文档库 最新最全的文档下载
当前位置:文档库 › 实变函数测试题1-参考答案

实变函数测试题1-参考答案

实变函数测试题1-参考答案
实变函数测试题1-参考答案

本试题参考答案由08统计班15号 李维提供 有问题联系

1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。

2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c ,集{}

()E x f x c =≥和

{}1()E x f x c =≤都是闭集。

3、设n R E ?是任意可测集,则一定存在可测集

δ

G 型集

G

,使得

E

G ?,且

()0=-E G m

4、设,n

A B R ?,A B ?可测,且()m A B ?<+∞,若()**m

A B m A m B ?=+,

则,A B 皆可测。

5、写出鲁津定理及其逆定理。并证明鲁津定理的逆定理。

6、设)(x f 是E 上的可测函数,G 为开集,F 为闭集,试问])(|[G x f x E ∈与

])(|[F x f x E ∈是否是可测集,为什么?

7、设在Cantor 集0P 上定义函数()f x =0,而在0P 的余集中长为1

3n

的构成区间上定义为n (1,2,3,=L n ),试证()f x 可积分,并求出积分值。 8、设{}n f 为E 上非负可积函数列,若lim

()0,n E

n f x dx →∞=?

则()0n f x ?。

9、设)(x f 是E 上. 有限的可测函数,+∞?ε,存在E 上. 有界的

可测函数)(x g ,使得 ε<>-]0|[|g f mE 。 10、求证

1

2

01

11

ln 1()∞

==-+∑?p n x dx x x p n , (1)p >-。

解答:

1. 解:()∞=∞

→,0lim n n A ;设()∞∈,0x ,则存在N ,使x N <,因此n N >时,0x n <<,

即n A x 2∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得n

n A x ∞

→∈lim 又显然()∞?∞

→,0lim n n A ,所以()∞=∞

→,0lim n n A 。

φ=∞

→n n A lim ;若有n n A x ∞

→∈lim ,则存在A ,使任意n N >,有n A x ∈。因此若21n N ->时,

12-∈n A x ,即1

0x n <<

.令∞→n 得00x <≤,此不可能,所以φ=∞

→n n A lim 。 2.证明:必要性:若()f x 是[],a b 上连续函数,由第二章习题8可知1E 和E 是闭集。 充分性:若1E 和E 都是闭集。若有[]0,x a b ∈,()f x 在0x 点不连续。则存在

()()00000,,n n x x f x f x εε>→≥+,或()()00ε-≤x f x f n ,不妨设出现第一种情况。

令()00ε+=x f c ,则(){}

c x f x E x n ≥=∈,而E x ?0(因为c x f x f =+<000)()(ε),此与E 是闭集相矛盾。所以()f x 在[],a b 上是连续的。证毕。

3.由外侧度定义,对任意正整数n ,存在开集E G n ?,使n E G m n 1

)(<-,令I ∞

==1

n n G G ,

则G 为δG 型集,E G ?且 Λ2,1,1

)()(=<-≤-n n

E G m E G m n 故0)(=-E G m 。证毕。

4.证明:先证A 可测:存在δG 型集B G ?使得B m mG *

=。令A G B A Q ?-?=。

G G B A B A ?-?=?])[(.()mG mQ mG G B A m B A m +=+-?≤?])[(。因为*(),()m A B mG m B m A B ?<∞=≤?<+∞

,

A m mG -

B m A m mG -B)(A ***=+=?≥m mQ ,即A m mQ *≥,又A Q ?,所以A m mQ *≤,所以A m mQ *=.*A (A B)m m ≤?<+∞,所以.0)(*=-Q A m

Q Q A A ?-=)(,因为Q 可测,A Q -可测,所以A 可测。同理可证B 可测。证毕。

5.鲁津定理:设()f x 是E 上.有限的可测函数,则对任意0δ>,存在闭子集E F ?δ,使()f x 在δF 上是连续函数,且(\)m E F δδ<.

