混凝土初始坍落度提高10cm以上,减水率可达15-25%。 3、对砼有显著的早强、增强效果,其强度提高幅度为20-60%。 4、改善混凝土的和易性,全面提高砼的物理力学性能。 5、对各种水泥适应性好,与其它各类型的混凝土外加剂配伍良好。 6、特别适用于在以下混凝土工程中使用:流态混凝土、塑化混凝土、蒸养混凝土、抗渗混凝土、防水混凝土、自然养护预制构件混凝土、钢筋及预应力钢筋混凝土、高强度超高强度混凝土。 三、掺量范围:粉剂:0.75-1.5%; 液体:1.5-2.5% 。 四、注意事项: 1、采用多孔骨料时宜先加水搅拌,再加减水剂。 2、当坍落度较大时,应注意振捣时间不易过长,以防止泌水和分层。萘系高效减水剂根据其产品中Na2SO4含量的高低,可分为高浓型产品(Na2SO4含量<3%)、中浓型产品(Na2SO4含量3%~10%)和低浓型产品(Na2SO4含量>10%)。目前大多数萘系高效减水剂合成厂都具备将Na2SO4含量控制在3%以下的能力,有些先进企业甚至可将其控制在0.4%以下。 萘系减水剂是我国目前生产量最大,使用最广的高效减水剂(占减水剂用量的70%以上),其特点是减水率较高(15%~25%),不引气,对凝结时间影响小,与水泥适应性相对较好,能与其他各种外加剂复合使用,价格也相对便宜。萘系

10万吨年精萘项目建议书

10万吨/年精荼项目建议书 i项目背景 i.i项目名称 精荼项目 1.2项目建设规模 建设规模:10万吨/年 1.3项目建设地址 黑龙江省七台河新兴煤化工循环经济产业园区 1.4项目提出背景 2011年七台河市焦炭产能达到1000万吨,可以产生总量为25亿立方米的剩余煤气、4 5万吨煤焦油、12万吨粗苯。如果从黑龙江省范围考虑,按黑龙江省焦炭产量1500万吨计算,可以产生37.5亿立方米剩余煤气、67.5万吨煤焦油、18万吨粗苯。已经具备了向产品品种结构上深度开发的条件。目前生产的多数是化工的基础原料,是化工产品产业链的基础 产品,是精细化工产品的“粮食”。要改变现有“只卖原粮”的局面,只有向精细化工领域迈进。 七台河市煤化工产业下步发展要继续以建立完善循环经济体系为重点,按照“稳煤、控焦、兴化”的总体发展思路,依托煤焦油、焦炉剩余煤气、粗苯这三条线,整合资源、集中优势,继续寻求延伸产业链条,搞好资源综合利用和延伸转化,实现资源循环利用、综合开 发、高效增值,不断扩大煤化工产业的整体规模,形成全市工业经济加快发展新的增长极。 新兴煤化工产业园区位于七台河市新兴区辖区内,园区现有面积约 4.7平方公里,一期 增加2.9平方公里,达到7.6平方公里;二期将长兴乡马鞍村整村搬迁至长兴村,增加 5.5 平方公里,总体达到13.1平方公里;三期增加8.7平方公里,最终园区面积将达到21.8多 平方公里,新兴煤化工产业园区是一个以煤焦化及下游产品为主体的产业园区。园区功能齐备,水、电、路等基础设施建设基本到位。 基于上述政策和资源条件,提出一系列煤焦油项目,10万吨/年精荼项目是其中之一。 2产品性质与用途概述 荼为白色或微黄晶体,有强烈的气味,溶于酰、甲醇、无水乙醇氯仿等,常温下能升华, 与空气混合能形成爆炸性混合物,属易燃固体,分子量128,密度1.145g/cm3,沸点218C, 熔点80.2C,闪点80C,爆炸极限0.9?5.19%,自然点690C,折射率1.58218。精荼是工业荼进一步提纯制得的 含荼98.45%以上、结晶点不低于79.3 C的荼产品。精荼及荼系产品 广泛应用于合成树脂、涂料、医药、农药、轻工、塑料、助剂等行业,可用于制取苯酎、3 -荼酚、甲荼胺、H酸、丁睛橡胶、增塑剂、扩散剂、抗凝剂等产品,应当加以充分地利用,使其发挥更大的经济效益。 荼按其来源不同,分为煤焦油荼和石油荼。荼来源于煤焦油,它是在1819年发现并于