逆定理:设()f x 是E 上的函数,对0δ?>,总存在闭子集E E ?δ,使得()f x 在δE 上是连续函数,且()m E E δδ-<,则,()f x 是E 上.有限的可测函数。 证明:对任意

1n ,存在闭子集E E n ?,使()f x 在n E 上连续且n

E E m n 1)(<-,令

Y ∞

=-=1

0n n E E E ,则对任意n ,有()011

n n n mE m E E m E E n ∞

=??=-≤-< ???U 。令∞→n ,

得Y Y ∞

=∞==?=?-==0

01

000)(

)(.0n n

n n E E E E E E E mE 。对任意实数a ,

[][][]01n n E f a E f a E f a ∞=??

>=>?> ???

U ,由()f x 在n E 上连续,可知[]n E f a >可测,

而[]()

**000m E f a m E >≤=,所以[]a f E >0也可测,从而[]a f E >是可测的。因此

()f x 是可测的。因为()f x 在n E 上有限,故在Y ∞

=1

n n E 上有限,所以()f x .有限。证毕。

6.由已知 则开集G 可写成直线上可列个开集的并集,即Y i

i i b a G ),(=

()()

()i i i i i

i

E x f x G E x a f x b E x f a E x f b ???∈?=<<=?

>???

由()[

]()[]C C F x f x E F x f x E ∈=∈)

(,则可知()[]F x f x E ∈也是可测集。证毕。

7.f(x)是非负可测函数,因而积分确定,只要证明积分有限即可。设n E 是0P 的余集中长

n

31

构成区

间之并

,则

n

n n mE 3

21

-=,因此

()[

]

1

0,11

11

2()33n

n n n E n n n f x dx f x dx nmE n -∞

======?=∑∑∑??

,所以()f x 可积,且积分值为3。

证毕。

8.对任意0>σ,由于n f 非负可知:

[][]?

?≥≤≤≥σσσn f E E

n n n dx f dx x f f mE .)(1 ().n n E mE f f x dx σσ?≥?≤???因此

1

lim lim ()0n n E

n n mE f f x dx σσ→∞

→∞?≥?==???

,即.0)(?x f n 证毕。

9.因为()f x 是E 上的.有限的可测函数,设[]

∞==f E D ,0mD =,令[]k E E f k =>故有Λ???321E E E I

=∞

→==1

lim k k k k E E D

所以

0lim lim ===∞

→∞

→mD E m mE k k k k ,故0,0k ?>?ε,使得ε<0K mE

令g(x)=????

?∈-∈=0

00

)

()(K K E x E E x x f x g 故00K mE f g mE ε?->?=

10.由于当

∑∑∑??∑∑∞

=∞=∞=++∞=+∞=+=++==-≥∈=-=-<12020101

011)(1)1(11ln 1ln 1x ,0ln x )1,0(,1ln 1ln 1x ,10,x 111n n n

p

n p n p n p n p n n

n p n p dx x x dx x x x x x x x x x 所以

时,而当)上,故在(时,证毕。

08统计班15号 李维

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

(完整版)《实变函数及泛函分析基础》试卷及答案

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

实变函数测试题1-参考答案

本试题参考答案由08统计班15号 李维提供 有问题联系 1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。 2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c ,集{} ()E x f x c =≥和 {}1()E x f x c =≤都是闭集。 3、设n R E ?是任意可测集,则一定存在可测集 δ G 型集 G ,使得 E G ?,且 ()0=-E G m 4、设,n A B R ?,A B ?可测,且()m A B ?<+∞,若()**m A B m A m B ?=+, 则,A B 皆可测。 5、写出鲁津定理及其逆定理。并证明鲁津定理的逆定理。 6、设)(x f 是E 上的可测函数,G 为开集,F 为闭集,试问])(|[G x f x E ∈与 ])(|[F x f x E ∈是否是可测集,为什么? 7、设在Cantor 集0P 上定义函数()f x =0,而在0P 的余集中长为1 3n 的构成区间上定义为n (1,2,3,=L n ),试证()f x 可积分,并求出积分值。 8、设{}n f 为E 上非负可积函数列,若lim ()0,n E n f x dx →∞=? 则()0n f x ?。 9、设)(x f 是E 上. 有限的可测函数,+∞?ε,存在E 上. 有界的 可测函数)(x g ,使得 ε<>-]0|[|g f mE 。 10、求证 1 2 01 11 ln 1()∞ ==-+∑?p n x dx x x p n , (1)p >-。 解答: 1. 解:()∞=∞ →,0lim n n A ;设()∞∈,0x ,则存在N ,使x N <,因此n N >时,0x n <<, 即n A x 2∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得n n A x ∞ →∈lim 又显然()∞?∞ →,0lim n n A ,所以()∞=∞ →,0lim n n A 。

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

实变函数习题解答

第一章习题解答 1、证明 A Y(B I C)=(A Y B)I(A Y C) 证明:设x∈A Y(B I C),则x∈A或x∈(B I C),若x∈A,则x∈A Y B,且 x∈A Y C,从而x∈(A Y B)I(A I C)。若x∈B I C,则x∈B且x∈C,于是x∈A Y B 且x∈A Y C,从而x∈(A Y B)I(A Y C),因此 A Y(B I C) ? (A Y B)I(A Y C) (1) 设x∈(A Y B) I(A Y C),若x∈A,则x∈A Y(B I C),若x∈A,由x∈A Y B 且x∈A Y C知x∈B且x∈C,所以x∈B I C,所以x∈A Y(B I C),因此 (A Y B)I(A Y C) ? A Y(B I C) (2) 由(1)、(2)得,A Y(B I C)=(A Y B)I(A Y C) 。 2、证明 ①A-B=A-(A I B)=(A Y B)-B ②A I(B-C)=(A I B)-(A I C) ③(A-B)-C=A-(B Y C) ④A-(B-C)=(A-B)Y(A I C) ⑤(A-B)I(C-D)=(A I C)-(B Y D) (A-B)=A I B A-(A I B)=A I C(A I B)=A I(CA Y CB) =(A I CA)Y(A I CB)=φY(A I CB)=A-B (A Y B)-B=(A Y B)I CB=(A I CB)Y(B I CB) =(A I CB)Yφ=A-B ②(A I B)-(A I C)=(A I B)I C(A I C) =(A I B)I(CA Y CC)=(A I B I CA)Y(A I B I CC)=φY[A I(B I CC)]= A I(B-C) ③(A-B)-C=(A I CB)I CC=A I C(B Y C) =A-(B Y C) ④A-(B-C)=A I C(B I CC)=A I(CB Y C) =(A I CB) Y(A I C)=(A-B)Y(A I C) ⑤(A-B)I(C-D)=(A I CB)I(C I CD) =(A I C)I(CB I CD)=(A I C)I C(B Y D)

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数试题库及参考答案

实变函数试题库及参考答案(1) 本科 一、填空题 1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设n E ??是可数集,则*m E 0 7.设()f x 是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??是 ,则称()f x 在E 上可测 8.可测函数列的上极限也是 函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +? 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题 1.下列集合关系成立的是( ) 2.若n R E ?是开集,则( ) 3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ) A E 是不可数集 B E 是闭集 C E 中没有内点 D 1m E = 2.设n E ??是无限集,则( ) A E 可以和自身的某个真子集对等 B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( ) A 函数()f x 在E 上可测 B ()f x 在E 的可测子集上可测 C ()f x 是有界的 D ()f x 是简单函数的极限

4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( ) A ()f x 在[],a b 上可测 B ()f x 在[],a b 上L 可积 C ()f x 在[],a b 上几乎处处连续 D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题 1. 可数个闭集的并是闭集. ( ) 2. 可数个可测集的并是可测集. ( ) 3. 相等的集合是对等的. ( ) 4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题 1. 简述无限集中有基数最小的集合,但没有最大的集合. 2. 简述点集的边界点,聚点和内点的关系. 3. 简单函数、可测函数与连续函数有什么关系? 4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题 1. 设()[]23 0,1\x x E f x x x E ?∈?=?∈??,其中E 为[]0,1中有理数集,求 ()[] 0,1f x dx ?. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121 ,,00,1\,,n n n x r r r f x x r r r ∈??=?∈??L L ,求()[] 0,1lim n n f x dx →∞?. 七、证明题 1.证明集合等式:(\)A B B A B =U U 2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1 [|()|]|()|E mE x f x a f x dx a ≥≤ ? 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞ =,则 实变函数试题库及参考答案(1) 本科 一、填空题