萘系减水剂

萘系高效减水剂改性研究 摘要:本文研究了木质素磺酸盐接枝共聚萘系高效减水剂的可能性。实验探讨并调整两种减水剂的质量比、时间和温度,成功实现了两种减水剂的接枝共聚。性能对比实验结果表明,形成的改性萘系高效减水剂具有减水率高、坍落度损失小、合成成本低,大大改善了萘系减水剂的性能。 关键词:萘系高效减水剂;木质素磺酸盐;接枝共聚 1 前言 我国目前在商品混凝土中使用的混凝土减水剂都是通过与不同外加剂复合,运用于工程之中。单一组分的高效减水剂对水泥和混凝土的减水效果显著,但往往难以满足新拌混凝土的工作性能及混凝土硬化后的特定性能要求。因此,新型混凝土减水剂的发展方向之一。 萘系高效减水剂(FDN)减水率高、分散性好,但是坍落度损失过快,不利于应用,直接影响到减水剂的使用效果。由于工业萘价格不断上扬,导致了萘系减水剂的成本偏高。由于萘系减水剂自身存在不足,对其改性已成为必然。通过接枝共聚,在萘系高效减水剂分子主链上引入支链结构,使吸附了减水剂的水泥颗粒在颗粒间电荷斥力不变的情况下提高水泥颗粒分子之间的位阻斥力,使水泥颗粒之间的分子排斥力进一步增强,阻止水泥颗粒间的絮凝,达到控制坍落度损失过快的目的。 2 实验 1.1原材料 萘系高效减水剂:山东产,固含量39%;木质素减水剂:甘肃产;液碱:含量30%,福建产。 石子:北京卢沟桥碎卵石,含泥量0.4%,针片状含量3.6%,最大粒径20mm,泥块含量无;砂:卢沟桥中砂,细度模数2.8,含泥量1.5%,泥块含量无;水泥:GB8076-2008规定的基准普通硅酸盐水泥;粉煤灰:Ⅱ级。 1.2 合成工艺 将木质素减水剂按一定比例缓慢加入萘系减水剂中,恒温下接枝反应一段时间,加碱调整其pH值在7~9之间,即得到改性萘系高效减水剂(m-FDN)。 另外,为了验证接枝合成的效果,进行木质素减水剂与萘系减水剂的冷复配实验,即在常温下将木质素减水剂与萘系减水剂按一定比例混合配制。 1.3性能测试方法 水泥净浆流动度:按照GB/T8077-2000《混凝土外加剂均质性试验方法》进行测试。 混凝土拌合物的减水率、坍落度保持性、密度及混凝土抗压强度:按 GB8076-2008《混凝土外加剂》进行测试。 采用毛细管测试减水剂溶液的表面张力,采用红外光谱仪分析本实验合成的改性萘系高效减水剂、萘系减水剂、木质素磺酸盐减水剂的分子结构。

我国的高效减水剂有哪些种类 (1)

我国的高效减水剂有哪些种类 (1)萘磺酸盐甲醛缩合物(萘系高效减水剂) 萘系减水剂是芳香族磺酸盐甲醛缩合物。此类减水剂主要成分为萘或萘的同系物磺酸盐与甲醛的缩合物,属于阴离子表面活性剂。 萘系高效减水剂的结构特点是憎水性的主链为亚甲基连接的双环或多环的芳烃,亲水性的官能团则是连在芳环上的-SO3M等。 萘系高效减水剂根据其产品中Na2SO4含量的高低,可分为高浓型产品(Na2 SO4含量<5%)和低浓型产品(Na2SO4含量>5%)。现场搅拌混凝土时,一般掺加粉状外加剂,Na2SO4含量高低影响不大。在商品混凝土中,多采用液体外加剂,低浓萘系产品在气温较低时易产生Na2SO4结晶,影响计量精度和使用效果。为了降低产品中的结晶程度和彻底消灭结晶现象,生产厂一般采用KOH、Ca(OH)代替NaOH进行中和,或者增加低温抽滤的工序将Na2SO4除去,生产高浓萘2 系高效减水剂。 萘系高效减水剂在推荐掺量下的减水率一般在15%~25%之间,基本上不影响混凝土的凝结时间,引气量低(<2%),提高混凝土强度效果较明显。 萘系高效减水剂的缺点是与水泥的适应性问题,有时混凝土坍落度损失较快,这与减水剂本身的磺化程度、聚合度、中和离子的种类、Na2SO4含量、掺加时的状态、掺量及掺加方法有关,因此,在商品混凝土中使用萘系高效减水剂时一般要同时复合缓凝、引气等组分进行改性,得到所谓的泵送剂产品。 (2)三聚氰胺磺酸盐甲醛缩合物(密胺系高效减水剂) 三聚氰胺高效减水剂是一种水溶性的高分子聚合物,其主要成分是磺化三聚氰胺甲醛缩合物,属于阴离子型、早强、非引气型高效减水剂,减水率可达25%。代表性的产品有德国的Melment、日本的NL-4000、瑞典的Peramin SMF和中国的SM等。据德国专家Pla nk教授统计,萘系和三聚氰胺是目前世界上使用最广泛的高效减水剂。 密胺系高效减水剂属于低引气型,无缓凝作用,减水率相当于萘系高效减水剂,对混凝土增强效果较好,但掺加传统的密胺减水剂后混凝土坍落度损失也较快。由于其无色和低引气的特征,适合于干粉砂浆、彩色路面砖和清水混凝土等的生产。 2004年,中国建筑材料科学研究院研制成功了性价比较高的新型三聚氰胺高效减水剂,其改性技术路线独辟蹊径,以三聚氰胺为主要原料,经羟甲基化反应激活其活性官能团生成羟甲基三聚氰胺,然后引入其他预聚单体,增加可能与三聚氰胺缩合的单体,改变缩合产物的分子结构,得到了比传统三聚氰胺超塑化剂性能更好的新型三聚氰胺超塑化剂。