实变函数历年考试真题汇总

第 1 页 共 6 页 陇东学院2011—2012学年第一学期实变函数(A) 一.填空.(每空2分,共20分) 1给出自然数集+N 与整数集Z 之间的一一对应关系 . 2设B A ,是两集合,B A <是指 . 3?? ?????????????=≠==0,00,1sin ),(x x x y y x E ,在2 R 内求= E ,='E , 4.设, ,(),[0,1]\. x x x P f x e x P ∈?=? ∈?其中P 是Cantor 集,则[] =?1,0)(dx x f ________. 5.设n E R ?,则称E 是L 可测的是指: . 6.设()sin f x x =,[0,2]x π∈,则()f x + = ; ()f x -= . 7.称)(x f 为可测集E 上的简单函数是指 8.设⑴mE <∞;⑵ {}()n f x 是 E 上一列几乎处处有限的可测函数;⑶ lim ()()n n f x f x →∞ =..a e 于E ,且()f x <∞..a e 于E .则0δ?>,E E δ??,使得 mE δδ<,而{}()n f x 在 上一致收敛于()f x . 二.选择(每题2分,共10分) 1.若A 是有限集或可数集,B 是不可数集,则以下不对的是( ). A .A B 是可数; B .A B 是不可数; C .A B c =; D .A B B = 2.设E 是任一可测集,则( ). A .E 是开集; B .0ε?>,存在开集G E ?,使得(\)m G E ε<; C .E 是闭集; D . E 是 F σ型集或 G δ型集. 3.下列关系式中成立的是( ) ①()A B B A =\ ,②()A B B A = \,③()B A B A ''=' , ④() B A B A =,⑤()B A B A =,其中B A ,是二集合. A .①② B .③④⑤ C .③⑤ D .①②③④⑤ 4. 设n E R ?,mE <+∞,{}()n f x 在E 上几乎处处收敛于()f x .则( ). A .{}()n f x 在E 上处处收敛于()f x ; B .存在{}()n f x 的子列{}()i n f x ,使得{} ()i n f x 在E 上一致收敛于()f x . C . {}()n f x 在E 上一致收敛于()f x ; D . {}()n f x 在 E 上依测度收敛于()f x ; 5.设q R E ?为可测集,{}()n f x 是E 上的一列非负可测函数,则( ) A ??∞→∞ →≤E n n n E n dx x f dx x f )(lim )(lim B ??∞→∞ →≥E n n n E n dx x f dx x f )(lim )(lim C ??∞→∞ →=E n n n E n dx x f dx x f )(lim )(lim D ??∞→∞ →=E n n n E n dx x f dx x f )(lim )(lim 三.判断题(每题2分,共10分) 1. 0mE =E ?是有限集或可数集. ( ) 2. 若开集1G 是开集2G 的真子集,则12mG mG < ( ) 3. 直线上的开集至多是可数多个互不相交的开区间的并 ( ) 4. 设()f x ,()g x 是可测集E 上的可测函数,则()()f x g x 也是E 上的可测函数 ( ) 5.可测函数)(x f 在E 上L 可积?)(x f 在E 上L 可积 ( ) 四.证明题(每题8分,共40分) 1.证明: 设()f x 是(,)-∞+∞上的实值连续函数,则a R ?∈,{} ()E x f x a =>是 试 卷 密 封 装 订 线 院 系 班 级 姓 名 学 号

实变函数测试题与答案

实变函数测试题 一,填空题 1. 设1,2n A n ??=????, 1,2n =L , 则lim n n A →∞ = 、 2. ()(),,a b -∞+∞:,因为存在两个集合之间的一一映射为 、 3. 设E 就是2R 中函数1cos ,00,0 x y x x ?≠?=?? =?的图形上的点所组成的 集合,则E '= , E ?= 、 4. 若集合n E R ?满足E E '?, 则E 为 集、 5. 若(),αβ就是直线上开集G 的一个构成区间, 则(),αβ满足: , 、 6. 设E 使闭区间[],a b 中的全体无理数集, 则mE = 、 7. 若()n mE f x →()0f x ??=?? , 则说{}()n f x 在E 上 、 8. 设n E R ?, 0n x R ∈,若 ,则称0x 就 是E 的聚点、 9. 设{}()n f x 就是E 上几乎处处有限的可测函数列, ()f x 就是E 上 几乎处处有限的可测函数, 若0σ?>, 有 , 则称{}()n f x 在E 上依测度收敛于()f x 、

10. 设()()n f x f x ?,x E ∈, 则?{}()n f x 的子列{} ()j n f x , 使得 、 二, 判断题、 正确的证明, 错误的举反例、 1. 若,A B 可测, A B ?且A B ≠,则mA mB <、 2. 设E 为点集, P E ?, 则P 就是E 的外点、 3. 点集11,2,,E n ??=???? L L 的闭集、 4. 任意多个闭集的并集就是闭集、 5. 若n E R ?,满足*m E =+∞, 则E 为无限集合、 三, 计算证明题 1、 证明:()()()A B C A B A C --=-U I 2、 设M 就是3R 空间中以有理点(即坐标都就是有理数)为中心, 有理数为半径的球的全体, 证明M 为可数集、 3、 设n E R ?,i E B ?且i B 为可测集, 1,2i =L 、根据题意, 若有 ()()*0,i m B E i -→ →∞, 证明E 就是可测集、 4. 设P 就是Cantor 集, ()[]32ln 1,(),0,1x x P f x x x P ?+ ∈? =? ∈-?? 、 求1 0(L)()f x dx ?、 5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x , 而在0P 的余

实变函数期中试卷及答案

一、 判断题 1.有限或可数个可数集的并集必为可数集。(√ ) 2.可数集的交集必为可数集。(× ) 3.设 ,则 。(× ) 4.设点P 为点集E 的内点,则P 为E 的聚点,反之P 为E 的聚点,则P 为E 的内点。(× ) 5.开集中的每个点都是内点,也是聚点。(√ ) 6.任意多个开集的并集仍为开集。(√ ) 7.任意多个开集的交集仍为开集。(× ) 8.设 ,则 。(× ) 9.设E 为 中的可数集,则 。(√ ) 10.设E 为无限集,且 ,则E 是可数集。(× ) 二、填空题 1.设1n R R =,1E 是[0,1]上的全部有理点,则1E '=1E 的内部 1E 2.设2n R R =,1E =[0,1],则1E '=1E 的内部;1E 3.设2n R R =,1E =22{(,)1}x y x y +<,则1E '=1E 的内部 1E 4.设P 是Cantor 集,则P P P P 5. 设(,)a b 为1R 上的开集G 的构成区间,则(,)a b 满足(,a b ,且a , 。 三、证明题 1.证明:()A B A B '''?=?。 证明:因为A A B ??,B A B ??,所以,()A A B ''??,()B A B ''??,从而 ()A B A B '''??? 反之,对任意()x A B '∈?,即对任意(,)B x δ,有 (,)()((,))((,))B x A B B x A B x B δδδ??=???为无限集, 从而(,)B x A δ?为无限集或(,)B x B δ?为无限集至少有一个成立,即x A '∈或 x B '∈,所以,x A B ''∈?,()A B A B '''???。综上所述,()A B A B '''?=?。

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数复习题

1.若E有界,则m*E<正无穷 2.可数点集的外测度为零 3.设E是直线上一有界集合,m*E>0,则对任意小于m*E的正数c,恒有E的子集E1,使m*E=c 4.设S1,S2,…,Sn是一些互不相交的可测集合,Ei包含于Si,i=1,2,3...n,求证m*(E1并E2并E3...并En)=m*E1+m*E2+…+m*En 5.若m*E=0,则E可测。