10万吨年精萘项目建议书

10万吨/年精萘项目建议书 1项目背景 1.1项目名称 精萘项目 1.2项目建设规模 建设规模:10万吨/年 1.3项目建设地址 黑龙江省七台河新兴煤化工循环经济产业园区 1.4项目提出背景 2011年七台河市焦炭产能达到1000万吨,可以产生总量为25亿立方米的剩余煤气、4 5万吨煤焦油、12万吨粗苯。如果从黑龙江省范围考虑,按黑龙江省焦炭产量1500万吨计算,可以产生37.5亿立方米剩余煤气、67.5万吨煤焦油、18万吨粗苯。已经具备了向产品品种结构上深度开发的条件。目前生产的多数是化工的基础原料,是化工产品产业链的基础产品,是精细化工产品的“粮食”。要改变现有“只卖原粮”的局面,只有向精细化工领域迈进。 七台河市煤化工产业下步发展要继续以建立完善循环经济体系为重点,按照“稳煤、控焦、兴化”的总体发展思路,依托煤焦油、焦炉剩余煤气、粗苯这三条线,整合资源、集中优势,继续寻求延伸产业链条,搞好资源综合利用和延伸转化,实现资源循环利用、综合开发、高效增值,不断扩大煤化工产业的整体规模,形成全市工业经济加快发展新的增长极。 新兴煤化工产业园区位于七台河市新兴区辖区内,园区现有面积约4.7平方公里,一期增加2.9平方公里,达到7.6平方公里;二期将长兴乡马鞍村整村搬迁至长兴村,增加5.5平方公里,总体达到13.1平方公里;三期增加8.7平方公里,最终园区面积将达到21.8多平方公里,新兴煤化工产业园区是一个以煤焦化及下游产品为主体的产业园区。园区功能齐备,水、电、路等基础设施建设基本到位。 基于上述政策和资源条件,提出一系列煤焦油项目,10万吨/年精萘项目是其中之一。2产品性质与用途概述 萘为白色或微黄晶体,有强烈的气味,溶于醚、甲醇、无水乙醇氯仿等,常温下能升华,与空气混合能形成爆炸性混合物,属易燃固体,分子量128,密度 1.145g/cm3,沸点218℃,熔点80.2℃,闪点80℃,爆炸极限0.9~5.19%,自然点690℃,折射率1.58218。精萘是工业萘进一步提纯制得的含萘98.45%以上、结晶点不低于79.3℃的萘产品。精萘及萘系产品广泛应用于合成树脂、涂料、医药、农药、轻工、塑料、助剂等行业,可用于制取苯酐、β-萘酚、甲萘胺、H酸、丁腈橡胶、增塑剂、扩散剂、抗凝剂等产品,应当加以充分地利用,使其发挥更大的经济效益。 萘按其来源不同,分为煤焦油萘和石油萘。萘来源于煤焦油,它是在1819年发现并于

相关文档
相关文档 最新文档