6.证明康托尔(Cantor)集合的测度为0 7.设A,B包含于Rp,且m*B<正无穷,若A是可测集,证明m*(A并B)=mA+m*B-m*(A 交B) 8.证明:若E可测,则对于任意e〉0,恒有开集G及闭集F,使F包含于E包含于G,而m (G-E)〈e,m(E-F)〈e

9.设E包含于Rq,存在两列可测集{An},{Bn},使得An包含于E包含于Bn且m(Bn-An)--> 0(n-->无穷),则E可测。 10.设是一列可测集,证明和都是可测集且

11.设{En}是一列可测集,若求和m(En)<正无穷,证明m(En上极限)=0 12.设E是[0,1]中可测集,若m(E)=1,证明对任意可测集A包含于[0,1],m(E交A)=m(A) 13.设{En}是[0,1]中可测集列,若m(En)=1,n=1,2,...,则 定理5.6设E是任一可测集,则一定存在型集G,使G包含E,且m(G-E)=0。 设E是任一可测集,则一定存在型集F,使F包含于E,且m(E-F)=0。 次可数可加性证明

卡拉泰奥多里条件:m*T=m*(T交E)+m*(T交Ec)极限的测度等于测度的极限

1.证明:f(x)在E上为可测函数的充要条件是对任一有理数r,E[f〉r]可测,如果集E[f=r]可测,问f(x)是否可测?

实变函数积分理论部分复习题(附答案版)

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞

实变函数试题库参考答案

《实变函数》试题库及参考答案(完整版) 选择题 1,下列对象不能构成集合的是:( ) A 、全体自然数 B 、0,1 之间的实数全体 C 、[0, 1]上的实函数全体 D 、全体大个子 2、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{全体小个子} D 、{x : x>1} 3、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{x :x>1} D 、{全体 胖子} 4、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体整数} C 、{x :x>1} D 、{全体瘦子} 5、下列对象不能构成集合的是:( ) A 、{全体小孩子} B 、{全体整数} C 、{x :x>1} D 、{全体实 数} 6、下列对象不能构成集合的是:( ) A 、{全体实数} B 、{全体大人} C 、{x :x>1} D 、{全体整 数} 7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I ∈?= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1, +∞)

8、设}1111:{i x i x A i -≤≤+-=, N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1] D 、[-1, 1] 9、设}110:{i x x A i +≤≤=, N i ∈, 则i i A ∞=?1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、 (0, +∞) 10、设}1211:{i x i x A i +<<-=, N i ∈, 则i i A ∞=?1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、 (1, 2) 11、设}2 3:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、 {0} 12、设}11:{i x i x A i <<-=, N i ∈, 则i i A ∞=?1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0} 13、设]1212,0[12--=-n A n , ]211,0[2n A n +=, N n ∈,则=∞→n n A lim ( ) A 、[0, 2] B 、[0, 2] C 、[0, 1] D 、[0, 1] 14、设]1212,0[12--=-n A n , ]211,0[2n A n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2] B 、[0, 2] C 、[0, 1] D 、[0, 1]

实变函数题库集答案

实变函数试题库及参考答案本科、题 1设A, B为集合,贝U ABUB_AUB (用描述集合间关系的符号填写) 2?设A是B的子集,贝U A_B (用描述集合间关系的符号填写) 3?如果E中聚点都属于E,则称E是闭集 4.有限个开集的交是开集 5?设E i、E2是可测集,则m EUE2 _mE! mE?(用描述集合间关系的符号填写) n * _ 6?设E ?是可数集,则m E=0 7?设f x是定义在可测集E上的实函数,如果 a ?1, E x f x a是可测集,则称f x在E上可测8可测函数列的上极限也是可测函数 9?设f n x f x , g n x g x ,贝V f n X g n x f X g x 10 ?设f x在E上L可积,贝y f x在E上可积 11 ?设A, B为集合,则B A U A A (用描述集合间关系的符号填写) 12?设A 2k 1 k 1,2丄,则A=a (其中a表示自然数集N的基数) 13?设E ?n,如果E中没有不属于E,则称E是闭集 14 ?任意个开集的并是开集 15?设E1、E2是可测集,且E1 E2,则mE1 mE2 16.设E中只有孤立点,贝U m E =0 17?设f x是定义在可测集E上的实函数,如果a ?1, E x f x a是可测,则称f x在E上可测 18 ?可测函数列的下极限也是可测函数 19?设f n x f x , g n x g x,贝卩f n x g n x f X g X 20?设n X是E上的单调增收敛于f x的非负简单函数列,贝y E f x dx lim E n x dx 21 ?设A, B为集合,则A B UB B 22?设A为有理数集,则A=a (其中a表示自然数集N的基数) 23?设E ?n,如果E中的每个点都是内点,则称E是开集 24 ?有限个闭集的交是闭集

实变函数题库集答案

实变函数试题库及参考答案 本科 一、题 1.设,A B 为集合,则()\A B B U =A B U (用描述集合间关系的符号填写) 2.设A 就是B 的子集,则A ≤B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 就是闭集 4.有限个开集的交就是开集 5.设1E 、2E 就是可测集,则()12m E E U ≤12mE mE +(用描述集合间关系的符号填写) 6.设n E ??就是可数集,则*m E =0 7.设()f x 就是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??就是可测集,则称()f x 在E 上可测 8.可测函数列的上极限也就是可测函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +?()()f x g x + 10.设()f x 在E 上L 可积,则()f x 在E 上可积 11.设,A B 为集合,则()\B A A U ?A (用描述集合间关系的符号填写) 12.设{}211,2,A k k =-=L ,则A =a (其中a 表示自然数集N 的基数) 13.设n E ??,如果E 中没有不属于E ,则称E 就是闭集 14.任意个开集的并就是开集 15.设1E 、2E 就是可测集,且12E E ?,则1mE ≤2mE 16.设E 中只有孤立点,则* m E =0 17.设()f x 就是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??

实变函数测试题与标准答案

实变函数测试题与答案

————————————————————————————————作者:————————————————————————————————日期:

实变函数试题 一,填空题 1. 设1 ,2n A n ?? =???? , 1,2n =L , 则lim n n A →∞ = . 2. ()(),,a b -∞+∞:,因为存在两个集合之间的一一映射为 3. 设E 是2R 中函数1cos ,00,0 x y x x ? ≠?=?? =?的图形上的点所组成的 集合,则E '= ,E ? = . 4. 若集合n E R ?满足E E '?, 则E 为 集. 5. 若(),αβ是直线上开集G 的一个构成区间, 则(),αβ满足: , . 6. 设E 使闭区间[],a b 中的全体无理数集, 则 mE = . 7. 若()n mE f x →()0f x ??=??, 则说{}()n f x 在E 上 . 8. 设n E R ?, 0n x R ∈,若 ,则称0x 是 E 的聚点. 9. 设{}()n f x 是E 上几乎处处有限的可测函数列, ()f x 是E 上 几乎处处有限的可测函数, 若0σ?>, 有 , 则称{}()n f x 在E 上依测度收敛于()f x .

10. 设()()n f x f x ?,x E ∈, 则?{}()n f x 的子列{} ()j n f x , 使得 . 二, 判断题. 正确的证明, 错误的举反例. 1. 若,A B 可测, A B ?且A B ≠,则mA mB <. 2. 设E 为点集, P E ?, 则P 是E 的外点. 3. 点集11,2,,E n ? ? =??? ? L L 的闭集. 4. 任意多个闭集的并集是闭集. 5. 若n E R ?,满足*m E =+∞, 则E 为无限集合. 三, 计算证明题 1. 证明:()()()A B C A B A C --=-U I 2. 设M 是3 R 空间中以有理点(即坐标都是有理数)为中心, 有理数为半径的球的全体, 证明M 为可数集. 3. 设n E R ?,i E B ?且i B 为可测集, 1,2i =L .根据题意, 若 有 ()()*0,i m B E i -→ →∞, 证明E 是可测集. 4. 设P 是Cantor 集, ()[]3 2ln 1,(),0,1x x P f x x x P ?+ ∈? =? ∈-?? . 求1 0(L)()f x dx ?. 5. 设函数()f x 在Cantor 集0P 中点x 上取值为3 x , 而在0P 的

相关文档
相关文档 最新文档